
Proceedings of the Fifteenth AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment (AIIDE-19)

Knowledge-Powered Inference of Crowd
Behaviors in Semantically Rich Environments

Xun Zhang,1 Davide Schaumann,1 Petros Faloutsos,2,3 Mubbasir Kapadia1

1Rutgers University, 2York University, 3UHN - Toronto Rehabilitation Institute
1Bowser Rd, Piscataway, NJ 08854, United States; 24700 Keele Street, Toronto, Ontario, M3J 1P3, Canada

{xz348, ds1540, mk1353}@cs.rutgers.edu; pfal@cse.yorku.ca

Abstract

Interactive authoring of collaborative, context-dependent vir-
tual agent behaviors can be challenging. Current approaches
often rely heavily on users’ input, leading to cumbersome be-
havior authoring experiences and biased results, which do not
reflect realistic space-people interactions in virtual settings.
To address these issues, we generate an ontology graph from
commonsense knowledge corpus and use it to automatically
infer behavior distributions that determine agents’ context-
dependent interactions with the built environment. By means
of a natural-language interface, users can interactively re-
fine a building’s design by adding semantic labels to spaces
and populating rooms with equipment following suggestions
that the system provides based on commonsense knowledge.
Based on the chosen setup, an authoring system automatically
populates the environment and allocates agents to specific be-
haviors while satisfying a behavior distribution inferred from
the ontology graph. This approach holds promise to help ar-
chitects, engineers, and game designers interactively author
plausible agent behaviors that reveal the mutual interactions
between people and the spaces they inhabit.

Introduction
Authoring multi-agent collaborative behaviors of hetero-
geneous virtual agents in semantically rich environments
can be useful to evaluate building designs, author engag-
ing story arcs in video games, and provide realistic anima-
tions of buildings in use. This, however, is a challenging
task mainly due to the amount of input required to define
context-dependent behaviors. This is a critical issue espe-
cially in architectural design where spatial, social and en-
vironmental factors affect human behavior (Schaumann et
al. 2019). Current behavior authorinen rely heavily on user
nput, which can define either (a) building-centric occupancy
schedules that determine how many agents are located in a
given space at a given time (Mahdavi and Tahmasebi 2015),
(b) behavior-centric agent behaviors that represent the in-
dividual or collaborative activities that are performed in se-
mantically rich settings (Kapadia et al. 2016), and (c) agent-
centric decision-making that determines a set of activities

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

that agents are likely to perform to satisfy individual desires
and motivations (Kapadia et al. 2015).

Prior work integrated these approaches into a narrative au-
thoring framework that jointly satisfies building occupancy
specifications, behavior distributions, and agent motivations
(Zhang et al. 2019). However, this approach relies on the
cumbersome, prone-to-error, manual specification of tem-
plates to generate plausible behavior distributions.

This work significantly alleviates these issues by propos-
ing a commonsense knowledge approach to automatically
infer behavior distributions, given only natural language de-
scriptions of environment semantics. Specifically, a space-
equipment-affordance ontology graph, automatically de-
rived from commonsense knowledge corpus (CKC), char-
acterizes the relationship between semantically meaningful
spaces (e.g., an office or a classroom), the equipment it con-
tains (e.g., desks, chairs), and the inhabitant behavior it af-
fords (e.g., working, meeting). A natural-language interface
enables users to interactively modify a building’s design by
changing semantic labels of spaces and equipment location
following suggestions that the system provides based on a
generated ontology graph. A narrative synthesis method dy-
namically allocates agents to a discrete set of behaviors to
satisfy the expected behavior distributions.

A case study showcases how users can interactively refine
designs based on insights gained from the behavior simula-
tion. While generative design approaches could also be in-
corporated in this framework, these methods are often lim-
ited to abstract space organization and cannot account for
the full complexity of building design. For this reason, in
this work, we focus on simulating crowd behavior in user-
authored building designs. We argue that this approach can
facilitate interactive human behavior authoring for architec-
tural design, games and computer animation.

Related Work
We aim to empower content creators (e.g. architects and
game designers) with ontologies generated from CKC to
facilitate the automated synthesis of agent behaviors while
fundamentally accounting for space semantics. In this sec-
tion, we will briefly review recent work in behavior synthe-
sis and knowledge engineering.

