
Proceedings of the Fifteenth AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment (AIIDE-19)

Levels from Sketches with Example-Driven Binary Space Partition

Sam Snodgrass
Northeastern University

sam.psnodgrass@gmail.com

Abstract

Procedural content generation via machine learning
(PCGML) has been demonstrating its usefulness as a content
and game creation approach, and has been shown to be
able to support human creativity. In this paper we present
an example-driven adaptation of a classic PCG approach,
binary space partition (BSP), that takes a structural template
or sketch of a level and fills in the details from examples.
We show that this example-driven adaptation can generate
a diverse set of levels from a single structural template. We
evaluate the levels generated in terms of difference between
paths through the levels, amount of the level copied from the
examples, and other common PCG level evaluation metrics.
Furthermore, we compare this method to a Markov chain
approach and show that our BSP approach matches the
training level distribution better while generating a greater
range of interesting features.

1 Introduction

Procedural content generation (PCG) describes the algo-
rithmic creation of content (e.g., levels, stories, quests,
rules, full games, etc.). PCG via machine learning
(PCGML) (Summerville et al. 2018) denotes a subgroup of
PCG techniques that function by learning a model of the
type of content to be generated and then sampling from that
model to create new instances of the content (e.g., learn from
a set of example game levels, and then generate a new level).
The main challenges of PCGML approaches are that (1) they
typically do not offer the user much intuitive control over the
generated content (i.e., the user can only control the param-
eters of the model which may have unintuitive effects on the
models and output); and (2) the generated content does not
cover a diverse space resulting in uninteresting content.

We present a PCGML approach that offers control over
the structure of the generated levels to the user while cover-
ing a diverse content space. Our approach takes a low reso-
lution sketch of a level design (either from a user or a gener-
ated sketch) and scales up the resolution. Here we are using
the term sketch to refer to a template of the structural fea-
tures of the level. We compare two methods for realizing
that template, a new example-driven Binary Space Partition-
ing (EDBSP) approach which matches structural elements

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

between the input sketch and the example levels; and an ex-
isting mulit-layer Markov chain approach using the sketch
as the input layer (adapted from our previous work on multi-
layer level generation (Snodgrass and Ontañón 2017c)). Sec-
tion 3 presents both of these approaches in more detail.
We show that while both approaches cover a similar met-
ric space, the distribution of levels created by our EDBSP
approach more closely follows the distribution of the train-
ing levels. Furthermore, the EDBSP approach is more easily
extensible to additional domains. The main contributions of
this paper are:

1. A new example-driven extension to space partitioning al-
gorithms for generating levels from a structural sketch.

2. A comparative analysis of this method and an existing
PCGML approach, showing this new approach covers a
larger generative space across several of the metrics

2 Related Work

There are a number of PCG approaches that generate
levels or content at various resolutions. Snodgrass and
Ontañón (Snodgrass and Ontañón 2017a) created a hierar-
chical Markov chain approach that modeled and generated
levels at multiple resolutions. However, this approach re-
quired experimentally or manually tuning clustering param-
eters to identify the high-level structures for a given domain
which can be unintuitive for non-technical users; the ap-
proach we present here only requires definitions of which
game elements are solid or not. Ma et al. (Ma et al. 2014)
propose an approach that takes a node graph representing a
level layout, and generate a more detailed level structure us-
ing polygonal blocks provided by the researchers. Our ap-
proach differs from theirs primarily in that our approach
automatically defines the level partitioning and extracts the
more detailed blocks from a set of training examples. Liapis
et al.’s Sentient Sketchbook (Liapis, Yannakakis, and To-
gelius 2014) is a mixed mixed initiative level design tool that
continually refines and offers suggestions of level elements
at increasing resolutions. Similarly, Guzdial et al.’s (Guz-
dial, Liao, and Riedl 2018) co-creative PCGML approach
alternates with the user in adding elements to a shared level.
These approaches assist designers in refining a given level,
but we believe that our approach can be used for rapidly pro-
totyping many variations of a base level structure.

