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Abstract

Elections and opinion polls often have many candidates, with
the aim to either rank the candidates or identify a small set of
winners according to voters’ preferences. In practice, voters
do not provide a full ranking; instead, each voter provides
their favorite K candidates, potentially in ranked order. The
election organizer must choose K and an aggregation rule.
We provide a theoretical framework to make these choices.
Each K-Approval or K-partial ranking mechanism (with a
corresponding positional scoring rule) induces a learning rate
for the speed at which the election recovers the asymptotic
outcome. Given the voter choice distribution, the election
planner can thus identify the rate optimal mechanism. Earlier
work in this area provides coarse order-of-magnitude guar-
anties which are not sufficient to make such choices. Our
framework further resolves questions of when randomizing
between multiple mechanisms may improve learning for ar-
bitrary voter noise models.
Finally, we use data from 5 large participatory budgeting elec-
tions that we organized across several US cities, along with
other ranking data, to demonstrate the utility of our methods.
In particular, we find that historically such elections have set
K too low and that picking the right mechanism can be the
difference between identifying the ultimate winner with only
a 80% probability or a 99.9% probability after 400 voters.

1 Introduction

Elections and opinion polls with many candidates and mul-
tiple winners are common. In participatory budgeting (PB),
for example, people directly determine a part of the gov-
ernment’s budget (Alós-Ferrer and Granić 2012; Goel et
al. 2016). These elections often contain many candidate
projects (up to 70, cf. Gelauff et al. (2018)) and only a few
thousand voters, with potentially millions of dollars on the
line (Public Agenda 2016). Similarly, polls may compare
tens of candidates and yet only sample hundreds of voters.

Unfortunately, the number of voters required to recover
the asymptotic ranking or set of winners often scales, poten-
tially exponentially, with the number of candidates (Cara-
giannis and Micha 2017). Thus with many candidates, it
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is essential to use a voting mechanism that most efficiently
elicits information from each voter.

In this work, we analyze positional scoring rules (de
Borda 1781; Young 1975), mechanisms in which each po-
sition in each voter’s personal ranking maps to a score given
to the candidate that occupies that position. We focus on the
special cases of such rules implied by K-Approval elicita-
tion, in which each voter is asked to select their favorite K
candidates, as they the most commonly used such mecha-
nisms in practice. Section 3 formalizes our model. Then:

Section 4. For a given election, we show how the partic-
ular scoring rule used affects the rate at which the final
outcome (asymptotic in the number of voters) is learned.
These rates, based on large deviation bounds, extend and
tighten the results of Caragiannis and Micha (2017), and
are precise enough to determine, for example, which of 3-
Approval and 4-Approval is better in a particular context.
We focus on the goals of learning both a ranking over all
candidates and identifying a subset of winners.

Section 5.1. Leveraging these rates, we study when ran-
domization between scoring rules can improve learning,
extending previous results to general positional scoring
rules, the goal of selecting a set of winners, and arbitrary
noise models. In particular, we find that randomizing be-
tween scoring rules can never speed up learning, for arbi-
trary noise models. This contrasts to the case when one is
restricted to K-Approval mechanisms.

Section 5.2. For the Mallows model, we study how the op-
timal K in K-Approval scales with the noise parameter,
the number of candidates, and the number of winners de-
sired. We find that, in contrast to design choices made in
practice, one should potentially ask voters to identify their
favorite half of candidates, even if the goal is to identify
a single winner.

Section 6. We apply our approach to experimental ballots
attached to real participatory budgeting elections across
several US cities, as well as other ranking data from a
host of domains. We find that the exact mechanism used
matters: in one setting, for example, asking voters to iden-
tify their favorite candidate results in only a 80% chance
of identifying the best candidate after 400 voters, while
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asking voters for their favorite 2 candidates identifies the
same best candidate 99.9% of the time. Extending our
theoretical insights, we find that, historically across elec-
tions, K has been set too low for effective learning. We
further identify real-world examples in which randomiza-
tion would have sped up learning.

Our work bridges a gap between coarse theoretical anal-
yses of voting rules and the fine-grained design questions a
practitioner wishes to answer. Proofs are in the Appendix.

2 Related Work

Our work is part of several strands of research on mech-
anisms that elicit peoples’ preferences. Aggregating voter
rankings has a long history (de Borda 1781; marquis de Con-
dorcet 1785; Copeland 1951; Kemeny 1959; Young 1988).

Learning properties of voting rules. Most related are
works that study the learning properties of voting rules, as-
suming that a “true” ranking. One approach is to specify a
noise model under which voter preferences are drawn (e.g.,
Mallows, Plackett-Luce) and then derive error rates by the
number of voters for maximum likelihood or similar esti-
mators under the model (Maystre and Grossglauser 2015;
Zhao, Piech, and Xia 2016; Lu and Boutilier 2011; Guiver
and Snelson 2009; Procaccia and Shah 2015; de Weerdt,
Gerding, and Stein 2016; Chierichetti and Kleinberg 2014).

Caragiannis, Procaccia, and Shah (2013) ask similar ques-
tions to us: under what voter noise models do certain vot-
ing rules asymptotically recover the true underlying rank-
ing, and how quickly do they do so. They define a class of
voting rules and voter noise models under which a “true”
ranking of candidates is eventually recovered. They further
show that for a subset of this class (that does not contain po-
sitional scoring rules) and under the Mallows model, only a
number of voters that is logarithmic in the number of candi-
dates is required, where each voter provides a full ranking.
Lee et al. (2014) develop an algorithm that can approximate
the Borda rule, given a number of comparisons by each voter
that is logarithmic in the number of candidates.

Most similar is that of Caragiannis and Micha (2017).
They show that under the Mallows model, K-Approval with
any fixed K takes exponentially many voters (in the num-
ber of candidates) to recover the underlying ranking; on the
other hand, K-approval with K chosen uniformly at random
for each voter takes only a polynomial number of voters.