202

Ontology Graph Generation

Environment Description Word EmbeddingCommonsense Knowledge Corpus
(CKC)

Preprocessing Data Parsing & Filtering

Space Labels

office
classroom
kitchen
...

Equipment
Labels

desk
chair
computer
...

Affordance
Labels

sit
eat
meet
...

Ontology Graph Construction

~

~

~

~

~

~

~

~

~

~

~

~

~

~

Design Iteration & Narrative Synthesis

User Review

Narrative SynthesisParameter Calculation

Iterative Design With
Conversational Interface

Other Parameters

Behavior
Distribution

Matrix
0.04 0.05 0.06
0.15 0.15 0.20
0.06 0.20 0.09

Space Vertex

Equipment Vertex

Affordance Vertex

 “is located at” Ontology Edge

 “is used for” Ontology Edge

~ Word Embedding Attribute

Figure 1: Leveraging commonsense knowledge to infer crowd behaviors in semantically rich environments

Behavior Synthesis. Seminal work on behavior author-
ing frameworks for intelligent virtual agents proposed the
concepts of Smart Objects that encapsulate information on
how agents can interact with them (Kallmann and Thalmann
1999; 2002). To create consistent object manipulation in-
formation that can be shared between different modelers,
Belint and Allbeck connected a taxonomy of actions with
operational information on simulation objects using natural
language lexical databases and text and knowledge corpora
(Balint and Allbeck 2015; 2017). Kapadia et al. (2017) de-
scribe a comprehensive framework to generate event-centric
behavior atoms which are abstracted in a graphical story-
boarding interface and combined to generate larger narra-
tives. Partlan et al. (2018) developed an automated analysis
of narrative structure and organization using a multi-graph
representation. Zhang et al. (2019) outline a framework to
author human behavior narratives that satisfy occupancy
specifications and behavior distributions in semantically rich
spaces as well as agent motivations. Nevertheless, this ap-
proach relies on manually input templates for behavior dis-
tributions and does not support interactive design modifica-
tion and subsequent behavior distribution adaptations. While
we rely on the seminal contributions in multi-agent behav-
ior synthesis, such as event-centric modeling (Kapadia et al.
2016), we focus on informing the interactive behavior au-
thoring process with knowledge corpora that capture the mu-
tual relations between spaces, the equipment contained, and
the activities afforded.

Knowledge Engineering for Intelligent Behavior Author-
ing Systems. We seek to apply established tools and methods
of knowledge representation and reasoning to inform inter-
active behavior authoring (Brachman and Levesque 2004).
Recent work generates knowledge graphs from events re-
ported in the news to foster user’s understanding of a spe-
cific domain and facilitate the generation of news storylines
(Rospocher et al. 2016). Winer and Young (2017) automat-
ically annotate screenplays to formalize storytelling knowl-
edge. Li et al. (2013) generate behavior narratives by using
a domain model automatically learned from a crowdsourced
corpus of story examples. These approaches, however, do
not support the authoring of behaviors that fundamentally

account for the spatial characteristics of built environments.
To address this issue, we turn our attention to Common-

sense Knowledge Corpora (CKC) obtained from crowd-
sourcing and/or expert curation, which can be used to infer
how people use spaces. Speer and Havasi (2012) presented a
semantic network collecting commonsense knowledge data
from various sources. The knowledge is represented as a
graph that connects words and phrases of natural language
with labeled edges, providing rich information for inferring
and constructing a customized knowledge graph to inform
human spatial behaviors. Gerz et al. (2016) provide a large
empirical library evaluating the similarity among individual
pairs of verbs that can be used to describe human behavior
in spaces. In this work, we propose a framework that makes
novel use of CKC to help generating plausible behaviors of
virtual populations in semantically rich environments with
an application to architectural design.

Framework Overview
Our framework contains 3 phases (Figure 1): (i) description
of the environment to be populated with virtual agents (ii)
offline creation and processing of an ontology graph, and
(iii) online design modification and narrative synthesis based
on information extracted from the ontology graph. We detail
these steps in the following sections.