73

- - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - -
- - - - - - - - - - - g - - - - - -
- - - - - - - - - B B B B B B B B -
- - - - - - - - - - - - - - - - - -
- - - - - - - - g - - - - - - - - -
- - - - - - - - - - - - - - - - - -
- - - - - - B M B - - - - - - - - -
- - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - -
- - -

- - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - -
- - - - - - - - - # # # # # # # # -
- - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - -
- - - - - - # # # - - - - - - - - -
- - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - -
- - -

(a) (b) (c)

Figure 1: This figure shows a section from a Super Mario Bros. level (a), that same section represented with the full resolution
representation (b), and that section represented with the sketch resolution representation (c).

Our approach also differs from Guzdial and Riedl’s (Guz-
dial and Riedl 2016) level generation approach and Sum-
merville and Mateas’s (Summerville and Mateas 2016)
LSTM approach in that our approach directly allows the
user to guide the generator by providing a structural sketch
of the level as a basis. Our previous constrained generation
approach (Snodgrass and Ontañón 2016) gave control over
the features of the generated levels to the user, but that con-
trol needed to be encoded into functional constraints in the
source code of the model. Our approach does not offer con-
trol as directly as that approach, but the control given to the
user by our approach is in a more intuitive form.

We compare our proposed approach against our previ-
ous multi-layer MdMC approach (Snodgrass and Ontañón
2017c). This approach represents levels using different tile
layers corresponding to features of the levels (e.g., desired
path, structures, etc.). It then learns a probabilistic relation-
ship between nearby level elements (across layers) and the
elements in the layer to be generated by the model later.
This model functions in much the same way as the standard
MdMC approach (Snodgrass and Ontañón 2017a), by learn-
ing probabilistic relationships between different tile types
and structures, with the core difference being that the multi-
layer approach contains multiple representations of a level
and learns relationships across those representations. In our
evaluation, we treat a level sketch (or structural template) as
one of the layers and the full resolution level as the layer to
be modeled for generation. Figure 1 shows a full resolution
layer (b) and the sketch layer (c). More details on this model
can be found in (Snodgrass and Ontañón 2017c).

3 Methods

In this section we introduce the binary space partition algo-
rithm and our example-driven extension. Next, we describe
our experimental setup, our domain, and evaluation metrics.

3.1 Example-Driven Binary Space Partition

Binary Space Partition (BSP) (Shaker et al. 2016) is a parti-
tioning algorithm that recursively divides a given space into
two smaller sections until an end condition is met. Algo-
rithm 1 shows the procedure of the BSP algorithm. At a high
level, BSP requires a space or shape to partition (line 1) and
some end condition (in this case a minimum size of a sec-
tion, line 2). The algorithm then splits the given section into

Algorithm 1 Binary Space Partition (adapted and extended
from (Shaker et al. 2016))

1: Require: Level ← an h× w grid
2: Require: min ← minimum size of a section
3: Divide the section along a vertical or horizontal line
4: Select one of the two newly created sections, s
5: if sheight ≥ 2 ·min or swidth ≥ 2 ·min then
6: Go to line 3 using s
7: else
8: Select the other section and go to line 5
9: end if

10: for all s do
11: Fill in the details of s
12: end for

two parts by randomly choosing a vertical or horizontal split
and the position of the split (line 3), which results in two new
sections (line 4). Next, if the end condition is not met (i.e., if
the section could still be split, line 5) then recursively split
the created sections (line 6); and similarly for the other cre-
ated section, (line 8). During the splitting process, sections
of various sizes will be created due to the random selection
of split orientations and positions. Figure 2 (c) shows a po-
tential splitting of a level. Once all the sections have been
decided, then the algorithm needs a procedure for filling in
the details of those created sections (lines 10-12).

The process of filling in the section details is where our
work differs from traditional uses of BSP. Previous applica-
tions of BSP to level generation have focused on dungeon
generation (Shaker et al. 2016; Baron 2017). These BSP
level generation approaches start with empty sections and fill
in the details of the sections using a manually defined set of
rules or heuristics (e.g., create a room of a certain size, place
items and enemies in various positions in that room, connect
the rooms with hallways, etc.). In our work, we flesh out the
details of the level using examples from training levels.