These works provide order estimates for the learning rate,
asymptotic in the number of candidates; fine-grained dif-
ferentiation between different rules or K-Approval mech-
anisms for a given election is not possible. We provide the
latter and show that it matters.

Other approaches to comparing mechanisms. Many
works take an axiomatic and computational approach,
comparing mechanisms that may produce different out-
comes even given asymptotically many votes (Fishburn and
Gehrlein 1976; Fishburn 1978; Staring 1986; Tataru and
Merlin 1997; Wiseman 2000; Ratliff 2003; Elkind et al.
2017; Aziz et al. 2015; Caragiannis et al. 2017; Aziz et al.
2017; Lackner and Skowron 2018a; 2018b; Faliszewski and

Talmon 2018). Caragiannis et al. (2019) for example show
how to find a scoring rule that most agrees with a given par-
tial ground truth ranking. In contrast, we compare mecha-
nisms’ learning rates under a condition (formalized in Sec-
tion 3.2) in which they produce the same asymptotic out-
come.

Benade et al. (2018) and Gelauff et al. (2018) experimen-
tally compare different mechanisms across several dimen-
sions, including ease of use and consistency with another
mechanism; the latter leverages data from a participatory
budgeting election at a university.

Large deviation analysis of elicitation mechanisms.
Theoretically, we leverage large deviation rates and Cher-
noff bounds to derive how quickly a given scoring rule learns
its outcome; see work of Dembo and Zeitouni (2010) for an
introduction to large deviations. This work is thus conceptu-
ally similar to work on elicitation design for rating systems
(Garg and Johari 2018; 2019). In those works, the authors
derive large deviation-based learning rates that depend on
the questions that are asked to buyers as they review an item,
where the goal is to accurately rank items; they further run
an experiment on an online labor platform. In that setting,
however, buyers rate a single item, and mechanisms are dis-
tinct based on the behavior they induce; in this work, vot-
ers see all the candidates and provide a partial ordering, and
different designs (e.g., 3-Approval vs 4-Approval) constrain
the types of orderings voters can provide.

3 Model

We now present our model and a condition under which dif-
ferent positional scoring rules induce the same asymptotic
outcome.

3.1 Model primitives

We begin with the model primitives: candidates and voters,
the election goal, and elicitation and aggregation.

Candidates and Voters. There is a set of M candidates
C = {1, . . . ,M}, typically indexed by i, j ∈ C. There are
N voters V = {1, . . . , N}. Each voter v ∈ V has a strict
ranking of candidates σv , drawn independently and iden-
tically from probability mass function over strict rankings
F (σ). Let i �σ j denote that i is preferred over j in σ, and
σ(i) = k denote that candidate i is in the kth position in σ.

A special case for F is the Mallows model (Mallows
1957), in which there is a “true” societal preference σ∗ from
which each voter’s ranking is a noisy sample. In particular,

FMallows(σ) ∝ φd(σ,σ∗)

Where d(σ, σ∗) is the Kendall’s τ distance between rankings
σ, σ∗, and φ ∈ [0, 1] is the noise parameter: the smaller it is,
the more concentrated F is around σ∗.

Election goal. We assume that the goal G is to divide the
candidates into T disjoint, ordered tiers G = {C1, . . . , CT },
such that C = ∪T

t=1Ct, where candidate i ∈ Cs is deemed
societally preferable over j ∈ Ct if s < t. The size of
each tier is fixed before the election. For example, recov-
ering a strict ranking over all candidates corresponds to
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G = {C1, . . . , CM}, where |Ct| = 1. Alternatively, iden-
tifying a set of W winners, without distinguishing amongst
the winners, corresponds to G = {C1, C2}, with |C1| = W .

In the main text and especially the empirics, we will focus
on the task of selecting W winners as it is the most common
task in practice. However, this general notation allows com-
parison of the learning properties of different settings, and
for example ask how much more expensive is it (in terms of
the number of voters needed) to identify a strict ranking as
opposed to just a set of winners.

Elicitation and Aggregation. Voters vote using an elicita-
tion mechanism. Their votes are then aggregated using a po-
sitional scoring rule, parameterized as β : {1, . . . ,M} �→ R.
We consider the following mechanisms:
K-Ranking Voter v ranks her favorite K candidates, i.e.,

reveals {(i, σv(i)) : σv(i) ≤ K}. Candidate i then re-
ceives a score siv = β(σv(i)) if ranked, 0 otherwise. For
example, β(k) = M − k for the Borda count.1

K-Approval Voter v selects her favorite K candidates, i.e.,
reveals {i : σv(i) ≤ K}. A candidate receives a score
siv = 1 for being selected, 0 otherwise.
β encodes both elicitation and aggregation. For example,

K-Approval is equivalent to K-ranking with score function
β(k) = I[k ≤ K]. Furthermore, note that given K-ranking
data, one can simulate K ′-ranking elicitation for K ′ ≤ K
with a β s.t. β(k) = 0 for k > K ′.

The scoring rule β is a design choice made by the election
organizer, and so we will refer to β as the election’s design.
We restrict ourselves to non-constant, non-increasing scor-
ing rules, i.e., β ∈ B = {β : ∀k < � ∈ 1, . . . ,M, β(k) ≥
β(�), and ∃k < �, β(k) > β(�)}.

Outcome. After N voters, candidate i’s cumulative score
is sNi = 1

N

∑N
v=1 siv . Candidates are ranked in descending

order of score, to form ranking σN , with ties broken uni-
formly at random. We denote the outcome after N voters,
corresponding to the goal G, as ON (M,F, β,G). For exam-
ple, for the goal of selecting W winners, ON (M,F, β,G) is
simply the top W candidates in σN . When (M,F, β,G) is
clear from context, we will refer to the outcome as ON .

As the number of voters N → ∞, candidate scores
sNi → EF [siv] � si by the law of large numbers; when
such expected scores are distinct, i.e., si = sj for i = j,
then σN → σ∗ for some ranking σ∗. However, note that
there may exist an asymptotic outcome ON → O∗ even
without an asymptotic ranking σN → σ∗, as long as ex-
pected scores si and goal G are such that candidates with
identical expected scores are sorted into the same tier.

