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Abstract

The personalization of our news consumption on social me-
dia has a tendency to reinforce our pre-existing beliefs instead
of balancing our opinions. To tackle this issue, Garimella et
al. (NIPS’17) modeled the spread of these viewpoints, also
called campaigns, using the independent cascade model intro-
duced by Kempe, Kleinberg and Tardos (KDD’03) and stud-
ied an optimization problem that aims to balance information
exposure when two opposing campaigns propagate in a net-
work. This paper investigates a natural generalization of this
optimization problem in which μ different campaigns prop-
agate in the network and we aim to maximize the expected
number of nodes that are reached by at least ν or none of the
campaigns, where μ ≥ ν ≥ 2. Following Garimella et al.,
despite this general setting, we also investigate a simplified
one, in which campaigns propagate in a correlated manner.
While for the simplified setting, we show that the problem
can be approximated within a constant factor for any constant
μ and ν, for the general setting, we give reductions leading to
several approximation hardness results when ν ≥ 3. For in-
stance, assuming the gap exponential time hypothesis to hold,
we obtain that the problem cannot be approximated within a
factor of n−g(n) for any g(n) = o(1) where n is the number
of nodes in the network. We complement our hardness results
with an Ω(n−1/2)-approximation algorithm for the general
setting when ν = 3 and μ is arbitrary.

1 Introduction

One of the promises of a highly connected world is that
of an impartial spread of opinions driven by free and unbi-
ased sources of information leading to an equitable exposure
of opinions to the wide public. On the contrary, the social
network platforms that are currently governing news diffu-
sion, while offering many seemingly-desirable features like
searching, personalization, and recommendation, are rein-
forcing the centralization of information spreading and the
creation of what is often termed echo chambers and filter
bubbles (Garimella et al. 2018). Stated differently, algorith-
mic personalization of news diffusion are likely to create ho-
mogeneous polarized clusters where users get less exposure
to conflicting viewpoints. A good illustration of this issue
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was given by Conover et al. (2011) who studied the Twitter
network during the 2010 US congressional midterm elec-
tions. The authors demonstrated that the retweet network
had a highly segregated partisan structure with extremely
limited connectivity between left-wing and right-wing users.
More recently, a similar finding has been obtained by the
Electome project at the MIT Media Lab for the 2016 US
presidential elections. Indeed, several illustrations issued
from this research project and reported by Thompson (2016)
clearly demonstrate that the Twitter network (at the time of
the study) contained two clusters consisting of supporters
of D. Trump and H. Clinton, respectively, that had a strong
inner connectivity while being poorly connected to one an-
other.

Consequently, instead of giving users a diverse perspec-
tive and balancing users opinions by exposing them to chal-
lenging diverse ideas, social media platforms are likely to
make users more extreme by only exposing them to views
that reinforce their pre-existing beliefs (Conover et al. 2011;
Del Vicario et al. 2016).

To address this issue from an algorithmic perspective,
Garimella et al. (2017) introduced the problem of balanc-
ing information exposure in a social network. Following the
influence maximization paradigm going back to the semi-
nal work of Kempe, Kleinberg, and Tardos (2003; 2005;
2015), their problem involves two opposing viewpoints or
campaigns that propagate in a social network following the
independent cascade model. Given initial seed sets for both
campaigns, they consider the optimization problem of se-
lecting at most k additional seed nodes for both campaigns
in order to maximize the expected number of nodes that are
reached by either both or none of the campaigns. The authors
studied two different settings, namely the heterogeneous and
correlated settings. The heterogeneous setting corresponds
to the general case in which there is no restriction on the
probabilities with which the campaigns spread. Contrarily,
in the correlated setting, the probability distributions for dif-
ferent campaigns are identical and completely correlated.
After proving the NP -hardness of balancing information ex-
posure, the authors designed efficient approximation algo-
rithms with an approximation ratio of (1 − 1/e − ε)/2 for
any ε > 0 for both the correlated and heterogeneous settings.
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Our Contribution. In this work, we address the main
open problem in the work of Garimella et al. (2017). That is,
we generalize their optimization problem to a setting with
arbitrarily many campaigns. More precisely, let μ and ν be
fixed constants such that 2 ≤ ν ≤ μ. Assume μ opposing
campaigns are spreading in a social network and the task
is to maximize the number of users that are reached by at
least ν campaigns or remain oblivious to all of them. We
term this problem the μ-ν-BALANCE problem. This gener-
alization is motivated by the fact that for most problems,
not only two, but a multitude of viewpoints are perceivable.
This may simply be due to the complexity of the problems
or due to the wide diversity of sensibilities present in our
modern societies. Hence, given this possibly large number
μ of viewpoints, the ν threshold parameter aims to guaran-
tee that influenced users are exposed to a sufficiently large
subset of viewpoints, hopefully providing them with a more
representative picture.