Environment Description. We model the functional
properties of an environment independent of the geometry
so that it’s applicable to different environment designs. An
environment E =< S,Q,A > contains (i) a set S of func-
tional spaces where each individual space s ∈ S is assigned
with a semantic label; (ii) a set Q of interactable equip-
ment that supports different affordances; (iii) a set A of af-
fordances that can be performed by agents as they interact
with the built environment. For instance, if we consider E
as a research lab in a university, the following entities could
be modeled: S = {office, classroom, kitchen},
Q = {chair, computer, desk, }, and A =
{eat, meet, talk}.

Ontology Graph Generation. An ontology graph is built
based on CKC (Speer, Chin, and Havasi 2016) and a nat-

203

ural language parser (Manning et al. 2014). Parsing, filter-
ing, and word embedding techniques are applied to improve
the quality of the information. The heterogeneous attributed
graph G =< V,E > contains 3 types of vertices and 2 types
of weighted directed edges. The vertices are (i) equipment
vertices Vq , which represent equipment instances q ∈ Q;
(ii) space vertices Vs, which represents the spaces s ∈ S;
(iii) affordance vertices Va, which represents the affordances
a ∈ A. Vertices are linked using 2 types of unidirectional
edges: (i) Edges Es that represent the ontology of “q is lo-
cated at s” where q ∈ Q and s ∈ S; (ii) Edges Ea that rep-
resent the ontology of “sq is used for a” where sq ∈ S ∪Q
and a ∈ A.

Design Iteration and Narrative Synthesis. The ontology
graph informs the interactive modification of designs by sug-
gesting possible equipment to allocate in a space based on
the semantic label input by the user. After completing a de-
sign configuration, the graph is used to calculate a behavior
distribution in semantically rich spaces. The behavior distri-
bution is used to synthesize a plausible narrative of inhabi-
tants in the space while conforming to the specifications and
constraints of the behavior distribution.

Ontology Graph Generation
Our framework considers a list of space, equipment and af-
fordance labels as the initial input for a given environment.
The ontology graph is constructed by the following steps:
(i) starting from the space labels, we obtain from the CKC
the equipment located in the different space types, (ii) obtain
from the equipment a list of affordances that the equipment
supports, (iii) obtain from the space a list of affordances it
can host, (iv) for each affordance and equipment vertex, find
the highest similarity between it and the local equipment and
affordance library, and use it as a mapping from common-
sense to local library.

Commonsense Knowledge Corpus. ConceptNet (Speer,
Chin, and Havasi 2016) as an open-source large semantic
network provides a large variety of commonsense knowl-
edge data. Each vertex in the database represents a con-
cept entity, and the vertices are interconnected with relation
edges that describe the relationship between two vertices.
Based on the connections of the vertices in the database, in
some cases, ConceptNet provides a rather complete knowl-
edge of the objects presenting in people’s life. For instance,
it contains relation edges that enumerate objects located in
a place, and also enumerates the supported interactions of
each object, which helps to construct and estimate the place-
object-interaction relationship. However, the raw data stored
in ConceptNet are collected from various sources with lim-
ited consistency, and some relation edges are significantly
biased. Hence the information obtained from it need to be
further processed to minimize these drawbacks.

Parsing and Filtering Noisy Data. Raw data obtained
from ConceptNet contains the following issues: (i) dupli-
cated entries that describe the same object, but stored as dif-
ferent words; (ii) metadata from the original data resource;
(iii) spelling and other issues. Our framework fixes these

issues by parsing the data by natural language annotation.
First, we built a metadata trimmer to remove all superfluous
information in the metadata while keeping useful semantics
such as if the word is a verb or a noun for ambiguous cases.
Then a proofreader removes any misspelled words. Even-
tually, the extracted word with proper metadata are passed
through a part-of-speech and lemma annotator to extract the
clean, singular form for nouns, or original form for verbs.
This process is applied for each vertex before adding it to
the ontology graph and creating edges with other vertices to
maintain the consistency of the ontologies.