Figure 2 shows the flow of our approach. We start with a
structural template representing the solid and empty spaces
(Figure 2: b). We extract the template or sketch from a given
input level (Figure 2: a), but these sketches can be created
manually or generated in a number of ways. Next, we split
the sketch into a set of non-overlapping sections (Figure 2:
c) using the BSP (Algorithm 1: lines 1-9). To fill in the de-

74

(e) Generated level

(d) Matching sections selected from the training levels

- -

- -
- -
- -
- # # # #
- -
- -

- -
- - - - - # - - - - - - - - - - - # # - - - - - # # # #
- - - - - - # - - - - - - - - - - - # # - - - - - - - - - -
- - - - - - # # - - - - - - - - - - # # - - - - - - - - - -
- - - - - - # # - - - - - - - - - - # # - - - - - - - - - -

#

C

H
F

BA

D
E

J
G

I

A
DB

E

F

C

I J

G
H

(a) Input Level

- -

- -
- -
- -
- # # # #
- -
- -

- -
- - - - - # - - - - - - - - - - - # # - - - - - # # # #
- - - - - - # - - - - - - - - - - - # # - - - - - - - - - -
- - - - - - # # - - - - - - - - - - # # - - - - - - - - - -
- - - - - - # # - - - - - - - - - - # # - - - - - - - - - -

#

(b) Extracted Sketch (c) Sketch with sections identified via
Binary Space Partition

Figure 2: This figure shows the pipeline of our Example-Drive Binary Space partition (EDBSP) approach. Our approach starts
with a low resolution sketch extracted from a given input level (a, b). Next, it splits the sketch into sections (c). For each of the
sections our approach finds matching low resolution sections in the training levels (d). Those matching sections are then used
to scale up the resolution of the sketch to a full resolution level1(e).

tails of the sketch sections, we leverage existing levels. That
is, given a set of training levels, we represent those training
levels as low resolution sketches. Then for each section in
the input sketch, we perform an exhaustive search over the
sections of equal dimensions in the training levels and re-
trieve any sections that perfectly match the structure (empty
and solid tile layout) of the input sketch section (Figure 2: d).
We then randomly choose one of the matching sections and
use the corresponding section in the full resolution version
of the training level to fill in the details of the input sketch
section, resulting in the final output level (Figure 2: e). In
this paper we use a naive approach of performing exhaus-
tive search for matching sections in the training levels and
randomly sampling from the matching sections to fill the de-
tails. This random sampling from the matching sections en-
codes a distribution over possible sections because we do not
remove duplicate matching sections. There are simple exten-
sions that can be explored in this sampling process as well.
For example, to avoid situations where no matching section
exist, one can use an iterative loosening or set a threshold on
the number of mismatches between the input sketch section
and the searched sections. To increase collaboration, one can
present the matching sections to the user and give them the
option to choose how to fill in the details. We leave the ex-
tensions for future work and focus on the base algorithm.

1We show the exact image sections being stitched; but in prac-
tice we do not capture aesthetic differences, so the full resolution
levels shown later do not contain disparity in visuals.

3.2 Domain

We test our approach in Super Mario Bros., a platforming
game that has been extensively explored by the PCG (Shaker
et al. 2011; 2012; Togelius et al. 2009) and PCGML research
communities (Snodgrass 2018; Summerville and Mateas
2016; Guzdial and Riedl 2016; Dahlskog, Togelius, and Nel-
son 2014; Volz et al. 2018) . We use a set of 30 levels from
Super Mario Bros. and Super Mario Bros.: The Lost Lev-
els that includes the standard outside levels (i.e., not castle,
underground, underwater, or mushroom top levels). We rep-
resent levels using grids where each tile corresponds to a
position in the level, and each tile take a value from a rep-
resentative tile set (i.e., tile types) as is common in the liter-
ature (Snodgrass 2018; Summerville and Mateas 2016). We
use two sets of tile types for different resolutions:

• Full Resolution: This uses 35 tile types representing the
various level structures (e.g., solid bricks, pipes, moving
platforms), interactive elements (e.g., breakable blocks,
?-blocks, springs), different enemy types (e.g., koopas,
hammer bros., goombas), and empty space. Figure 1 (cen-
ter) shows a section of a level represented in this format.