Interestingly, we obtain results that surprisingly differ
from the ones Garimella et al. (2017) obtained for the spe-
cial case where μ = ν = 2. Indeed, while we show in
Section 5 that any μ-ν-BALANCE problem can be approx-
imated within a constant factor in the correlated setting, in
Section 3, we obtain strong approximation hardness results
for the heterogeneous setting. In particular, when ν ≥ 3,
we show that under the Gap Exponential Time Hypoth-
esis (Gap-ETH) (Manurangsi 2017), there is no n−g(n)-
approximation algorithm with g(n) = o(1) for the μ-
ν-BALANCE problem, where n is the number of nodes.
Moreover, when ν ≥ 4, we show that if a certain class
of one-way functions exists (a common assumption in the
field of cryptography (Applebaum 2013)), there is no n−ε-
approximation algorithm for the μ-ν-BALANCE problem,
where ε > 0 is a constant which depends on ν. We miti-
gate these hardness results in Section 4 by designing an al-
gorithm with an approximation factor of Ω(n−1/2) for the
case where ν = 3 and μ is an arbitrary constant.

Detailed proofs for all results discussed in this paper are
included in the extended version of this article that is avail-
able online (Becker et al. 2019).

Related work. There is a vast literature on influence max-
imization and the problem has been studied by various com-
munities. We refer the interested reader to (Borgs et al. 2014;
Kempe, Kleinberg, and Tardos 2015) and references therein
for an algorithmic account of this field. Recently, the influ-
ence maximization paradigm has raised some ethical chal-
lenges. These challenges have very diverse objectives as lim-
iting the spread of a “bad” campaign by starting the spread-
ing of a “good” campaign blocking the first one (Budak,
Agrawal, and El Abbadi 2011), maximizing social welfare
by controlling the spread of multiple campaigns and orient-
ing them towards the right agents (Borodin et al. 2017) or
minimizing the access gap between the highly connected in-
dividuals and the poorly connected ones (Fish et al. 2019).
We here focus on works that tackle algorithmically the chal-
lenges related to diversity.

Two works closely related to ours are the ones of Aslay

et al. (2018) and Matakos and Gionis (2018). Indeed, both
of these works aim to break filter bubbles. The former work
tackles an item-aware information propagation problem in
which a centralized agent must recommend some articles to
a small set of seed users such that the spread of these arti-
cles maximizes the expected diversity of exposure of agents.
The diversity of exposure is measured by a sum of agent-
dependent functions that takes into account user leanings.
The authors show that the NP -hard problem they define
amounts to optimizing a monotone and submodular func-
tion under a matroid constraint and design a constant fac-
tor approximation algorithm. The latter paper models the
problem of maximizing the diversity of exposure in a so-
cial network as a quadratic knapsack problem. Here also the
problem amounts to recommending a set of articles to some
users in order to maximize a diversity index taking into ac-
count users’ leanings and the strength of their connections
in the network. The authors show that the resulting diver-
sity maximization problem is inapproximable and design a
polynomial algorithm without approximation guarantee.

Conversely, instead of maximizing the diversity of infor-
mation a user gets, one could wish to maximize the diversity
of users a campaign reaches. This problem, was tackled by
Tang et al. (2014). The authors presented several optimiza-
tion objectives to take into account user-diversity and gave
empirical evidence that greedy algorithms perform well in
practice for optimizing them. A closely related work is the
one of Tsang et al. (2019). The authors introduced the prob-
lem of maximizing the spread of a campaign while respect-
ing a group-fairness constraint. In their setting, each user
of the network belongs to one or several communities and
the authors defined several criteria to guarantee that each
community gets its fair share of information. For each of
these criteria, they showed that maximizing influence while
respecting the related fairness constraint can be casted as a
multi-objective optimization problem. Lastly, they designed
an algorithm to tackle such multi-objective influence prob-
lems that provides an asymptotic approximation guarantee
of 1− 1/e.