Algorithm 1: Ontology graph construction and process-
ing. Note for different types of vertices the edges.

input : space vertices S
output: ontology graph G

1 V ← ∅, E ← ∅, G ←< V,E >
2 foreach s ∈ S do
3 V ← V ∪ {s}
4 foreach q ∈ Equipment(s) do
5 if q �∈ V then
6 V ← V ∪ {q}
7 E ← E ∪ {< q, s, wq,s >}
8 foreach a ∈ Affordance(q) do
9 if a �∈ V then

10 V ← V ∪ {a}
11 E ← E ∪ {< q, a, wq,a >}
12 else
13 < q, a, w >←< q, a, w + wq,a >
14 else
15 < q, s, w >←< q, s, w + wq,s >
16 foreach a ∈ Affordance(s) do
17 if a �∈ V then
18 V ← V ∪ {a}
19 E ← E ∪ {< s, a, wa,s >}
20 else
21 < s, a, w >←< s, a, w + wa,s >
22 G ← MergeEquipmentV ertices(G)
23 G ← MapV ertices(G)
24 return G

Word Embedding. There is a disparity between the words
used by CKC and the labels used by the designer when spec-
ifying environment semantics or population behavior. For
instance, the designer specifies 3 core affordances supported
by the narrative synthesis engine: work, eat, and talk.
However, the CKC contains several more affordance entries
which may relate to the same core affordances, while having
different labels. Hence, we first need to develop a mapping
of entity labels extracted from CKC to labels used in the nar-
rative engine. We resolve this issue with word embedding
(Mikolov et al. 2013) and use the cosine similarity between
the affordances extracted from CKC and the labels provided
by the designer. For each affordance vertex in the ontology
graph, we assign a property that stores the matched local
affordance. During the simulation, we can group the affor-

204

dance weights by accumulating all the matched affordance
in the library, and use these weights for distribution estima-
tion. This holds true for the equipment vertices, i.e., tech-
niques for processing affordance vertices are also applicable
to equipment vertices.

Algorithm 2: Mapping vertices (line 23 of algorithm 1)

input : ontology graph G, target equipment library Q̂,
target affordance library Â

output: processed ontology graph G′

1 G′ ← G
2 Q ← Equipment(G)
3 A ← Affordance(G)
4 foreach a ∈ A do
5 h ← −1

6 foreach â ∈ Â do
7 s ← CosineSimilarity(a, â)
8 if s > h then
9 h ← s, ah ← â

10 AddMapping(G′, a, ah, h)
11 foreach q ∈ Q do
12 h ← −1

13 foreach q̂ ∈ Q̂ do
14 s ← CosineSimilarity(q, q̂)
15 if s > h then
16 h ← s, qh ← q̂
17 AddMapping(G′, q, qh, h)
18 return G′

Ontology Graph Construction. The ontology graph is
constructed using the aforementioned techniques, starting
with the space vertices, which corresponds to the spaces
(e.g., rooms in an office building) in the virtual environment.
Using CKC, all of the equipment that is likely to be located
in the space will be extracted with corresponding weights.
We then search the CKC for the affordances that spaces and
the corresponding equipment can support. The graph con-
struction algorithm is shown in algorithm 1.

Line 4–15 creates the equipment vertices obtained by
querying the commonsense knowledge base with the space
vertices and links them correspondingly. Furthermore, line
8–13 links the equipment vertices with queried affordance
vertices. Then line 16–21 does the same for the affordances
obtained by querying space vertices. After these steps, a pre-
liminary ontology graph is constructed.

Before proceeding to utilize the constructed ontology
graph for the simulation, 2 more steps are required (line 22
and 23): (i) cleaning up and merging the equipment vertices
due to the noise in the CKC, and (ii) mapping the raw af-
fordance vertices to the affordance animation library in the
simulation engine, which is a smaller library compared to
the raw affordance data. These 2 steps are shown in algo-
rithm 3 and 2, respectively. Line 10 and line 17 in algorithm
2 respectively attach the mapped result to the original af-
fordance and equipment as an attribute (as is shown in the
“Word Embedding” block in Figure 1).