• Sketch Resolution: This uses 2 tile types that distin-
guish between the solid elements (e.g., pipes, blocks,
springs, platforms) and non-solid elements of the level
(e.g., empty space, enemies, flag poles). Figure 1 (right)
shows a section of a level represented in this format.

75

3.3 Experimental Evaluation

We evaluate our example-driven binary space partition
(EDBSP) approach in a comparative analysis with the multi-
layer MdMC approach (Snodgrass and Ontañón 2017c). We
follow some of Summerville’s PCG evaluation recommen-
dations (Summerville 2018), including performing KDE vi-
sualizations, and presenting representative generated levels.

For our experiments we employ the following procedure.
First, we represent the set of 30 levels using both the full
and sketch resolutions. For each level, we use the sketch as
input to our EDBSP approach and to the multi-layer MdMC
approach. We use the other 29 levels as the training data for
the MdMC approach and as the source of examples for the
EDBSP approach. We do not use the current input sketch
level as training data in order to show that the method gen-
eralizes to sketches outside of the training set. We then gen-
erate 100 full resolution levels for the current sketch with
our EDBSP approach and the MdMC approach.

To evaluate our approach and the multi-layer MdMC ap-
proach, we compute the metrics described below for all the
generated levels. We then perform a kernel density estima-
tion (KDE) (Rosenblatt 1956) on pairwise combinations of
those metrics. We evaluate the similarity of the distributions
of the generated level sets in the metric space to the distri-
bution of the training levels in the metric space using the
e-distance (Székely and Rizzo 2013), as suggested by Sum-
merville (Summerville 2018). Lastly, we present the gener-
ated levels which copied the most from the training levels.

The metrics used in the KDE and e-distance measure are
described below. We are interested in modeling and gener-
ating variations on the training level structures, and there-
fore desirable values for our metrics used to compute the e-
distance are those values that fall around the values of those
metrics on the training level set.

• Leniency (Smith and Whitehead 2010): This is meant
to approximate the difficulty of a level in terms of the fre-
quency of detrimental elements (i.e., enemies and gaps)
and beneficial elements (i.e., power-ups) present in the
level normalized over the length of the level. This is com-
puted as: .5×powerups−(gaps+.5×enemies)

length

• Interesting Tile Frequency: This captures how fre-
quently tiles other than empty or solid appear in the level.

• Path Coverage Frequency: This measures the percent-
age of the level that is covered by an A∗ agent’s path.

• Meaningful Jumps Count: This counts how many times
an A∗ agent needed to jump to complete the level. The
agent may jump many times, but this only counts jumps
that allow the agent to cross a gap or avoid an enemy.

• Fréchet Distance (Snodgrass and Ontanón 2017b;
Eiter and Mannila 1994): This measures the distance
between two paths. Intuitively it can be thought of as the
minimum length of a rope needed to connect two people
walking on two separate paths. Specifically, in our work
we compute the distance between the path through a gen-
erated level and the path through the original level used as
a template. This metric can help indicate if the differences

between the generated and template levels are impactful
to the gameplay. Note that this metric is not used in the e-
distance calculation because this is a pairwise metric that
is not computed on only the training levels.

• Plagiarism: This metric compares the generated levels
against the training levels and finds the largest section of
columns in the generated level that has an exact match in
the training levels. This helps us investigate the novelty
of the generated levels. Note that this metric is not used in
the e-distance calculation because this is a pairwise metric
that is not computed on only the training levels.

Sketch EDBSP
and
Training

MdMC
and
Training

EDBSP
and
MdMC

1 34.350 63.965 28.351
2 34.267 76.335 108.897
3 50.217 46.600 4.068∗
4 21.454 49.258 157 .613
5 49.367 23.114 60.490
6 18.740 51.057 132.359
7 47.413 41.756 4.777∗
8 40.065 37.823 9.415∗
9 53.173 79.533 41.324