3.2 Asymptotic design invariance

The asymptotic outcome O∗ of an election may vary with
the scoring rule β. For example, there may be a different
winner if voters are asked to identify their favorite two can-
didates than if they identify their single favorite candidate, if
the winner in the latter case is a polarizing candidate. As an

1In Borda, candidates not ranked receive a score (M − K −
1)/2, consistent with assuming they are all tied in position (K+1).

axiomatic comparison between outcomes is out of the scope
of this paper, we restrict our attention to cases where all “rea-
sonable” choices of different β asymptotically result in the
same outcome (where “reasonable” corresponds to the set of
scoring rules B defined above).
Definition 1. A setting (M,F ) is asymptotically design-
invariant for goal G if any reasonable β induces the same
outcome asymptotically. ∃O∗ : ∀β ∈ B,

lim
N→∞

ON (M,F, β,G) = O∗, with probability 1

Such design invariance only occurs under a fairly strong
condition on the voter preference distribution: that the candi-
dates can be separated into tiers (according to goal G) such
that candidates in higher tiers are strictly more likely to be
ranked by a voter in the top k positions, for all k < M , than
are candidates in lower tiers.
Proposition 1. A setting (M,F ) for goal G is asymptot-
ically design-invariant if and only if there exist candidate
tiers O∗ = {C∗

1 . . . C
∗
T } (corresponding to G) s.t. ∀s < t:

i ∈ C∗
s , j ∈ C∗

t =⇒ PrF (σv(i) ≤ k) > PrF (σv(j) ≤ k),
∀k ∈ {1 . . .M − 1}.

Note that this condition is stronger than stochastic domi-
nance as the inequality is strict for every position k.

This proposition connects to Caragiannis, Procaccia, and
Shah (2013) as follows: they prove that many rules (includ-
ing all positional scoring rules and the Bucklin rule) asymp-
totically recover the base ranking σ∗ of a generalization of
the Mallows model in which the probability F (σ) of a rank-
ing σ is monotonic in the distance d(σ, σ∗), where distance
function d is itself in some general class that contains the
Kendall’s τ distance. Their results directly imply that such
noise models, including the standard Mallows model, are
asymptotically design-invariant for any goal G.

However, for goals G where recovering a full ranking is
unnecessary, the condition in Proposition 1 is weaker than
the assumptions of Caragiannis, Procaccia, and Shah (2013);
there need not even be a single base ranking σ∗. For exam-
ple, when G such that we wish to select a set of W winners,
F corresponding to a mixture of Mallows models – with all
possible permutations of the W candidates in the top W po-
sitions in the base rankings – would still be design-invariant.
Constructing a general class of ranking noise models that
satisfies this property is an avenue for future work.

Assuming asymptotic design-invariance on voter prefer-
ences F may seem restrictive. However, absent axioms –
that are precise enough for design purposes – to prefer one
scoring rule β over another, the assumption allows us to pro-
ceed in a principled manner. We believe it is unlikely that
such precise, satisfactory axioms exist generally. In the Ap-
pendix, we provide a simple example (similar to that of Star-
ing (1986)) where 1-Approval and 2-Approval select disjoint
sets of 2-Winners, and such examples can be adapted more
generally to selecting W winners from either K-Approvals
or K ′-Approvals. In participatory budgeting with the goal
of identifying 6-10 winning projects out of over twenty
projects, it is unclear whether there is a principled reason to
prefer 4-Approval over 8-Approval. However, such axioms
would be an interesting avenue for future work.
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Furthermore, in Section 6.2 we show that design invari-
ance is often approximately satisfied in practice, especially
for identifying a small set of winners, using data from a wide
range of participatory budgeting and other elections.

4 Learning Rates and Optimal Design

Different elicitation and aggregation mechanisms may take
different amounts of voters to learn the asymptotic outcome.
For example, suppose we want to identify the worst candi-
date out of 100, where the voter’s rankings are drawn from a
Mallows model with φ > 0. Then, asking each voter to iden-
tify their single favorite candidate will eventually identify
the worst candidate, but after many more voters than if we
ask each voter to identify their least favorite candidate. We
make such learning rates precise in this section. Our results
in this section extend those of Caragiannis and Micha (2017)
as discussed above, both to arbitrary positional scoring rules
and by providing tighter bounds for how a scoring rule af-
fects the convergence rate. These rates are precise enough
to design scoring rules, for example comparing 4-Approval
and 8-Approval in the above example.

4.1 Learning rates

We begin by deriving rates for how quickly a given po-
sitional scoring rule β learns its asymptotic outcome O∗
(given it exists), as a function of the voter preference model
F . In particular, we use large deviation rates at which a scor-
ing rule learns (Dembo and Zeitouni 2010).

Definition 2. Consider a sequence {AN ≥ 0}N∈N, where
AN → 0 . Value r > 0 is the large deviation rate for AN if

r = − lim
N→∞

1

N
logAN

When r > 0 exists, AN → 0 exponentially fast, with ex-
ponent r asymptotically, i.e., AN is e−rN±o(N). These rates
provide us both upper and lower bounds for the probability
of an error or the number of errors in an outcome after N
voters, up to polynomial factors. In particular, in the propo-
sitions below, we will calculate the large deviation rate of er-
rors in the outcome. We will also then provide (loose) upper
bounds for such errors after N voters that hold without any
missing polynomial factors, for any N . These upper bounds
are equivalent to Chernoff bounds.

The particular forms for these rates, derived below for
general noise models F , may seem complex. However, they
are useful both for theoreticians and practitioners. For ex-
ample, in Section 5.1, we use the structure of such rates to
resolve open questions regarding when randomization be-
tween mechanisms can help learn the outcome from votes
drawn from an arbitrary noise model. In Section 6, we show
that learning rates – even when empirically calculated – re-
flect the true behavior of errors in real elections with a small
number of voters; we then use empirically calculated learn-
ing rates to draw design insights across elections.

