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Abstract

In recent years, reinforcement learning (RL) methods have
been applied to model gameplay with great success, achiev-
ing super-human performance in various environments, such
as Atari, Go and Poker. However, these studies mostly focus
on winning the game and have largely ignored the rich and
complex human motivations, which are essential for under-
standing humans’ diverse behavior. In this paper, we present a
multi-motivation behavior model which investigates the mul-
tifaceted human motivations and learns the underlying value
structure of the agents. Our approach extends inverse RL to
vectored-valued rewards with Pareto optimality which signif-
icantly weakens the inverse RL assumption. Our model there-
fore incorporates a wider range of behavior that commonly
appears in real-world environments. For practical assessment,
our algorithm is tested on World of Warcraft datasets and
demonstrates the improvement over existing methods.

1 Introduction

Reinforcement learning methods (Sutton and Barto 2018)
have been intensively applied to game environments with
great success. Some landmark research works have been
conducted on games such as Atari, Go, and Poker where re-
inforcement learning algorithms achieve super-human per-
formance ((Mnih et al. 2015; Silver et al. 2017; Heinrich
and Silver 2016)). However, the majority of the studies
have focused on winning the game or achieving high scores
which largely ignore other human motivations in games such
as relaxing, enjoyment and engagement. Hence, the under-
standing of these motivations and their corresponding re-
ward mechanism has long been open. Extending the unitary,
scalar reward to model multifaceted human motivations is
non-trivial (Mossalam et al. 2016; Nguyen 2018). In fact,
the vector-valued reward signal does not describe the task
as clear and succinct as the scalar reward does, and conse-
quently, the optimality of the policy can be ill-defined.

Previous studies have discussed the setting of multiple re-
ward signals, in terms of features, which commonly show up
in inverse reinforcement learning (IRL) since its inception
((Ng, Russell, and others 2000; Abbeel and Ng 2004)). The
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Figure 1: In a typical RL model (left), an agent has only one
motivation and maximizes the scalar reward. In a revised RL
model (right) for real-world settings, an agent has multiple
motivations and the goal is to optimize a combination of dif-
ferent rewards based on the agent’s own value.

objective is then defined as a combination of these features,
either linearly or through a parameterized function like neu-
ral networks (Wulfmeier, Ondruska, and Posner 2015; Finn,
Levine, and Abbeel 2016; Li and Wang 2018; Wang 2019;
Young, Wang, and Taylor 2018). When the objective is a
scalar, the assumption of IRL is that the agent achieves a
higher or equal objective for the action it has taken than an
alternative action it would have taken. This assumption does
hold in general, as the scalarization of features for the objec-
tive is not the same for all agents. In practice, the formulation
induced by this assumption has to be relaxed, for example in
(Ziebart et al. 2008; Parameswaran and Weinberger 2010),
to make the problem even feasible. Especially for real-world
environments where the motivations are rather multifaceted,
algorithms with weaker assumptions are desired.

We investigate the IRL problem under the setting of
vector-valued rewards, where the utility measure is the cu-
mulative reward vector. In this setting, the utility of all ac-
tions will not form a totally ordered universe, thus there
will not exist an optimal action. Instead, an action is con-
sidered not dominated by an alternative action, if at least
one element of the utility vector is strictly greater than
the alternative utility. The IRL assumption we impose is
that for any feasible action, the observed action is either
not dominated by that action, or they yield exactly the
same utility vector. This assumption on the optimality of
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Table 1: Components of game motivation
Components Sub-components

Achievement advancement, mechanics, competition
Social socializing, relationship, teamwork
Immersion discovery, role playing, customization, es-

capism

the demonstrated trajectories is strictly weaker than the one
used in previous studies (Ng, Russell, and others 2000;
Abbeel and Ng 2004). We show that the setting is rigor-
ously equivalent to where there exists a monotonic increas-
ing scalarization function per agent such that under the map-
ping of this function the agent is optimal with respect to the
scalar utility, which is intuitive if we treat this function as
the value of the agent.