10 137.722 157.038 3.412∗
11 548 .693 543 .087 23.282
12 120.978 131.591 2.001∗
13 57.199 27.183 40.781
14 26.596 43.061 26.398
15 54.383 52.782 9.765
16 76.652 59.424 41.707
17 34.385 42.789 23.772
18 29.390 39.131 54.229
19 40.089 100.847 43.996
20 106.365 78.932 12.912∗
21 58.823 33.930 55.727
22 32.384 32.181 1.929∗
23 192.885 241.848 15.528
24 20.237 59.934 94.719
25 33.087 35.640 3.457∗
26 82.501 72.183 7.774∗
27 26.070 43.140 12.446
28 28.273 33.321 3.597∗
29 41.224 45.764 1.929∗
30 98.115 170.891 32.700

Avg 73.170 83.805 35.312

Table 1: This table shows the e-distances between the gen-
erated levels for each input sketch and the training levels
(middle two columns) and the e-distance between the lev-
els generated for each input sketch by each model (last col-
umn). Bold indicates the generated levels with the lowest
e-distances; italics indicate the highest e-distance for each
model, and an ∗ indicates that the distributions do not have
a statistically significant difference (i.e., all unmarked dis-
tances between distributions are statistically significant us-
ing p = 0.05 with a homogeneity test on the distributions).

76

Figure 3: This figure shows a corner plot of the kernel density estimation plots for our chosen metrics on the levels generated by
the Example-driven BSP approach (Blue), the multi-layer MdMC approach (Red), and the training levels in cases where those
metrics are defined on the training levels (Black).

4 Results

Figure 3 shows a corner plot of the kernel density estimation
(KDE) plots for the metrics described in the previous section
for all the levels generated with our EDBSP approach (blue
shades), generated with the multi-layer MdMC approach
(red outlines), and the training levels for the applicable met-
rics (black points). For most metrics and plots the MdMC
and EDBSP approaches cover similar spaces. However, for
the Interesting Tile Frequency we can see that our EDBSP
approach is skewed towards higher values than the MdMC
approach. This is likely due to the probabilistic nature of
the MdMC approach which learns relationships between tile
types, and is therefore more likely to sample common tiles
(e.g., empty space and solid blocks in Super Mario Bros.),
whereas the EDBSP approach randomly grabs a matching
section without accounting for tile-level relationships. This
is interesting because it shows that even if both approaches
cover otherwise similar metric spaces, the EDBSP approach
will be more visually and interactively diverse.

Table 1 shows the e-distance between the distribution of
the generated levels for each input sketch and the training
levels, and between the distributions of the generated levels
for each input sketch with each model using the Interest-
ing Tile Frequency, Path Coverage, and Meaningful Jumps
metric space. The e-distances between the distributions are
statistically significant (with p = 0.05 using a homogene-
ity test) unless noted with an asterisk (*). We see that the
EDBSP generated level sets generally have a smaller dis-
tance from the training level distribution, indicating that the
EDBSP approach more accurately captures the features of
the training data than the MdMC approach. There is admit-
tedly not a large difference between the e-distance values of
the models from the training sets. This is also seen in the
e-distances between the sets of generated levels, so we will
now highlight the interesting results in the table.

It is important to notice that the levels generated for sketch
11 by both models have a much larger e-distance from the
training level distribution than any of the other generated

77

Figure 4: This figure shows the 11th training level and a path through that level.

(a) The 6th training level and a path through that level.

(b) Level generated by the EDBSP approach with the 6th sketch.
Plagiarism of 27 columns.

(c) The 5th training level and a path through that level.

(d) Level generated by the MdMC approach with the 5th sketch.
Plagiarism of 24 columns.

Figure 5: This figure shows the sketches for the level sets
that had the lowest e-distance from the training levels (a, c)
and the levels generated by the respective approaches with
those sketches with the highest plagiarism values (b, d).

sets. By looking at sketch 11 (Figure 4) we can see that there
are many gaps which both requires many meaningful jumps
and increases the leniency of the level. This, in turn, results
in generated levels having a higher number of meaningful
jumps and higher leniency than the rest of the training levels.