Algorithm 3: Merging equipment vertices (line 22 of
algorithm 1)

input : ontology graph G =< V,E >
output: processed ontology graph G

1 foreach equipment q ∈ V do
2 ql ← ParseLemma(q), V ← V \ {q}
3 if ql �∈ V then
4 V ← V ∪ {ql}
5 foreach s ∈ Space(q) do
6 E ← E ∪ {< ql, s, wql,s >}
7 foreach a ∈ Affordance(q) do
8 E ← E ∪ {ql, a, wql,a}
9 else

10 foreach s ∈ Space(q) do
11 f ← 0
12 foreach s′ ∈ Space(ql) do
13 if s = s′ then
14 f ← f + 1
15 < ql, s

′, w >←< ql, s
′, w+wql,s >

16 if f = 0 then
17 E ← E ∪ {< ql, s, wql,s >}
18 foreach a ∈ Affordance(q) do
19 f ← 0
20 foreach a′ ∈ Affordance(ql) do
21 if a = a′ then
22 f ← f + 1
23 < ql, a

′, w >←< ql, a
′, w+wql,a >

24 if f = 0 then
25 E ← E ∪ {< ql, a, w

′
ql,a

>}
26 return G

Design Iteration and Narrative Synthesis
After finishing the offline commonsense knowledge process-
ing, the user can iteratively refine a building design and syn-
thesize behavior narratives.

Iterative Design via Conversational Interaction. After
specifying a geometrical building layout and equipment
models which are associated to the labels specified in the
offline phase, the user can interactively label spaces seman-
tically and add or remove equipment following suggestions
provided by the ontology graph.

We provide an intuitive conversational interface where the
user can give simple natural language guidelines to provide
additional semantics of the space, its equipment, and what
behavior is expected. For example, the user can set the se-
mantics of the space by selecting a space and saying “this
room is an office room.” Or, “this room can be used for
working.” We used the same natural language parser that is
used for lemma extraction during the parsing and filtering
process of noisy CKC data. Using the part-of-speech and de-
pendency information, we estimate the user command type
(either setting space label, or equipment expectation, or be-
havior expectation), then use the extracted entity to set the
corresponding properties.

During the design and interaction process, our system

205

uses the current semantic labels provided by the user to
provide “prompts” or suggestions of possible design inter-
ventions which may be appropriate for the current design.
This is powered using the ontology graph generated. For ex-
ample, the system uses the space and/or affordance labels
provided by the designer to suggest plausible equipment in-
stances which may be required to furnish the room. The idea
is, based on the space label specified, the framework queries
our ontology graph to fetch all the supported equipment with
proper weights. On the other hand, after instantiating equip-
ment into the space, we query the ontology graph again to
acquire all the affordances supported.

Behavior Distribution Calculation. Based on the current
design configuration, the system generates a behavior dis-
tribution for each space using Algorithm 4, which takes the
generated ontology graph as the main input. Other param-
eters include the environment setup (e.g., space labels, fur-
nishing) and the affordance library (i.e., agent animations).
In line 1 of Algorithm 4, we use 2 matrices, M and M′,
to store the final calculated behavior distribution in a space
and a temporary behavior distribution based on equipment
furnishing, respectively. The shape of the matrix is m × n,
where m is the number of spaces and n is the number of
behaviors. Each entry in the matrices shows the estimated
behavior distribution in the corresponding space. In line 2–
4, we generate an initial estimate of the behavior distribu-
tion given by the space-affordance ontology edges, and we
store this distribution in M. From line 6 to 11, the equipment
instances in the spaces are taken into consideration and by
accumulating weights of all the equipment-affordance on-
tology edges, we generate another space-affordance matrix,
M′. We use 2 distribution matrices and eventually merge
them due to the biased information given by either space-
affordance edges or equipment-affordance edges. Therefore,
we use M to set up a baseline of the affordances, then use
M′ to finetune it (line 12).