We propose a novel method called multi-motivation be-
havior modeling (MMBM) which takes the multifaceted,
complex, and diverse motivations into consideration. Instead
of finding the scalarization in the reward space, our method
is based on the vectored-reward setting and the vector-
valued IRL formulation, as shown in Figure 1. We build our
analysis upon the theorem that the policy is not dominated
if and only if it is optimal under a linear scalarization to
connect the set of optimal policy with the simplex of the co-
efficient vector. In this way, we characterize the range of the
value function under optimal policies as a convex hull. We
further estimate the range via value learning on the extreme
points and define the suboptimality of a policy as the dis-
tance between its value function and the range. Armed with
our analyses, we design an efficient algorithm via a linear
program to minimize the distance and find the value of the
agents.

A significant advantage of MMBM is that it utilizes only
off-policy learning. Both the range of the value function and
the linear program depend on only the trajectories and does
not require the dynamics of the state transition. In this way,
the algorithm is applicable to complex environments such as
online games. MMBM is tested on the World of Warcraft
Avatar History dataset (Lee et al. 2011), which records the
movement of players over a three-year period. We present
our results based on the motivation theory of gameplay ((Yee
2006) and compare them with previous knowledge-based
studies on WoW ((Ducheneaut et al. 2006; Nardi and Har-
ris 2006)). We further show the significant improvement on
the inverse learning error (Ng, Russell, and others 2000;
Choi and Kim 2011) over existing studies.

2 Formulation of Vector-valued MDP

2.1 Vector-valued Markov Decision Process

We adopt the vector-valued Markov decision process (MDP)
studied by (Wakuta 1995). In the vector space the utility
does not form a totally ordered universe. We follow the con-
vention that for two vectors r,r′ ∈ Rd , r > r′ if and only if
eT

i r > eT
i r′ for all i ∈ {1, . . . ,d}, where eT

i has its i-th el-
ement equal to 1 and 0 otherwise. We define r < r′, r ≥ r′,

and r ≮ r′ similarly. The vector-valued infinite-horizon MDP
is characterized by the finite state space S, the finite action
space A, the transit probability P(s′|s,a), the reward signal
r = r(s,a) ∈ Rd , and the discount factor γ . At each step of
the process, the agent chooses a feasible action a ∈ A and
the system’s state s transits to s′ with probability P(s′|s,a),
while the agent receives an immediate reward of r(s,a,s′).
To describe the problem, we first define the value function
vπ(s) ∈ Rd with respect to a fixed policy π by

vπ(s) = Es′∼P,s∼ρ0(s)[
∞

∑
t=0

γ t rt |s0 = s,π], (1)

where π chooses actions at each state, either determinis-
tically or stochastically, also without ambiguity we write
rt = Es′t [r(st ,at ,s′t)] and let s0 be the initial state. We will
omit the distribution terms s′ ∼ P,s0 ∼ ρ0(s) in the rest of
the discussion. The objective of the agent is to find a policy
π such that the inequality

vπ(s0)≮ vπ ′
(s0) (2)

holds for every feasible policy π ′. Note that the objective
of scalar-valued MDP is the special case where r(·) ∈R and
d = 1. To characterize the optimal policies, we first denote Π
the set of policies that satisfy the condition (2). Also define
V (s) = {vπ(s),π ∈ Π} to be the set of value vectors that are
only smaller or equal than (≤) themselves in the range of
the value function. V (s) is also denoted as the Pareto frontier
of the range of the value function (Van Moffaert and Nowé
2014).

We describe the properties of Π’s elements. Similar to
the recent studies in multi-object MDPs ((Vamplew et al.
2008; Van Moffaert and Nowé 2014; Jaderberg et al. 2016;
Mossalam et al. 2016)), we define the scalarization of the
reward signal as

r̃ = φ T r(s,a) (3)

where φ ∈ Φ ⊂ Rd is the weight vector of the scalarization
and Φ = {φ ∈Rd ,‖φ‖1 = 1,φ ≥ 0} is the simplex. We then
define the set Πφ of the optimal policies under the scalarized
reward signal Πφ = argmaxπ E[∑∞

t=0 γ tφ T rt |s0,π]. The fol-
lowing theorem shows the connection between the optimal-
ity of policies under the vectored reward and the optimality
of policies under the scalarized reward.