2 Preliminaries

For n ∈ N, [n] denotes the set {1, . . . , n}. We generalize set
operators to sequences of sets: For two sequences of sets A,
A′, both of size μ, and a set A, we letA∪A′ = (Ai∪A′

i)i∈[μ]

be the sequence of element-wise unions andA∩A = (Ai ∩
A)i∈[μ] be the sequence of element-wise intersections with
the set A.

Independent Cascade model. The well-known Indepen-
dent Cascade Model (ICM) introduced by Kempe, Klein-
berg, and Tardos (2015) is one of the best studied models
for information spread in social networks. Given a directed
graph G = (V,E), probabilities p : E → [0, 1] and an initial
node set A ⊆ V called seed nodes, define A0 = A, and, for
t ≥ 0, call a node v ∈ At active at time t. A node active at
time t remains active at latter time steps. If v is active at time
t ≥ 0 but was not active at time t − 1, i.e., v ∈ At \ At−1

(formally let A−1 = ∅), it tries to activate each neighbor w,
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independently, and succeeds with probability pvw. In case
of success w becomes active at step t + 1, i.e., w ∈ At+1.
If at some time t∗ ≥ 0, we have that At∗ = At∗+1 we say
that the process has quiesced and call t∗ the time of quies-
cence. For an initial set A, σ(A) = E[|At∗ |] denotes the ex-
pected number of nodes activated at the time of quiescence
when running the process with seed nodes A. Kempe, Klein-
berg, and Tardos showed that this process is a special case
of what is referred to as the Triggering Model, see (Kempe,
Kleinberg, and Tardos 2015, Proof of Theorem 4.5). For a
node v ∈ V , let Nv denote all in-neighbors of v. Here, every
node independently picks a triggering set Tv ⊆ Nv accord-
ing to a distribution over subsets of its in-neighbors, namely
Tv = S with probability

∏
u∈S puv ·

∏
u∈Nv\S(1−puv). For

a possible outcome X = (Tv)v∈V of triggering sets for the
nodes V , let ρX(A) be the set of nodes reachable from A in
the outcome X . Note that after sampling X , the quantity
ρX(A) is deterministic. According to Kempe, Kleinberg,
and Tardos (2015), this model is equivalent to the ICM and
it holds that σ(A) = EX [|ρX(A)|]. While it is not feasible
to compute ρX(A) for all outcome profiles X , a (1 ± ε)-
approximation to σ(A) can be obtained with probability at
least 1 − δ by sampling Ω(|V |2 log(1/δ)/ε2) possible out-
comes X and computing the average over the corresponding
values |ρX(A)|, see (Kempe, Kleinberg, and Tardos 2015,
Proposition 4.1).

The μ-ν-BALANCE problem

Inspired by Garimella et al. (2017), we consider several in-
formation spread processes, also called “campaigns”, un-
folding in parallel, each following the ICM described above.
Formally, we are given a graph G = (V,E) and μ probabil-
ity functions (pi)i∈[μ], where each pi is a probability func-
tion as in the ICM described above, i.e., pi : E → [0, 1]. For
an index i ∈ [μ], let Xi = (Tv)v∈V be a possible outcome
sampled using probabilities pi. Then for a seed set A ⊆ V ,
we denote with ρ

(i)
Xi

(A) the set of nodes reachable from A in
outcome Xi. Now, let X = (Xi)i∈[μ] be an outcome profile
by letting each Xi be a possible outcome according to distri-
bution pi. Then, for A = (Ai)i∈[μ] with Ai ⊆ V , we denote
with

ρX (A) = (ρ
(i)
Xi

(Ai))i∈[μ]

the set of reached nodes in outcome profile X from seed sets
A. Last, for a sequenceR=(Ri)i∈[μ] of subsets of V ,

NoSMμ,ν(R) :=
∣∣(V \⋃i∈[μ] Ri)∪

⋃
M⊆[μ]:|M |≥ν

⋂
i∈MRi

∣∣

is defined to be the number of nodes that are contained in
None or Sufficiently Many, i.e., at least ν, of the sets in R.
The NoSMμ,ν-function allows us to formalize our objective
function of maximizing the number of nodes that are reached
by none of sufficiently many of the campaigns.1

1In the special case studied by Garimella et al. (2017), the ob-
jective function is modelled by a set difference operator. Sadly, in
the general case, such a straightforward formulation is not conceiv-
able. We resolve this issue by introducing the NoSMμ,ν -function.