Rates for separating two candidates. We now derive the
large deviation learning rates for recovering the true order-
ing between a pair of candidates i, j, given noise model F .

These rates will directly translate to the learning rate for the
overall election, given some goal G.
Proposition 2. Fix scoring rule β ∈ B, voter distribution
F , and consider candidates i, j such that si > sj . Then, the
probability of making a mistake in ranking these two candi-
dates after N voters, Pr(σN (i) > σN (j)), goes to zero with
large deviation rate

rij(β) = − inf
z∈R

logEF [exp (z (β(σv(i))− β(σv(j))))]

Further, the following upper bound holds for any N .

Pr(σN (i) > σN (j)) ≤ exp(−rij(β)N)

The proof follows directly from writing a random variable
for the event of making a mistake after N voters and then ap-
plying known large deviation rates. This simplicity emerges
because positional scoring rules are additive across voters.

The proposition establishes that – for a fixed number of
candidates M and voter noise model F – the probability of
making a mistake on any single pair of candidates i, j de-
creases exponentially with the number of voters, at a rate
governed by the scoring rule β and the candidates’ rela-
tive probabilities of appearing at each position of a voter’s
preference ranking. The rate rij(β) is non-negative, and and
larger values correspond to faster learning of the relative
ranking of i, j. Note that for notational convenience, we sup-
press F in the argument for the rate.

For general β, we cannot find a closed form for rij(β).
However, the structure of this rate, in particular that of the
argument in the log(·), will directly let us show that ran-
domization cannot help learning outcomes among positional
scoring rules, for arbitrary noise models F .

For K-Approval voting, further, the rate simplifies.
Proposition 3. Consider β consistent with K-Approval vot-
ing for some fixed K, and candidates i, j such that si > sj .
Then the large deviation rate rij(β) in Proposition 2 is

rij(K) =

− log

(
2
√
tiij(K)tjij(K) + 1− tiij(K)− tjij(K)

)

Where tiij(K) � PrF (σv(i) ≤ K,σv(j) > K), i.e., the
probability that a voter approves i but not j.

The proof follows directly from the structure of β for K-
Approval, β(k) = I[k ≤ K]; for each pair of candidates, the
sufficient statistics are how often each candidate appears in
a voter’s top K list but the other candidate does not.

We overload notation and use K directly in the argument
for rij(K). This rate function rij(K) is convex in the prob-
abilities tiij(K), tjij(K); this fact will let us show that ran-
domization, even among K-Approval mechanisms, cannot
help learning the relationship of any pair of candidates.

Rates for learning the outcome. In general, the rates at
which one learns each pair of candidates immediately trans-
late to rates for learning the entire outcome O∗.
Proposition 4. Consider goal G and β ∈ B such that
ON → O∗. Let QN be the expected number of errors in
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the outcome after N voters,
∑

i∈C∗
s ,j∈C∗

t ,s<t Pr(σN (i) >

σN (j)). Then QN goes to zero with large deviation rate

r(β) = min
i∈C∗

s ,j∈C∗
t ,s<t

rij(β)

Further, the following upper bound holds for any N .

QN ≤ M2 exp(−rN)

The large deviation rate r(β) thus provides a tight charac-
terization for how many voters it takes to (with high confi-
dence) recover the asymptotic outcome of an election. Note
that the goal plays an important role: for selecting W win-
ners, for example, it is not important to learn the exact re-
lationship among candidates {1, . . . ,W}, speeding up out-
come learning. Design β also matters; e.g., even amongst
approval voting mechanisms, K = 1 vs K = 5 will produce
substantially different tiij(K). To derive learning rates for
K-Approval for any given noise model or using real-world
data, one simply needs to calculate these values. We do so
numerically for the Mallows model and empirically with real
world data in Sections 5.2 and 6, respectively.

4.2 Optimal design and discussion

Now that we can quantify how quickly a given scoring rule
β learns its asymptotic outcome, we apply our framework to
designing elections, i.e., choosing an optimal scoring rule β.
For the rest of this work, we assume that the setting (M,F )
is asymptotically design-invariant for the goal G, i.e., there
exists an outcome that is asymptotically induced by every
reasonable scoring rule. Then, the design of an election β
only affects the rate at which the election converges to the
asymptotic outcome O∗, as calculated above. With no other
constraints, then, the design challenge is simple: find the rate
optimal β.

Definition 3. A scoring rule β∗ ∈ B is rate optimal if it max-
imizes the rate in Proposition 4. K∗-Approval is Approval
rate optimal if it maximizes the rate among K-Approval
mechanisms.

Rate optimal designs β learn the outcome faster than
others in the number of voters, and so are preferable to
other designs. What influences how quickly a design β
learns? EF [exp (z (β(σv(i))− β(σv(j))))] must be small
(near zero) for negative z, and so β(k)−β(k′) must be large
when Pr(σv(i) = k, σv(j) = k′) is large. In other words,
a scoring rule must reward a candidate achieving a position
in a voter’s ranking that is only achieved by asymptotically
high-ranking candidates. For example, if it is common for
worse candidates to be ranked second in a given voter’s rank-
ing but not to be ranked first, then β(1) � β(2) would be
beneficial.

Note that finding such designs requires knowledge of
the voter noise model F , which in many settings may not
be available before the election. However, next in Sec-
tions 5 and 6, we show that there are valuable insights that
apply across elections, including how our approach has in-
formed participatory budgeting deployments.

5 Theoretical Design Insights

The learning rates derived in the previous section provide
election design insights, even before our approach is applied
to real-world data. In particular, in this section, we first ex-
tend the previous literature on the (potential) benefits of ran-
domizing between mechanisms. Then, we study the task of
selecting W winners using K-Approval voting.

5.1 When does randomization help?

We now consider the question of whether randomizing be-
tween mechanisms in an election may speed up learning.
By randomization, we mean: consider a set of scoring rules
B = {β1, . . . , βP } ⊆ B; elicitation and aggregation for a
given voter is done according to a scoring rule picked at ran-
dom from B, where βp is selected with probability dp.