Next, we look at the generated level sets with the lowest
e-distance scores from the training set. Figure 5 shows the
levels used as the sketches and the generated levels for those
sets with the largest number of plagiarized columns. For the
EDBSP approach, though there are 27 plagiarized columns
(near the end of the level), there are still interesting differ-
ences from the input level. Specifically, the overhang area
towards the middle of the generated level has a new inter-
active area, and the end of the level includes an additional
obstacle (the downward pipe). Alternatively, the generated
MdMC level copies 24 columns (also near the end), but in-
stead of introducing interesting new interactions it removes
interactivity by replacing ?-blocks with solid ones and pipes
with pillars. This reinforces the point regarding the differ-
ence in frequency of interesting tiles between the methods.

In addition to the distance of the generated levels from the
training levels, we can also see the distance between the sets
of generated levels themselves. Here we can see that many of
the generated sets are more similar to each other than to the
training set (which is reflected in KDE projections as well in
Figure 3). A notable exception occurs in the levels generated
using sketch 4. Here, the e-distances between the generated
level sets are much larger than the e-distances between the
individual generated sets and the training set. This is likely
due to the large flat areas in the training level. This results
in the MdMC model filling these areas with solid and empty
tiles (with few enemies or obstacles) and the EDBSP model

filling in those spaces with more enemies. This causes the set
of generated EDBSP levels to have more meaningful jumps,
a higher leniency, and higher path coverage than the MdMC
generated levels, which in turn results in a larger e-distance.

5 Discussion, Conclusions, and Future Work

We have shown that our example-driven Binary Space Par-
tition (EDBSP) and the multi-layer (MdMC) were capable
of covering similar spaces in the chosen metric space with a
key difference in the frequency of interesting tiles. This dif-
ference displayed itself as we explored generated levels with
more plagiarism and saw that the EDBSP-generated levels
inserted more interesting and interactive areas whereas the
MdMC-generated levels removed such areas and replaced
them with solid structures or sparse areas. In future work
it would be interesting to explore player perceptions of the
interestingness of the levels and the amount of interactivity
between the approaches. Additionally, the metrics we em-
ployed for the KDE and e-distance were skewed towards
pathing information, but it would be worthwhile to explore
more metrics for representing the aesthetics and interesting-
ness of the levels for these evaluations, particularly because
the structural elements are common across the levels. The
key takeaway here is that while both models performed sim-
ilarly for many of the metrics, the EDBSP model retained
more of the interesting level structures and patterns.

There are several avenues to explore moving forward. We
have shown this method to work in Super Mario Bros., but
by encoding levels from any number of domains in a solid
or empty sketch format we can blend, merge, and extend the
approach to many new domains. Including levels from more
domains into the examples may have interesting effects on
the output, and could increase diversity in the generated lev-
els. Our goal for this method is to enable rapid prototyping
of game levels; therefore, an obvious avenue is a user evalu-
ation of a mixed-initiative tool for level design that employs
this method. A human evaluation of the usability, clarity, and
controllability of the model is an important next step. A part
of this user study is allowing designers to provide new level
sketches for the algorithm to flesh out. Lastly, we’ve shown
our approach in 2D levels, but this approach should extend
to any space partitioning approach in 2D or 3D. Developing
and evaluating these extensions in more complex domains
and with more complex partitioning approaches can show-
case the usefulness and generality of the underlying ideas.

In this paper we presented an example-driven extension
to a classic PCG approach, binary space partition. We eval-
uated our extension by performing a comparative analysis
with another PCGML approach. We have shown that our
EDBSP approach generates levels with more interesting el-
ements while achieving similar performance across other
metrics. Moving forward we want to explore the usability
of the model in a collaborative setting.