Theorem 1. For any policy π , π ∈ Π if and only if there
exists a vector φ ∈ Φ such that π ∈ Πφ .

Theorem 2. There exists finite number of policies π1, dots,
πm, such that the range of the value function vπ(s) with re-
spect to π is the convex hull with vπ1(s), . . . , vπm(s) being all
its extreme points.

Theorem 1 maps the optimal policies to the reward weight
space Φ which is a standard simplex. Theorem 2 then maps
the corresponding values to a convex hull based on which
the suboptimality measure can be established. Both the theo-
rems are important to us and our analysis is build upon them.
We refer the readers to (Wakuta 1995) for the proofs of both
the theorems.
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2.2 Inverse Reinforcement Learning

Inverse reinforcement learning (IRL) reverses the input and
output pairs of RL algorithms, computing the rewards func-
tion according to the policies or trajectories of the agents.
The topic has been intensively studied and developed since
its inception ((Ng, Russell, and others 2000)), including
max-margin based methods ((Abbeel and Ng 2004; Ratliff,
Bagnell, and Zinkevich 2006; Syed and Schapire 2008;
Neu and Szepesvári 2012)), max-entropy IRL ((Ziebart et al.
2008; Boularias, Kober, and Peters 2011; Finn, Levine, and
Abbeel 2016)), Bayesian IRL ((Ramachandran and Amir
2007; Levine, Popovic, and Koltun 2011; Michini and How
2012)), and etc. The algorithms vary widely but they can
be roughly categorized into two classes. The first idea is to
update the policy function and the reward function coordi-
nately. In each policy update, the policy is optimized for one
step to maximize the value of the current reward. Then the
reward function is optimized for one step to ensure that the
expert demonstration is optimal under the reward function.
The second idea approaches learn the function approxima-
tion of the action-value function. Then it tests, for each state-
action pair in the demonstration, if all the alternative feasible
actions lead to values that are no greater than the expert ac-
tion does ((Hester et al. 2018)).

We extend the IRL to the vector-valued case which allows
much weaker assumptions than the existing methods. In fact,
in both the classes of algorithms it assumes the optimality
of the demonstration policy ((Ng, Russell, and others 2000;
Abbeel and Ng 2004)). Such optimality can be furthered for-
mulated as the ≮ relationship between the value function of
the expert policy and the value function of the alternative
feasible policy. Hence, when both sides of the value func-
tion are extended to the vectored case, ≮ is strictly weaker
than the ≥ relation of the scalar value functions. To highlight
the significance of the difference in both the assumptions,
we note that it is common that existing IRL approaches to
solve the system induced by the assumption by assigning a
penalty on the violation of the assumption. Such relaxation
will drive the actual algorithm from its theory and motiva-
tion, which can be largely avoided by using vector-valued
formulation.

2.3 Value Function Approximation

We discuss the approximation of both the state-value func-
tion and the action-state value function under the scalar re-
ward case. This will be used in our algorithm for vector re-
ward settings. Without further specification, the notation we
used in this section is still vectorized, i.e. r ∈Rd . The action-
state value function is defined as

Qπ(s,a) = Es′∼P,s∼ρ0(s)[
∞

∑
t=0

γ t rt |s0 = s,a0 = a,π], (4)

where by definition we have vπ(s) = Eπ(a|s)[Qπ(s,a)].
The approximation is based on the Bellman equation,

which describes the recursive relation

Qπ(st ,at) = EP(st+1|st ,at )[rt + γEπ(a′|st )Q
π(st+1,a′)]. (5)

We have then π ∈Π if and only if that whenever a′ is feasible
under state st+1

Qπ(st ,at)≮ EP[rt + γQπ(st+1,a′)]. (6)

This inequality is not tractable in general, but we describe
the previous studies that address the case of d = 1 below
and present our method in the next section.