Algorithm 4: Generating the behavior distribution with
the ontology graph

input : ontology graph G, environment spaces Ŝ,
affordance library Â, weighting factor w

output: distribution matrix M

1 M ← 0,M′ ← 0

2 foreach s ∈ Ŝ do
3 foreach a ∈ Â do
4 M(s, a) ← ws,a

5 Q ← Equipment(G)
6 foreach q ∈ Q do
7 s ← Space(q)
8 foreach s ∈ S do
9 A ← Affordance(q)

10 foreach a ∈ Â do
11 M′(s, a) ← M′(s, a) + we,swe,a

12 M ← wM+ (1− w)M′
13 return M

Narrative Synthesis. The behavior distribution matrix is
combined with additional input to author multi-agent nar-
ratives using an established narrative synthesis approach
(Zhang et al. 2019). The additional input consists of (i) occu-
pancy distribution, which defines how many agents are ex-
pected to be located in a specific room at a certain time, (ii)
agent motivations, which determine a preferred activity for
the agent at a given time, and (iii) a library of Parametric
Behavior Trees (PBTs), a behavior authoring system that en-
ables to coordinate the activities of virtual agents as they in-
teract with the built environment (Shoulson et al. 2011). An
optimization approach allocates agents to a discrete number
of activities (modeled as PBTs) while satisfying the occu-
pancy specification, behavior distribution, and agent motiva-
tions. This optimization process is repeated at adaptive time
steps to minimize the difference between the expected be-
havior distributions and the actual ones (Zhang et al. 2019).

User Review and Refinement. Based on the simulation
output, the user can evaluate the extent to which a building
design supports the activities of its intended inhabitants. The
simulation outcomes can reveal design issues including spa-
tial bottlenecks, under-used spaces or resources (e.g., desks
and chairs), and crowded areas. This analysis can inform ad-
ditional design iterations aimed at modifying equipment lo-
cation, semantic labels, and the geometrical layout.

Demonstration and Evaluation
Figure 2 shows the capability of our approach to supporting
the design and evaluation of a lab design. The user starts
by using the conversational interface to add semantics to
the rooms which have not been labeled yet (Figure 2a). Se-
mantic labels include “office”, “classroom”, “kitchen” and
“meeting room”. Based on the input semantic, the system
automatically suggests which types of furniture to add into
the room, such as “chairs”, “tables” and “shelves” (Figure
2b). This operation is repeated until all rooms have been se-
mantically labeled and furnished (Figure 2c). At this stage,
the user initiates the simulation process. Our system au-
tomatically generates behavior distributions using the pre-
viously generated ontology graph. Possible behaviors in-
clude “eat”, “meet”, “work” and “lecture”. The behavior
distribution is used as input together with predefined occu-
pancy specification and user motivations to author an inter-
active multi-agent narrative. Based on the simulation output,
the user discovers that the classrooms are significantly con-
gested (Figure 2d). To address this issue, the user changes
the semantics of a “meeting room” into a “classroom” (Fig-
ure 2e) and refurnishes the room accordingly (Figure 2f).
The new simulation shows reduced congestion in class-
rooms and slightly increased occupancy in the remaining
meeting room. The walking paths of all the agents are vi-
sualized to reveal agents’ movement patterns (Figure 2f).

Table 1 compares the affordance distributions across de-
sign iterations. Table 1(a) shows the behavior distribution
when some of the spaces are unlabeled. The table rows
show the affordance distribution within the space, while the
columns represent the affordance distribution among spaces.
The matrix is normalized at the environment level and the af-

206

Figure 2: Different steps of an iterative design refinement using a conversational interface for narrative authoring.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Type O O O O O O M O O C C O O O — — — K W W
W 1.4 0.8 0.9 1.6 0.9 1.0 1.6 2.0 0.9 5.5 5.0 2.6 1.0 1.2 0.0 0.0 0.0 1.1 8.6 5.9

(a) Eat 1.0 0.6 0.7 1.2 0.7 0.8 1.2 1.5 0.7 5.0 4.5 1.9 0.8 0.9 0.0 0.0 0.0 1.6 4.6 3.2
Meet 0.4 0.2 0.2 0.4 0.2 0.3 0.4 0.6 0.2 2.1 1.9 0.7 0.3 0.3 0.0 0.0 0.0 0.3 2.2 1.5
Lecture 0.2 0.1 0.1 0.2 0.1 0.2 0.2 0.3 0.1 5.3 4.8 0.4 0.2 0.2 0.0 0.0 0.0 0.2 1.4 0.9