Problem statement. For constant integers μ ≥ ν ≥ 2, we
define the μ-ν-BALANCE problem as follows.

μ-ν-BALANCE

Input: Graph G = (V,E), probabilities P = (pi)i∈[μ],
seed sets I = (Ii)i∈[μ], and an integer k.

Find: Sets S = (Si)i∈[μ] with
∑

i∈[μ] |Si| ≤ k, such that
ΦI

μ,ν(S) is maximum, where

ΦI
μ,ν(S) := EX [NoSMμ,ν(ρX (I ∪ S))].

We refer to the objective function simply by Φ(S), in
case I, μ, and ν are clear from the context. We assume
k ≤ ν|V | as otherwise the problem becomes trivial by
choosing Si = V for every i ∈ [ν]. Moreover, we assume
w.l.o.g. that |V | ≥ μ and k ≥ ν, since μ and ν are constant
numbers and the μ-ν-BALANCE problem becomes compu-
tationally easy if |V | or k is a constant (one could just try
all feasible solutions). Following Garimella et al. (2017), we
distinguish two settings. (1) The heterogeneous setting cor-
responds to the general case in which there is no restriction
on P . (2) In the correlated setting, the distributions pi are
identical and completely correlated for all i ∈ [μ]. That is, if
an edge (u, v) propagates a campaign to v, it propagates all
campaigns that reach u to v.

Decomposing the Objective Function. In all of our al-
gorithms, we use the approach of decomposing the objec-
tive function into summands and approximating the sum-
mands separately. For an outcome profile X , and seed sets
I = (Ii)i∈[μ], we define V �,I

X ⊆ V , for � = 0, . . . , μ, to
be the set of nodes that are reached by exactly � campaigns
from the seed sets I. Formally, for any value � ∈ [μ],

V �,I
X :=

⋃
τ∈([μ]

� )

(⋂
i∈τ ρ

(i)
Xi

(Ii) \
⋃

j∈[μ]\τ ρ
(j)
Xj

(Ij)
)
,

where
(
[μ]
�

)
= {τ ⊆ [μ] : |τ | = �}. We write V �

X , if the
initial seed sets I are clear from the context. In the above
definition, by convention an empty union is the empty set,
while an empty intersection is the whole universe, here V .
Accordingly, we define

Φ�(S) := EX [NoSMμ,ν(ρX (I ∪ S) ∩ V �,I
X )].

Note that Φ�(S) measures the expected number of nodes that
are reached by 0 or at least ν campaigns among nodes that
have been reached by exactly � campaigns from I. Now, the
objective function decomposes as

Φ(S) = EX [NoSMμ,ν(ρX (I ∪ S))] =

EX
[ ∑
�∈[μ]

NoSMμ,ν(ρX (I ∪ S) ∩ V �
X )

]
=

∑
�∈[μ]

Φ�(S),

using linearity of expectation and that sets V �
X are disjoint.

Furthermore, we will denote by

Φ≥�(S) := EX [NoSMμ,ν(ρX (I ∪ S) \ (∪�−1
j=0V

j
X ))].
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the expected number of nodes that are reached by suffi-
ciently many campaigns or none of them among the nodes
that have previously been reached by at least � campaigns.
Clearly, Φ≥�(S) =

∑μ
i=� Φ

i(S) and Φ≥0(S) = Φ(S). For
convenience, in what follows, we will often refer to S as a
set of pairs in V̂ := V × [μ], where picking pair (v, i) into
S corresponds to picking v into set Si. We fix the following
observations:
• For � = 0, Φ0(S) is maximized by S = (∅)i∈[μ]. The

achieved value is the expected size of V 0
X : Φ0(S) =

EX [NoSMμ,ν(ρX (I ∪ (∅)i∈[μ]) ∩ V 0
X )] = EX [|V 0

X |].
• For � = ν − 1, the function Φ≥ν−1(S) =

∑μ
i=ν−1 Φ

i(S)
is monotone and submodular.