The approximate action-state value function can be
learned by parameterizing the Q(·) function and minimize
the discrepancy between both sides of Equation (6), known
as Q-learning ((Watkins and Dayan 1992; Sutton and Barto
2018; Mnih et al. 2015; Dabney et al. 2017)). Specifically
when d = 1 and ≮ degenerates to ≥, the discrepancy can be
quantified as the Bellman error

1
2
(Qπ(st ,at)−max

a′
EP[rt + γQπ(st+1,a′)])2. (7)

Combined with the fact that the action-state value function
is parameterized (e.g. approximated by a neural network),
the Bellman error can be minimized by running optimization
program such as SGD. The Q-learning can be conducted off-
policy as described.

The optimization in Q-learning is unstable in general and
we borrow the techniques and tricks from (Mnih et al. 2015)
in the implementation. We re-state the techniques for com-
pleteness of our presentation. First, the order of expectation
and maximization are swapped, resulting in the estimator
1
2 (Q

π(s,a)− (rt + γ maxa′ Qπ(s′,a′)))2 which is biased but
easier to compute. It then replace the maxa′ Qπ(s′,a′) term
by maxa′ Qπ(s′,a′|θ−), where θ− is the parameter of the
function approximation of a previous iteration. The tweak
aims to reduce the instability due to the correlation of both
the approximation terms in (7). Note that our algorithm is
compatible with consecutive improvements over Q-learning
((Hasselt 2010; Schaul et al. 2015; Dabney et al. 2017)).

3 Methods

3.1 Estimating Range of the Value Function

We first construct a superset of the range of the value func-
tion, which can be used to derive the distance lower bound.

Theorem 3. When the reward function is linear with re-
spect to the action a, {vπ(s)|π ∈ Π} ⊆ conv{{vπ(s)|π ∈
Πe1}, . . . ,{vπ(s)|π ∈ Πed}}, where conv denotes the convex
hull and ei is the one-hot vector with the i-th element equal
to one and zero otherwise. The equality holds when each of
the set {vπ(s)|π ∈ Πei} has an unique element.

Proof. Without loss of generality we assume that the reward
r ≥ 0. If the uniqueness holds, for any element in {vπ(s)|π ∈
Π}, there is an explicit φ which satisfies ‖φ‖1 = 1,φ ≥ 0
such that the element is an optimal value under the reward
φ T r. Hence

conv{∪d
i=1{vπ(s)|π ∈ Πe1}} ⊆ {vπ(s)|π ∈ Π}.

We proof the reverse by contradiction. Suppose there
exists an π ∈ Π such that vπ(s) /∈ conv{{vπ(s)|π ∈
Πe1}, . . . ,{vπ(s)|π ∈ Πed}}. By the separation theorem
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there exists a φ such that φ T vπ(s) > φ T z for any z ∈
conv{{vπ(s)|π ∈ Πe1}, . . . ,{vπ(s)|π ∈ Πed}}. Let φ−i be φ
except that the i-th element is replaced by zero. If any ele-
ment of φ is positive (assume it is the i-th without loss of
generality), we pick from Πei the element z with the largest
φ T−iz. The i-th element of vπ(s) must be greater than that
of z, which contradicts with the definition of Πei . If oth-
erwise all elements in φ are negative, vπ(s) is dominated
by its projection on conv{{vπ(s)|π ∈ Πe1}, . . . ,{vπ(s)|π ∈
Πed}} ⊆ {vπ(s)|π ∈ Π}, which is the value of a mixed pol-
icy. It then contradicts with the optimality of π . The theorem
follows.

Theorem 3 provides a lower bound of the distance to the
range of the value function. The bound is also shown to be
tight when the optimal policy under the scalar reward eT

i r
is unique, which commonly happens in practice where the
environment is complex. Armed with the theorem, estimat-
ing the range of the value function amounts to estimating
those extreme points. Even when the reward function is non-
linear, it is obvious to prove that this distance lower bound
is an approximation by at most a factor of

√
d. As we have

discussed in the Bellman feasibility (6), the one-hot vector
ei degenerates the setting to Q-learning with scalar rewards
and the value can be efficiently approximated. We estimate
d action-state value functions in our algorithm and denote
them as Q1(·), . . . ,Qd(·) for further use. The exact function
approximator and training process largely depends on the
environment and we discuss those technical details in the
experiments.