Type O O O O O O M O O C C O O O M O O K W W
W 1.2 0.7 0.8 1.3 0.8 0.9 1.4 1.7 0.7 4.4 4.1 2.2 0.9 1.0 1.2 1.8 2.0 1.0 7.4 5.3

(b) Eat 0.9 0.5 0.6 1.0 0.6 0.7 1.0 1.3 0.6 4.0 3.8 1.7 0.7 0.8 2.5 1.3 1.5 1.4 4.0 2.9
Meet 0.3 0.2 0.2 0.4 0.2 0.2 0.4 0.5 0.2 1.8 1.6 0.6 0.2 0.3 2.1 0.5 0.5 0.3 1.9 1.4
Lecture 0.2 0.1 0.1 0.2 0.1 0.1 0.2 0.3 0.1 4.4 4.1 0.4 0.1 0.2 0.4 0.3 0.3 0.2 1.2 0.5

Type O O O O O O C O O C C O O O M O O K W W
W 1.2 0.7 0.8 1.4 0.8 0.9 2.9 1.8 0.8 2.7 3.6 2.3 0.9 1.1 2.9 1.6 1.9 1.0 7.6 5.3

(c) Eat 0.9 0.5 0.6 1.0 0.6 0.7 2.2 1.3 0.6 2.5 3.3 1.7 0.7 0.8 2.6 1.2 1.4 1.5 4.1 2.8
Meet 0.3 0.2 0.2 0.4 0.2 0.2 0.8 0.5 0.2 1.1 1.4 0.6 0.2 0.3 1.1 0.4 0.5 0.3 2.0 1.4
Lecture 0.2 0.1 0.1 0.2 0.1 0.1 0.5 0.3 0.1 2.7 3.6 0.4 0.1 0.2 2.8 0.3 0.3 0.2 1.2 0.9

Table 1: Behavior distribution changes (in %) corresponding to changes in space semantics for each step of the study (a, b, c).
Semantic changes are in gray. Relevant distribution changes are in bold, italic gray. Space types: O: office, M: meeting room,
C: classroom, K: kitchen, W: work space.

fordance variance is a result of the ontologies combined with
current space setup and the occupancy specification. Table
1(b) shows the behavior distributions after labeling all the
spaces. Table 1(c) reveals the changes in behavior distribu-
tions after modifying a “meeting room” into a “classroom”.

Conclusion and Future Work
We presented a behavior synthesis framework that helps ar-
chitects and virtual world builders author multi-agent narra-
tives while leveraging commonsense knowledge which cap-
tures the mutual relations between spaces, the equipment
contained and the activities afforded. Our system enables
users to iteratively modify building designs using a conver-

sational interactive interface and author narratives that reveal
to what extent a space supports the activities of the building
inhabitants. Our framework uses commonsense knowledge
encoded in ConceptNet (Speer, Chin, and Havasi 2016),
which can be limited and sometimes biased. Additionally,
it requires manual input of occupancy specifications and
user motivations, and it considers a single semantic for each
space at a given time. Future work will involve a deeper eval-
uation of the usability and efficacy of the tool when used
by professionals. Furthermore, we aim to develop a design
chatbot that helps designers test different behavior scenarios
and proactively suggests design modifications to optimize a
building’s operational efficiency and spatial utilization.