78

References

Baron, J. R. 2017. Procedural dungeon generation analysis
and adaptation. In Proceedings of the SouthEast Conference,
168–171. ACM.
Dahlskog, S.; Togelius, J.; and Nelson, M. J. 2014. Linear
levels through n-grams. Proceedings of the 18th Interna-
tional Academic MindTrek.
Eiter, T., and Mannila, H. 1994. Computing discrete Fréchet
distance. Technical Report 94/64, Technische Universität
Wien.
Guzdial, M., and Riedl, M. 2016. Game level generation
from gameplay videos. In Twelfth Artificial Intelligence and
Interactive Digital Entertainment Conference.
Guzdial, M.; Liao, N.; and Riedl, M. 2018. Co-creative
level design via machine learning. In 2018 Experimental AI
in Games Workshop.
Liapis, A.; Yannakakis, G. N.; and Togelius, J. 2014. De-
signer modeling for sentient sketchbook. In 2014 IEEE
Conference on Computational Intelligence and Games, 1–
8. IEEE.
Ma, C.; Vining, N.; Lefebvre, S.; and Sheffer, A. 2014.
Game level layout from design specification. In Computer
Graphics Forum, volume 33, 95–104. Wiley Online Library.
Rosenblatt, M. 1956. Remarks on some nonparametric es-
timates of a density function. The Annals of Mathematical
Statistics 832–837.
Shaker, N.; Togelius, J.; Yannakakis, G. N.; Weber, B.;
Shimizu, T.; Hashiyama, T.; Sorenson, N.; Pasquier, P.;
Mawhorter, P.; Takahashi, G.; et al. 2011. The 2010 mario
AI championship: Level generation track. TCIAIG, IEEE
Transactions on 3(4):332–347.
Shaker, N.; Nicolau, M.; Yannakakis, G. N.; Togelius, J.; and
O’neill, M. 2012. Evolving levels for super mario bros using
grammatical evolution. In 2012 IEEE Conference on Com-
putational Intelligence and Games (CIG), 304–311. IEEE.
Shaker, N.; Liapis, A.; Togelius, J.; Lopes, R.; and Bidarra,
R. 2016. Constructive generation methods for dungeons and
levels. In Shaker, N.; Togelius, J.; and Nelson, M. J., eds.,
Procedural Content Generation in Games: A Textbook and
an Overview of Current Research. Springer. 31–55.
Smith, G., and Whitehead, J. 2010. Analyzing the expres-
sive range of a level generator. In Proceedings of the 2010
Workshop on Procedural Content Generation in Games, 4.
ACM.
Snodgrass, S., and Ontañón, S. 2016. Controllable proce-
dural content generation via constrained multi-dimensional
Markov chain sampling. In 25th International Joint Confer-
ence on Artificial Intelligence.
Snodgrass, S., and Ontañón, S. 2017a. Learning to generate
video game maps using Markov models. IEEE Transactions
on Computational Intelligence and AI in Games.
Snodgrass, S., and Ontanón, S. 2017b. Player movement
models for platformer game level generation. In Proceed-
ings of the 26th International Joint Conference on Artificial
Intelligence, 757–763. AAAI Press.

Snodgrass, S., and Ontañón, S. 2017c. Procedural level gen-
eration using multi-layer level representations with mdmcs.
In 2017 IEEE Conference on Computational Intelligence
and Games (CIG), 280–287. IEEE.
Snodgrass, S. 2018. Markov Models for Procedural Content
Generation. Drexel University.
Summerville, A., and Mateas, M. 2016. Super Mario as a
string: Platformer level generation via LSTMs. Proceedings
of 1st International Joint Conference of DiGRA and FDG.
Summerville, A.; Snodgrass, S.; Guzdial, M.; Holmgård, C.;
Hoover, A. K.; Isaksen, A.; Nealen, A.; and Togelius, J.
2018. Procedural content generation via machine learning
(PCGML). IEEE Transactions on Games.
Summerville, A. 2018. Expanding expressive range: Eval-
uation methodologies for procedural content generation. In
Fourteenth Artificial Intelligence and Interactive Digital En-
tertainment Conference.
Székely, G. J., and Rizzo, M. L. 2013. Energy statistics: A
class of statistics based on distances. Journal of statistical
planning and inference 143(8):1249–1272.
Togelius, J.; Karakovskiy, S.; Koutnı́k, J.; and Schmidhuber,
J. 2009. Super mario evolution. In 2009 ieee symposium on
computational intelligence and games, 156–161. IEEE.
Volz, V.; Schrum, J.; Liu, J.; Lucas, S. M.; Smith, A.; and
Risi, S. 2018. Evolving mario levels in the latent space
of a deep convolutional generative adversarial network. In
Proceedings of the Genetic and Evolutionary Computation
Conference, 221–228. ACM.

79