3.2 Distance Minimization

We compute the distance between the value of the alter-
native policies and the range of the value function, which
measures the optimality of the demonstration. We also com-
pute the direction of projection used to measure the dis-
tance which describes the combination of the reward vector.
Let Q(·) = (Q1(·), . . . ,Qd(·)) be the vectorized action-state
value function and let y be the projection of direction. Also
denote T to be the set of state-action pairs (s,a) appeared
in the trajectories. We assume that the actions are conducted
in a way that the incurred value is not dominated by an al-
ternative feasible action a′. Such optimality is learned by
maximizing the distance between the set of optimal values
conv{∪d

i=1{vπ(s)|π ∈ Πe1}} and the value of the alternative
Q(s,a′).

We use the Euclidean distance in the projected direction
as the distance measure, but it can be any other measure-
ments in general. Formally, the distance is measured by

D = ∑
(s,a)

[
max(0,yT Q(s,a)− max

a′∈A(s)\a
yT Q(s,a′))

]
. (8)

It is worth note that as we do not impose any scalarization
on the vectored reward, the model assumption is easier to
be satisfied. Consider that the diversity of actions origins
from both the diverse reward function and the suboptimal-
ity in the actions (such as act randomly), we add a term

Algorithm 1 Multi-motivation behavior modeling
1: Parameters: learning rate α , discount factor γ , subop-

timality factor c
2: Initialization: initialize function approximation param-

eters wi randomly, i = 1, . . . ,d
3: Input: set T of trajectories
4: for i = 1 to d do
5: for t to size of T do
6: receive the reward rt ;
7: end for
8: repeat
9: Compute the Bellman error Li

1 in (7);
10: Update wi via gradient-based methods;
11: until convergence of the i-th element of Q(s,a)
12: end for
13: for t to size of T do
14: Compute Q(s,a) = (Q1(·), . . . ,Qd(·));
15: end for
16: Calculate the constraints Q(s,a)−Q(s,a′);
17: Find y by solving the linear program (9);
18: Output: Q and y

c(yT Q(s,a)− maxa′∈A(s)\a yT Q(s,a′))− to make the algo-
rithm more robust. With c = 0, it degenerates to the algo-
rithm that only considers the distances. The minimization is
reformulated into the following linear program.

minimize
y,ξ ,η

∑
(s,a)

cη−
s,a −ξ+

s,a

subject to ηs,a ≥ yT (Q(s,a)−Q(s,a′))≥ ξs,a,

∀(s,a) ∈ T ,a′ ∈ A(s)\a,
y ≥ 0, ‖y‖1 ≥ 1.

(9)

We describe the complete algorithm in Algorithm 1, in-
cluding the range estimation and the distance minimization.
Line 4-12 are the Q-learning technique for d = 1 that com-
putes the vertices of the superset of the desired value range.
Line 13-16 estimate the range of the value function, which
is used in computing the lower bound of the distance. Line
17-18 solve the linear program and find the projection vector
y for the distance and optimality of the reward space. Note
that the algorithm’s line 13-18 can be generalized to other
measures and approaches to minimize the distance between
Q(s,a) and Q(s,a′).

4 Experiments

We highlight that MMBM possesses several merits com-
pared with other IRL algorithms, which allows us the fol-
lowing analysis over the behavior and motivation of the
World of Warcraft (WoW) players. First, the algorithm takes
trajectories as input and does not query the policy. It allows
us to analyze historical data. Also, MMBM does not query
the environment dynamic which reduces the computational
cost especially when the environment is complex and mas-
sive. Third, the algorithm is naturally extended to model the
collective behavior of a group when T is composed of tra-
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jectories from multiple players. That helps the model to fur-
ther generate interesting results on the group of players.