Note that the learning rate of such randomized schemes
can be calculated as before, by summing across βp inside
the E[·] of rij(β) or – for B consisting only of K-Approval
votes – directly through the resulting probability that the
voter approves i but not j. We use rij(B,D), r(B,D) to
denote the candidate pairwise and overall outcome learn-
ing rates, respectively, for randomized mechanism (B,D),
where B = {β1, . . . , βP } ⊆ B and D = {d1, . . . , dP }.

It is known that in some settings randomization improves
learning, asymptotically in the number of candidates. Cara-
giannis and Micha (2017) provide an example in which
randomizing uniformly between all possible K-Approval
mechanisms outperforms any static K-Approval elicitation,
when the goal is to rank all the candidates. Their insight is
that, under the Mallows model and under a fixed K, either
the first two candidates will be hard to distinguish from each
other, or the last two will, and randomizing between mecha-
nisms balances learning each pair.

We now study randomization for the goal of selecting W
winners and for arbitrary positional scoring rules and voter
noise models. Our first result is that randomizing between
scoring rules does not help, for any voter noise model, in
contrast to the case when restricted to approval votes.

Theorem 1. Randomization does not improve the outcome
learning rate for any asymptotically design-invariant noise
model F or goal G. For any randomized scoring rule mech-
anism (B,D), where B ⊂ B, for any F , G, the scoring rule
β∗(k) =

∑
p dpβp(k) satisfies r(β∗) ≥ r(B,D).

The result follows from the fact that
EF [exp (z (β(σv(i))− β(σv(j))))] is convex in β(k),
for all i, j, z, F . Then, given a randomization over
β1, . . . βP , we can increase − infz log(·) by decreasing its
argument, by instead using the static scoring rule defined by
the corresponding convex combination of β1, . . . βP . Note
that such a negative result cannot be obtained via analysis
that is asymptotic in the number of candidates; we need
learning rates for a given election.

Next, we further refine the result of Caragiannis and
Micha (2017), by showing that the “pivotal pair” feature of
their example – where different pairs of candidates dominate
the learning rate for different mechanisms – is key. In partic-
ular, our next result establishes, again for any noise model,
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Figure 1: K-Approval rate optimal mechanism for the Mallows model as φ, number of candidates, and number of winners vary.

that randomization amongst K-Approval mechanisms can-
not help separate any given pair of candidates.
Theorem 2. Randomization amongst K-Approval mecha-
nisms does not improve the learning rate for separating a
given pair of candidates i, j for any asymptotically design-
invariant noise model F or goal G. For any randomized K-
Approval mechanism (B,D), where βp ∈ B corresponds
to p-Approval, for any F , G, there exists a mechanism K∗

ij-
Approval such that rij(K∗

ij) ≥ rij(B,D).

The proof relies on the pairwise rate function rij(K) be-
ing convex in the approval probabilities tiij(K), tjij(K).

This theorem directly implies that, for the Mallows model,
randomization among K-Approval voting cannot speed up
learning when the goal is to identify a set of W winners, as
opposed to when the goal is to rank.
Corollary 1. Randomization among K-Approval mecha-
nisms does not improve the learning rate for selecting W
winners from the Mallows model. For any randomized K-
Approval mechanism (B,D), where βp ∈ B corresponds
to p-Approval, for selecting W winners from the Mallows
model, there exists an Approval rate optimal mechanism
K∗-Approval such that r(K∗) ≥ r(B,D).

The proof simply notes that under the Mallows model
with this goal, the candidate pair W,W+1 (when candidates
are indexed according to reference distribution σ∗) is pivotal
regardless of the K-Approval mechanism used. This corol-
lary does not extend to arbitrary noise models, where ran-
domization amongst K-approval mechanisms may improve
the learning rate.
Theorem 3. Randomization among K-Approval mecha-
nisms may improve the learning rate for the goal of selecting
W winners. There exist asymptotically design-invariant set-
tings (M,F ) for the goal of selecting W winners such that a
randomized K-Approval mechanism (B,D), where βp ∈ B
corresponds to p-Approval, satisfies

r(B,D) > max
K

r(K)

We prove the result two ways: (1) we construct an ex-
ample in which candidate h is asymptotically selected, and

candidates i, j are not. Which of h � i or h � j is the
pivotal pair (determines the overall rate function) depends
on the K-Approval mechanism used, and randomizing be-
tween two mechanisms improves the overall rate; (2) per-
haps more interestingly, we find many examples in our real
PB elections and other ranking data in which randomization
would have sped up learning for the task of selecting a set of
winning candidates (see Section 6.4).

5.2 K-Approval for selecting W winners

One of the most common voting settings is identifying a set
of W winners using K-Approval, whether in representative
democracy elections (typically K = W = 1), polling for
such elections (where the goal often is to identify the top
few candidates out of many, especially in primary races), or
crowd-sourcing labels (where one wants one or a few labels
for an item out of many possible ones). Here, we study how
to design such elections, i.e., how to choose the best K, i.e.,
the one that maximizes the learning rate. For simplicity, we
work with the Mallows model, extending the resulting in-
sights to real-world data in the next section.

Recall that in a Mallows model, each voter’s ranking is
a noisy sample from a reference distribution σ∗. With this
symmetric model, one may believe that setting K = W is
always optimal. For example, when noise parameter φ = 0
and so each voter’s ranking is exactly σ∗, K = W is op-
timal; in fact, any other design K = W fails to correctly
identify the set of winners even asymptotically: it would not
distinguish among the first K candidates in σ∗ or among the
last M −K candidates. However, our next result establishes
that the cases with φ > 0 are different.
Theorem 4. Under the Mallows model and the goal of se-
lecting W winners, W -Approval may not be Approval rate
optimal.