The First Structural Lemma. When applying the greedy
hill climbing algorithm to find a set of size k maximizing
a submodular set function, the key property that is used in
the analysis is that, at any stage, there exists an element that
leads to an improvement that is at least a fraction of k of
the difference of the optimal and the current solution, com-
pare for example (Hochbaum 1997, Lemma 3.13). Maybe
the most important structural lemma underlying our algo-
rithms is a very similar result for the functions Φ≥�.
Lemma 1. Let � ∈ [1, ν − 1] and S ⊆ V̂ with |S| ≤ k −
(ν − �) and define U := {τ ⊆ V̂ , |τ | = ν − �}. Then,
τ∗ = argmax{Φ≥�(S ∪ τ) : τ ∈ U} satisfies

Φ≥�(S ∪ τ∗)− Φ≥�(S) ≥
Φ≥�(S∗≥�)− Φ≥�(S)(

k
ν−�

) ,

where S∗≥� is a solution of size k maximizing Φ≥�.

The Correlated Case. For the correlated setting, where
probability functions are identical for all campaigns and the
cascade processes are completely correlated, we introduce
an additional function called Ψ. First note that in this set-
ting, the outcome profileX in the definition of Φ(S) satisfies
X1 = . . . = Xμ. In order to define Ψ, we introduce an ad-
ditional fictitious campaign, call it campaign 0, that spreads
with the same probability p0 = p1 = . . . = pμ as the other
μ campaigns. We extend the outcome X = (Xi)i∈[μ] with
X1 = . . . = Xμ to contain also an identical copy X0 and
define Ψ : 2V×{0} → [n] by

Ψ(T ) := EX
[∣∣(ρ(0)X0

(T ) ∩
⋃ν−1

j=1 V
j
X
)
∪
⋃μ

j=ν V
j
X
∣∣].

We will explain the rationale behind Ψ in Section 5. For now,
it is only important to observe that Ψ is monotone and sub-
modular in T , following from σ having these properties.

Approximating Ψ and Φ≥�. As mentioned above, already
in the standard ICM, it is not feasible to evaluate the func-
tion σ exactly. However, σ can be approximated to within a
factor of (1± ε) by sampling a polynomial number of times.
A very similar approach works for approximating the func-
tions Ψ and Φ≥� for � ∈ [0, ν]. That is, there is an algorithm
approx(f,S, I, ν, ε, δ) that, for f ∈ {Ψ,Φ≥0, . . . ,Φ≥ν},
sets S and I, and parameters ν, ε, δ returns a (1 ± ε)-
approximation of f(S) with probability 1− δ.

Maximizing Φ≥ν−1 and Ψ. Here, we fix the result that
the standard greedy hill climbing algorithm, we refer to it as
GREEDY(f, ε, δ, I, ν, k), can be applied in order to approxi-
mate both f ∈ {Φ≥ν−1,Ψ} to within a factor of 1− 1/e− ε
for any 0 < ε < 1 with probability at least 1 − δ for any
0 < δ ≤ 1/2. This is based on the fact that these functions
are submodular and monotone set functions. Since we can
only evaluate Φ≥ν−1 and Ψ approximately, we obtain the
additive ε-term.
Lemma 2. Let f ∈ {Φ≥ν−1,Ψ} and let 0 < ε < 1
and 0 < δ ≤ 1/2. With probability at least 1 − δ,
GREEDY(f, ε, δ, I, ν, k) returns S satisfying

f(S) ≥
(
1− 1

e
− ε

)
· f(S∗),

where S∗ is an optimal solution of size k to maximizing f .

3 Hardness of Approximation for the

Heterogeneous Case
In this section, we show that in the heterogeneous setting,
the μ-ν-BALANCE problem is as hard to approximate as
the DENSEST-k-SUB-d-HYPERGRAPH problem (Chlamtác
et al. 2018) for ν ≥ d+ 1. This result even holds for the de-
terministic variant of the μ-ν-BALANCE problem in which
all edge probabilities are equal to 0 or 1.

We start by recalling the DENSEST-k-SUB-d-
HYPERGRAPH problem which is defined on d-regular
hypergraphs, i.e., hypergraphs in which all hyperedges are
composed of exactly d vertices.

DENSEST-k-SUB-d-HYPERGRAPH

Input: d-Regular Hypergraph G = (V,E), integer k

Find: Set S ⊆ V with |S| ≤ k, s.t. |E(S)| is maximal,
where

E(S) := {e ∈ E : e ⊆ S}.

In particular, when d equals 2, DENSEST-k-SUB-d-
HYPERGRAPH is known as the more classical DENSEST-k-
SUBGRAPH problem.