4.1 Implementation Details

We test MMBM on the WoWAH dataset ((Lee et al. 2011;
Bell, Sheth, and Kaiser 2013)), which is an interesting
dataset recording a significant amount of gameplay data with
over 70,000 players’ movements (regarded as actions) from
realm TW-Light’s Hope spanning for the 3-year period. We
treat each player as a human agent who conducts an action
at each time interval. All available data such as current level
or joining a guild are treated as observations. The players’
trajectories are composed of a sequence of movements (ac-
tions) and observations (states), which partially reflect their
playing strategies. The oracle r is constructed based on Yee’s
research and other WoW case studies ((Ducheneaut et al.
2006; Nardi and Harris 2006)).

As discussed before, the function approximator which pa-
rameterizes the action-value functions is largely depending
on the environment. Taking our experiments on the WoWAH
dataset as an example, the Q-network architecture is de-
signed according to the available observations and is ap-
plied to all reward signals i = 1, . . . ,d. In the network, the
categorical elements of the input (e.g. race, class, etc.) are
first processed by an embedding layer, while the numeral
elements (e.g. session length, current level, etc.) are first
fed into a fully connected layer with rectifier non-linearity.
The output of the embedding layer and fully connected layer
are then concatenated and fed into another fully connected
layer with rectifier non-linearity. A final fully connected
layer is applied to compute the Q(s,a) value for each action
a ∈ ∪sA(s).

4.2 Results on Different Trajectory Sets

We present our experimental results of calculating the di-
rection y that most significantly separates the demonstrated
behavior and the alternative actions. Recall that y is solved
from the linear program (9) and note that larger element in
y infers relative larger importance of the corresponding ele-
ment. We use trajectories that are randomly drawn from spe-
cific subsets to compose the constraints of (9). We compare
the results for different player groups, as shown in Figure 2.
Significantly value structures difference is observed between
the players at a higher level (≥ 50) versus the players at a
lower level (≤ 49), where the players at the lower level are
much more motivated to achieve advancement. Similarly ob-
served are that Warrior players value more on advancement
while the Priest players value more on relationship. Players
that are in a guild value more about teamwork and relation-
ship motivations as compared to the players that are not in
a guild These observations agree with the common knowl-
edge in WoW and the qualitative results in (Ducheneaut et
al. 2006; Nardi and Harris 2006). Note that the y vector only
demonstrates the direction of the projection hence we nor-
malize the vector to ‖y‖1 = 1 in the figure.

4.3 Predicting Actions and Values

We evaluate the performance of MMBM in terms of the ac-
curacy of action prediction and the relative accuracy of the

Figure 2: Spider maps to represent the value of the play-
ers. Top-left: the direction y of different motivations for the
entire WoW player community; top-right: different value
between the players at high game levels and the players at
lower game levels; bottom-left: different value between the
players in different classes, namely, warrior, hunter, and
priest; bottom-right: comparison of value of the players
who are in a guild with those who are not in a guild

estimated value compared with the ground truth. For pre-
diction, the trained model is required to output the next
action of the player, given the current state. To mitigate
the noise and the short interval in the dataset, the predic-
tion is considered correct as long as the predicted action is
taken within five time steps, likewise in (Li et al. 2016).
The inverse learning error (Ng, Russell, and others 2000;
Choi and Kim 2011) measures the relative error occurred
in the value function estimation, defined as yT |v̂− v|/|yT v|
where v̂ denotes the estimation and v the ground truth. As the
observed reward is always vectorized, we treat each model’s
scalarization or projection as if it is correct and count only
the error due to value estimation. We compare MMBM with
those methods that can be implemented on WoWAH, includ-
ing linear scalarization (Ng, Russell, and others 2000), max
entropy scalarization (Ziebart et al. 2008), and large margin
scalarization (Parameswaran and Weinberger 2010).

A close examination of the errors that are made during
the prediction yields some interesting insights. As IRL as-
sumes that every player tries to maximize their value, i.e.,
each agent is regarded as a rational and optimal player, it will
not be able to distinguish whether a particular action that de-
viates from an average one is caused by the player’s actual
intention or the player’s sub-optimality during the gameplay.
The weaker assumption of MMBM largely eases this indis-
tinguishability, thus yields much smaller learning error.