We prove the theorem by example. To find this exam-
ple and to generate the plots discussed next, we use an ef-
ficient dynamic program to exactly calculate the joint distri-
butions of the locations σv(i), σv(j) of pairs of candidates
i, j in a voter’s ranking, given the Mallows noise parame-
ter; we can then directly calculate tiij(K), tjij(K) and thus
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the learning rate for each K-Approval mechanism. This pro-
gram leverages Mallows repeated insertion probabilities (Lu
and Boutilier 2014; Diaconis 1988) and may be of indepen-
dent interest for numerical analyses of the Mallows model.

Numerical analysis. We now numerically analyze, for
the Mallows model, how the Approval rate approval K-
Approval mechanism varies with the Mallows noise param-
eter φ, the number of candidates M , and the number of win-
ners W . Recall that the Mallows model is asymptotically
design invariant, so different mechanisms only differ in how
quickly they learn the asymptotic outcome.

In Figure 1a, the goal is to select W = 1 winner, and φ
and M are varied. With low noise, φ � .5, it is rate op-
timal to use 1-Approval, i.e., ask each voter to select their
favorite candidate, regardless of how many candidates there
are. However, with higher noise φ, as the number of candi-
dates in the election increases, so does the K in the optimal
K-Approval mechanism. For φ = .999,M = 50, for ex-
ample, it is best to ask each voter to select their favorite 25
candidates, even if the task is to identify the single best can-
didate according to the reference distribution σ∗.

Similarly, Figure 1b shows how the rate optimal K-
Approval mechanism changes with the number of winners
desired and the noise parameter, fixing the number of can-
didates at M = 50. Again with high noise, it is best to ask
voters to identify their favorite half of candidates, regardless
of how many winners need to be identified. With low noise,
however, W -Approval is optimal to select W winners.

Overall, the analysis suggests that with higher noise in the
voter model, one should tend toward asking voters to rank
their favorite half of candidates, regardless of M and W .

The high-noise setting may seem unrealistic; however, as
we will see in the next section, which K-Approval mech-
anism is rate optimal in practice often scales like the high
noise settings, consistent with the idea that voting distribu-
tions in practice do not look like they are drawn from a low-
noise Mallows model. We now turn to such empirical analy-
ses.

6 Empirics and PB deployments

We now apply our insights to practice. We focus on K-
Approval voting, as opposed to general scoring rules. This
section is organized as follows. In Section 6.1, we describe
our data sources. We validate our model in Section 6.2;
first, we demonstrate that large deviation rates effectively
describe how quickly various mechanisms learn; next, we
show that in practice voter noise models are approximately
design invariant. In Section 6.3, we show that the insights
from Section 5.2 regarding optimal approval mechanisms
extend to practice. Finally in Section 6.4 we note that we
find many examples in practice where randomizing between
K-Approval mechanisms improves learning.

6.1 Data description

We leverage two data sources (detailed dataset informa-
tion is in Appendix Table 1). First, we have partnered with
dozens of local governments to help run participatory bud-
geting (PB) elections in the last five years. These elections

have used a variety of methods, primarily K-Approval; our
data in this work comes from 5 elections where K-Ranking
was used, including 3 recent elections where K = 10. This
data is particularly useful as PB is among the most com-
mon types of elections with many candidates and several
winners, with several theoretical analyses (Goel et al. 2016;
Garg et al. 2019; Freeman et al. 2019).

Second, we use data available on PrefLib (Mattei and
Walsh 2013; O’Neill 2013; Regenwetter et al. 2007; 2008;
Popov, Popova, and Regenwetter 2014), limiting ourselves
to 28 elections with at least 5 candidates and 700 voters
who provided full rankings. This ranking data spans many
domains, from people’s sushi preferences to Glasgow City
Council elections. This domain breadth supports the broad
applicability of the design insights explored in this section.

We focus on ranking data to be able to simulate counter-
factuals for the same election: with K-Ranking data, we can
simulate what would have occurred with any K ′-Approval
elicitation mechanism, for K ′ ≤ K (assuming no behavioral
quirks). With approval data, on the other hand, one cannot
compare the mechanism to any other for that given election.

One challenge is that ranking many candidates is oner-
ous, and so voters rank at most 14 candidates in our dataset.
For the data we use from on PrefLib, full rankings (rank-
ings up to the number of candidates) are available. In the PB
elections in our partner cities, typically each voter ranks or
selects her favorite K � M candidates.

6.2 Model validation

Our model and design approach has two components that
must be validated: (1) that learning rates can effectively be
used to compare different mechanisms, and (2) that design
invariance (approximately) holds in practice.

Large deviation rates as effective proxies for learning.
We now confirm that, for a given election, empirically cal-
culated large deviation learning rates are effective proxies
for the rate at which the error in recovering the asymptotic
output decreases as the number of voters increases (even
though large deviation learning rates are only asymptotically
valid in the number of voters). As examples, we first identify
three elections and goals for which many of the potential K-
Approval mechanisms return exactly the same asymptotic
outcome. Then, we bootstrap voters from the available data
of voters and empirically calculate the errors made in identi-
fying the winning set of candidates. We further calculate the
large deviation learning rates for these mechanisms, using F
implied by the voting data and the formula in Proposition 4.2

Figure 2a shows the resulting errors over time for one
such election where 4-Rankings are available. We further
plot e−rN for each mechanism, i.e., the error over time im-
plied by the learning rate (up to polynomial factors). This
plot, along with Appendix Figure 3, yields several insights:

(1) The mechanism matters: when selecting 1 winner from
the election in Figure 2a after 400 votes, there is 20%
chance of not picking the ultimate winner if 1-Approval

2Given an empirical F̂ , learning rates can be numerically cal-
culated: the infz[·] is a convex minimization problem.
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(a) Boston 2016 PB election, selecting 1 winner: Average empirical
bootstrapped error – i.e., fraction of times the asymptotic winner is
selected (solid lines, left axis), compared to such errors over time
implied by the (empirically calculated) learning rates – i.e., e−rN

(dashed lines, right axis). The right axis is a vertically shifted (in log
scale) version of the left axis, reflecting that the learning rate errors
are asymptotically valid up to polynomial factors. All mechanisms
return the same winner when all votes are counted. “Borda” is the
Borda count for the 4 candidates ranked, and all others are assumed
to be tied at rank 5 for each voter.
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(b) Approximate design invariance across elections. For the task of
selecting W = 4 winners, this plot shows the average overlap in
the top 4 candidates identified by different mechanisms across all
the elections in our dataset, if all voters with complete rankings
are counted. For example, of the top 4 candidates identified by 1-
Approval across elections, 92% are also identified as top 4 candi-
dates by 2-Approval. For each K-Approval mechanism, we include
all elections where there were at least K + 1 candidates.