207

References
Balint, T., and Allbeck, J. M. 2015. Automated generation
of plausible agent object interactions. In International Con-
ference on Intelligent Virtual Agents, 295–309. Springer.
Balint, J. T., and Allbeck, J. 2017. Alet: Agents learning
their environment through text. Computer Animation and
Virtual Worlds 28(3-4):e1759.
Brachman, R. J., and Levesque, H. J. 2004. Knowledge
Representation and Reasoning. Elsevier.
Gerz, D.; Vulic, I.; Hill, F.; Reichart, R.; and Korhonen, A.
2016. Simverb-3500: A large-scale evaluation set of verb
similarity. CoRR abs/1608.00869.
Kallmann, M., and Thalmann, D. 1999. Direct 3d interaction
with smart objects. In Proceedings of the ACM symposium
on Virtual reality software and technology, 124–130. ACM.
Kallmann, M., and Thalmann, D. 2002. Modeling behav-
iors of interactive objects for real-time virtual environments.
Journal of Visual Languages & Computing 13(2):177–195.
Kapadia, M.; Pelechano, N.; Allbeck, J.; and Badler, N.
2015. Virtual crowds: Steps toward behavioral realism. Syn-
thesis lectures on visual computing: computer graphics, an-
imation, computational photography, and imaging 7(4):1–
270.
Kapadia, M.; Shoulson, A.; Steimer, C.; Oberholzer, S.;
Sumner, R. W.; and Gross, M. 2016. An event-centric ap-
proach to authoring stories in crowds. In Proceedings of the
9th International Conference on Motion in Games, 15–24.
ACM.
Kapadia, M.; Poulakos, S.; Gross, M.; and Sumner, R. W.
2017. Computational Narrative. In ACM SIGGRAPH 2017
Courses, SIGGRAPH ’17, 4:1–4:118. New York, NY, USA:
ACM. event-place: Los Angeles, California.
Li, B.; Lee-Urban, S.; Johnston, G.; and Riedl, M. 2013.
Story Generation with Crowdsourced Plot Graphs. In
Twenty-Seventh AAAI Conference on Artificial Intelligence.
Mahdavi, A., and Tahmasebi, F. 2015. Predicting people’s
presence in buildings: An empirically based model perfor-
mance analysis. Energy and Buildings 86:349–355.
Manning, C. D.; Surdeanu, M.; Bauer, J.; Finkel, J.; Bethard,
S. J.; and McClosky, D. 2014. The Stanford CoreNLP nat-
ural language processing toolkit. In Association for Compu-
tational Linguistics (ACL) System Demonstrations, 55–60.
Mikolov, T.; Chen, K.; Corrado, G. S.; and Dean, J. 2013.
Efficient estimation of word representations in vector space.
Partlan, N.; Carstensdottir, E.; Snodgrass, S.; Kleinman, E.;
Smith, G.; Harteveld, C.; and El-Nasr, M. S. 2018. Ex-
ploratory automated analysis of structural features of inter-
active narrative. In Fourteenth Artificial Intelligence and In-
teractive Digital Entertainment Conference.
Rospocher, M.; van Erp, M.; Vossen, P.; Fokkens, A.; Ald-
abe, I.; Rigau, G.; Soroa, A.; Ploeger, T.; and Bogaard, T.
2016. Building event-centric knowledge graphs from news.
Journal of Web Semantics 37-38:132–151.
Schaumann, D.; Pilosof, N. P.; Sopher, H.; Yahav, J.; and
Kalay, Y. E. 2019. Simulating multi-agent narratives for pre-

occupancy evaluation of architectural designs. Automation
in Construction 106.
Shoulson, A.; Garcia, F. M.; Jones, M.; Mead, R.; and
Badler, N. I. 2011. Parameterizing behavior trees. In All-
beck, J. M., and Faloutsos, P., eds., Motion in Games, 144–
155. Berlin, Heidelberg: Springer Berlin Heidelberg.
Speer, R., and Havasi, C. 2012. Representing general re-
lational knowledge in conceptnet 5. In Proceedings of the
Eighth International Conference on Language Resources
and Evaluation (LREC-2012), 3679–3686. Istanbul, Turkey:
European Language Resources Association (ELRA).
Speer, R.; Chin, J.; and Havasi, C. 2016. Conceptnet 5.5: An
open multilingual graph of general knowledge. Proceedings
of 31St AAAI Conference on Artificial Intelligence.
Winer, D. R., and Young, R. M. 2017. Automated Screen-
play Annotation for Extracting Storytelling Knowledge. In
Thirteenth Artificial Intelligence and Interactive Digital En-
tertainment Conference.
Zhang, X.; Schaumann, D.; Haworth, B.; Faloutsos, P.; and
Kapadia, M. 2019. Coupling agent motivations and spatial
behaviors for authoring multi-agent narratives. In 32nd In-
ternational Conference on Computer Animation and Social
Agents.

208