4.4 Dynamics of the Human Motivation

The motivation of gameplay may evolve. It can also be im-
pacted by the new design or new versions of the game en-
vironment. We investigate how would a design update af-
fect the players’ motivations and behavior and how we can
quantify this impact. To achieve this, we retrain the linear
program 9 with linear constraints random drawing within
specific time ranges. With the time range moving chrono-
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Table 2: Accuracy and error of different approaches
Approach Accuracy ILE

Proposed approach (c = 0.5) 85.5% 13.2%
Proposed approach (c = 0) 84.5% 11.0%
(Ng, Russell, and others 2000) 48.6% 21.0%
(Ziebart et al. 2008) 54.9% 22.1%
Parameswaran and Weinberger 2012 59.2% 19.6%
Policy imitation 36.0% N/A
Monte-Carlo learning of Q 75.1% N/A

logically, we show the evolution of game motivation charac-
terized by the elements in y. Figure 3 illustrates the trend of
reward elements. Dramatic increment in advancement and
competition during the late period in the graph is observed.
It occurs at around the 150000th time interval, which coin-
cides with the release of the patch Wraith of the Lich King on
November 2008 The patch increased the maximum player
level from 70 to 80, encouraging the players to complete the
remaining levels for advancement. Meanwhile, the patch in-
troduced two new classes in the game, namely Death Knight
and Shaman, which drives the players to open the secondary
accounts (and then level them up). The reason behind the
increasing competition is that players tend to join player-
versus-player arenas to compete with other human players to
get more familiar with the mechanisms of their new avatar.

The overall trend of the game during WoWAH is that the
game emphasis increasingly on teamwork and relationship.
It agrees with the fact that WoWAH was collected only two
years after the game release, when new players are attracted
to the game. We expect our results to inspire more analysis
and understanding of the figure to be conducted in the future.

5 Conclusions and Open Problems

We present our algorithmic approach, multi-motivation be-
havior modeling, a general model based on vector-valued
inverse reinforcement learning that takes multifaceted hu-
man motivations into consideration. With the vector-valued
setting, our algorithm relies on much weaker assumptions
compared with existing methods and does not impose any
explicit scalarization of the vector-valued reward signals. In-
stead, it leverages the Pareto frontier of the value to charac-
terize the set of optimal policies and to measure the opti-
mality of the recorded behavior, which agrees with the intu-
ition how humans make decisions. As the algorithm is not
relying on the access of policy function nor the dynamics
of the environment, it can be applied to study complex, in-
teractive environments, such as online games. Our experi-
ments on the WoWAH dataset demonstrates the value of the
players, which subsequently improves the prediction accu-
racy and inverse learning error. Our work is the first that
combines the richness of motivation and psychological the-
ories in game research with the rigorousness of reinforce-
ment learning models. Our goal is beyond winning and los-
ing: Not to simply create software agents that beat human in
various games or competitions, but to propose methods that

Figure 3: Top: trends of different kinds of motivations during
from Mar 2006 to Jan 2009; Bottom: the enlargement of the
top figure during around the release of patch Wraith of the
Lich King

can help to understand the intricacy and complexity of hu-
man motivations and their behaviors. We expect our work to
inspire more studies to investigate this topic further.

Among the challenges in inverse reinforcement learning,
the vector-valued reward is the one that has been long open.
We have addressed this challenge by incorporating the esti-
mated Pareto frontier of the range of the value function, but
the algorithm relies on the exactness of the reward function.
When an element of the reward function is inaccurate, our
algorithm tends to incur larger error than those who scalar-
ize the vectored reward, as our approach cannot adjust the
weight of the reward to mitigate the effect of this inaccu-
racy. The drawback can be effectively solved if the algorithm
learns a function of each reward elements robustly. Simply
using linear function approximation will not work per The-
orem 1, thus a subtle functional space is desired. We leave
the problem open for further research.
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