Figure 2: Validating model: comparing learning rates to empirical error, and showing approximate design invariance.

is used. With 2 or 3-Approval, this number is 0.1%.
The winner appears often in a voter’s top two or three
positions (but not necessarily first), while the ultimate
second place candidate often falls outside the top three.
Scoring rules that reward top three placements thus per-
form well.

(2) The learning rates effectively capture the behavior of
the empirical error: both comparatively across mecha-
nisms, as well as the asymptotic rate (slope of the line in
log scale). This property enables use of large deviation
learning rates as proxies for learning even in elections
with a small number of voters.

(3) Ranking K candidates rather than selecting K candi-
dates is more onerous for voters. However, it does not
always provide more information in terms of learning
rates, as in the examples in Appendix Figure 3.

Design invariance in practice. Design invariance does
not strictly hold in any election in our dataset (as expected
as the condition is strong). However, it approximately holds.
Similar mechanisms produce the same asymptotic outcome
for many tasks. Figure 2b shows, for example, the average
overlap across elections in the top 4 candidates identified
by each mechanism. (Appendix Figure 4 shows the same
plot for the top 1 and 3 candidates, as well as the average
Kendall’s τ rank correlation between the full rankings iden-
tified by different mechanisms). Furthermore, we find many
elections and goals where most mechanisms return the same
asymptotic answer, as in the elections we leverage for the
plots showing learning rates are effective proxies. This rela-

tive consistency, especially for similar mechanisms, enables
us to compare different mechanisms by their learning rates.

6.3 K-Approval for selecting W winners

In Section 5.2, we showed for the Mallows model how the
rate optimal K-Approval mechanism changes with the noise
parameter φ, the number of candidates, and the number of
winners. We now show this scaling in practice.

For every election in our dataset, we find the Approval
rate optimal mechanism (among K we can simulate) for ev-
ery goal of selecting W winners, for 1 ≤ W ≤ M . We
then run a regression across all the elections for which K
is rate optimal, versus the number of winners desired and
the number of candidates; see Table 2 in the Appendix for
the regression table. While there is some variation across
elections, the number of candidates and winners proves a
reasonable metric across elections for the rate approval K-
Approval mechanism (R2 ≈ .27).

The regression confirms the idea that in practice, one
should regularize toward asking voters to choose their fa-
vorite half the candidates. For picking a small subset of win-
ners W ≈ 4 out of more than 10 candidates, for example,
one should ask voters to provide their favorite K ≈ 6 candi-
dates, with K > W . This suggestion directly counters com-
mon practice. In the PB elections that we have helped run,
for example, 4 or 5-Approval is most typical, even though
ultimately 6-10 projects may be funded (out of ≈ 15-20).

Then, in Figure 5 in the Appendix, we plot the line in-
duced from the regression coefficients with the Mallows rate
optimal lines, for M ≤ 10 candidates. Comparing to the

29



rate optimal mechanisms for the Mallows model with vari-
ous φ (within the candidate range for which we have empiri-
cal data), we find that empirical data behaves most closely to
a Mallows model with noise parameter φ ∈ [.8, .9]. (We are
not claiming that empirical data is drawn from a Mallows
model; it most certainly is not, with factors such as polariz-
ing projects important in practice). This coarse comparison
provides an approximate expected scaling behavior for elec-
tions with many candidates.

6.4 Randomization in practice

We find 16 examples in which randomizing between two
K-Approval mechanisms leads to faster learning than using
either mechanism separately, including 8 examples where
such randomization beats the Approval rate optimal mecha-
nism. Table 3 in the Appendix contains details.

7 Discussion

We show that in elections with many candidates, the elici-
tation mechanism and corresponding scoring rule used af-
fect how quickly the final outcome is learned. The learning
speed differential between mechanisms can be the difference
between identifying the ultimate winner with only a 80%
probability or a 99.9% probability after 400 voters, for ex-
ample. We then provide design decisions that emerge when
our framework is applied to data from real elections. When
using K-Approval to select a small number of W winners,
for example, it is often better to ask voters to identify their
favorite K > W candidates. The insights from this work
should be applicable in a variety of such settings, from elec-
tions to crowdsourcing labeling tasks.

There are several important, open research avenues. Most
importantly, in real elections maximizing the rate at which
the final outcome is identified is not the only goal, and future
work should seek to balance such multiple objectives.

For example, there may be axiomatic reasons to prefer
one elicitation mechanism over another, e.g., that the final
outcome corresponds to the candidate(s) that the most vot-
ers indicate is their first choice. Another objective may be to
minimize the cognitive load imposed on voters. Asking vot-
ers to provide a full ranking over the candidates and then
using a rate-optimal scoring rule trivially provides faster
learning than any other mechanism. However, asking vot-
ers to rank 20 candidates is prohibitive in many settings.
Future empirical work, in line with that of Benade et al.
(2018) and Gelauff et al. (2018), should study the cognitive
load various mechanisms impose on voters, to better under-
stand the trade-off between the objectives.
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de Weerdt, M. M.; Gerding, E. H.; and Stein, S. 2016. Min-
imising the rank aggregation error. In Proceedings of the
2016 International Conference on Autonomous Agents &
Multiagent Systems, 1375–1376. International Foundation
for Autonomous Agents and Multiagent Systems.
Dembo, A., and Zeitouni, O. 2010. Large Deviations
Techniques and Applications, volume 38 of Stochastic Mod-
elling and Applied Probability. Berlin, Heidelberg: Springer
Berlin Heidelberg.
Diaconis, P. 1988. Group representations in probability and
statistics. Lecture notes-monograph series 11:i–192.
Elkind, E.; Faliszewski, P.; Skowron, P.; and Slinko, A.
2017. Properties of Multiwinner Voting Rules. Social
Choice and Welfare 48(3):599–632.
Faliszewski, P., and Talmon, N. 2018. A framework

30



for approval-based budgeting methods. arXiv preprint
arXiv:1809.04382.
Fishburn, P. C., and Gehrlein, W. V. 1976. Borda’s rule, po-
sitional voting, and Condorcet’s simple majority principle.
Public Choice 28(1):79–88.
Fishburn, P. C. 1978. Axioms for approval voting: Direct
proof. Journal of Economic Theory 19(1):180–185.
Freeman, R.; Pennock, D. M.; Peters, D.; and Vaughan, J. W.
2019. Truthful aggregation of budget proposals. arXiv
preprint arXiv:1905.00457.
Garg, N., and Johari, R. 2018. Designing informative rat-
ing systems: Evidence from an online labor market. arXiv
preprint arXiv:1810.13028.
Garg, N., and Johari, R. 2019. Designing optimal binary
rating systems. In Proceedings of the 22nd International
Conference on Artificial Intelligence and Statistics.
Garg, N.; Kamble, V.; Goel, A.; Marn, D.; and Munagala, K.
2019. Iterative local voting for collective decision-making
in continuous spaces. Journal of Artificial Intelligence Re-
search 64(1):315–355.
Gelauff, L.; Sakshuwong, S.; Garg, N.; and Goel, A. 2018.
Comparing voting methods for budget decisions on the
ASSU ballot. Technical report.
Goel, A.; Krishnaswamy, A. K.; Sakshuwong, S.; and Aita-
murto, T. 2016. Knapsack Voting: Voting mechanisms for
Participatory Budgeting.
Guiver, J., and Snelson, E. 2009. Bayesian inference for
plackett-luce ranking models. In proceedings of the 26th
annual international conference on machine learning, 377–
384. ACM.
Kemeny, J. G. 1959. Mathematics without numbers.
Daedalus 88(4):577–591.
Lackner, M., and Skowron, P. 2018a. Consistent Approval-
Based Multi-Winner Rules. In Proceedings of the 2018 ACM
Conference on Economics and Computation, EC ’18, 47–48.
New York, NY, USA: ACM.
Lackner, M., and Skowron, P. 2018b. A quantitative analysis
of multi-winner rules. arXiv preprint arXiv:1801.01527.
Lee, D. T.; Goel, A.; Aitamurto, T.; and Landemore, H.
2014. Crowdsourcing for participatory democracies: Effi-
cient elicitation of social choice functions. In Second AAAI
Conference on Human Computation and Crowdsourcing.
Lu, T., and Boutilier, C. 2011. Learning Mallows Models
with Pairwise Preferences. In Proceedings of the 28th In-
ternational Conference on International Conference on Ma-
chine Learning, ICML’11, 145–152. USA: Omnipress.
Lu, T., and Boutilier, C. 2014. Effective sampling and learn-
ing for mallows models with pairwise-preference data. Jour-
nal of Machine Learning Research 15:3963–4009.
Mallows, C. L. 1957. Non-null ranking models. i.
Biometrika 44(1/2):114–130.
marquis de Condorcet, M. J. A. 1785. Essai sur
l’application de l’analyse a la probabilite des decisions:
rendues a la pluralite de voix. De l’Imprimerie royale.

Mattei, N., and Walsh, T. 2013. Preflib: A library of pref-
erence data HTTP://PREFLIB.ORG. In Proceedings of the
3rd International Conference on Algorithmic Decision The-
ory (ADT 2013), Lecture Notes in Artificial Intelligence.
Springer.
Maystre, L., and Grossglauser, M. 2015. Fast and accurate
inference of plackett–luce models. In Advances in neural
information processing systems. 172–180.
O’Neill, J. 2013. Open STV.
Popov, S. V.; Popova, A.; and Regenwetter, M. 2014. Con-
sensus in organizations: Hunting for the social choice co-
nundrum in apa elections. Decision 1(2):123.
Procaccia, A. D., and Shah, N. 2015. Is Approval Voting
Optimal Given Approval Votes? In Advances in Neural In-
formation Processing Systems 28, 1801–1809.
Public Agenda. 2016. Public Spending By The People:
Participatory Budgeting in the United States and Canada in
2014–15. Technical report, The Yankelovich Center for Pub-
lic Judgment.
Ratliff, T. C. 2003. Some startling inconsistencies when
electing committees. Social Choice and Welfare 21(3):433–
454.
Regenwetter, M.; Kim, A.; Kantor, A.; and Ho, M.-H. R.
2007. The unexpected empirical consensus among consen-
sus methods. Psychological Science 18(7):629–635.
Regenwetter, M.; Grofman, B.; Popova, A.; Messner, W.;
Davis-Stober, C. P.; and Cavagnaro, D. R. 2008. Be-
havioural social choice: a status report. Philosophical
Transactions of the Royal Society B: Biological Sciences
364(1518):833–843.
Staring, M. 1986. Two paradoxes of committee elections.
Mathematics Magazine 59(3):158–159.
Tataru, M., and Merlin, V. 1997. On the relationship of the
Condorcet winner and positional voting rules. Mathematical
Social Sciences 34(1):81–90.
Wiseman, J. 2000. Approval voting in subset elections. Eco-
nomic Theory 15(2):477–483.
Young, H. P. 1975. Social choice scoring functions. SIAM
Journal on Applied Mathematics 28(4):824–838.
Young, H. P. 1988. Condorcet’s theory of voting. American
Political science review 82(4):1231–1244.
Zhao, Z.; Piech, P.; and Xia, L. 2016. Learning Mixtures
of Plackett-Luce Models. In International Conference on
Machine Learning, 2906–2914.

31