Our hardness of approximation results are summarized in
the following theorem.
Theorem 1. Let d ≥ 2 and μ ≥ ν ≥ d+1. Define p = d!/dd

and λ = d!
(
μ−ν+d

d

)
, and consider the following two cases:

Case d = 2: Let α(n)=n−g(n) with g being non increas-
ing2, g(n)=o(1), α(n)∈(0, 1] and β(n)=p·n−6g(n)

2λ .

Case d ≥ 3: Let α(n) = n−ε(d) where ε(d) > 0 is a con-
stant which depends on d, α(n) ∈ (0, 1] and β(n) =
p·n−ε′(d)

2λ , with ε′(d) = (2d+ 2) · ε(d).
In both cases, the following statement holds: if there is an
α(|V |)-approximation algorithm for the deterministic μ-ν-
BALANCE problem, then there is a β(|V |)-approximation
algorithm for DENSEST-k-SUB-d-HYPERGRAPH. Here, |V |
(resp. |V |) is the number of vertices in the μ-ν-BALANCE
(resp. DENSEST-k-SUB-d-HYPERGRAPH) problem.

2Note that the assumption that g is non-increasing can be made
w.l.o.g. for this result.

6



We proceed by describing some notable consequences of
the above theorem:

1. As DENSEST-k-SUB-d-HYPERGRAPH with d ≥ 3 can-
not be approximated within 1/nε for some constant ε > 0
depending on d if a particular class of one way functions
exists (Applebaum 2013), the same hardness result holds
for any μ-ν-BALANCE problem with ν ≥ d+ 1 ≥ 4.

2. Since DENSEST-k-SUBGRAPH cannot be approximated
within 1/no(1) if the Gap Exponential Time Hypothesis
(Gap-ETH) holds (Manurangsi 2017), the same hardness
result holds for any μ-ν-BALANCE problem with ν ≥ 3.

Further (conditional) approximation hardness results are
known for DENSEST-k-SUBGRAPH and these approxima-
tion hardness results also transfer to the μ-ν-BALANCE
problem with ν ≥ 3. We review some of these results:
DENSEST-k-SUBGRAPH cannot be approximated within
any constant if the unique games with small set expansion
conjecture holds (Raghavendra and Steurer 2010). It cannot
be approximated within n−(log logn)−c

for some constant c if
the exponential time hypothesis holds (Manurangsi 2017). It
is easy to see that the reduction that we design in this section
allows to transfer these hardness results to μ-ν-BALANCE
with ν ≥ 3.

The Reduction. We now detail the reduction on which
Theorem 1 builds. We consider the following transform τ
of an instance (G = (V,E), k) of the DENSEST-k-SUB-d-
HYPERGRAPH problem into an instance

τ(G, k) = (G = (V ,E),P, I, k)

of the μ-ν-BALANCE problem.

• Define V := V� ∪ V�, where V� := V , i.e., for each
node v ∈ V , we get a node v in V . We refer to V� as the
circle-nodes and to V� as the box-nodes. Moreover, we
let J :=

(
[μ−ν+d]

d

)
, and Sd be the set of permutations of

[d]; we then define V� as

V� := {etι,π : e ∈ E, ι ∈ J, π ∈ Sd, t ∈ [l]},

i.e., for each edge e ∈ E, we create λl circle-nodes, where
l := |V | + 1 and λ := |Sd| · |J | = d!

(
μ−ν+d

d

)
. That

is, each set ι of d campaigns in J , induces l circle-nodes
etι,π, t ∈ [l] for each permutation π in Sd.

• The arc set E and the probabilities are defined as shown in
Figure 1 illustrating the case d = 3. We get this scheme in
G for every edge {v1, . . . , vd} ∈ E, for each permutation
π in Sd, and for each set in J of d campaigns.

• The initial seed sets I are defined as

I1=I2= . . .=Iμ−ν+d=∅, Iμ−ν+d+1= . . .=Iμ=V .

• The budget is the same as in the DENSEST-k-SUB-d-
HYPERGRAPH problem, i.e., k = k.

Note that each node in G is already covered by ν − d
campaigns and that the instance generated is deterministic,
in the sense that probability values are either 0 or 1.

u

v

w

e1ι,π e2ι,π . . . el−1
ι,π elι,π

pπ(i) = 1

pπ(j) = 1

pπ(k) = 1

pπ(i) = pπ(j)
= pπ(k) = 1

pπ(i) = pπ(j)
= pπ(k) = 1

Figure 1: This figure illustrates the case d = 3. For an hy-
peredge e = {u, v, w} in G, we get d!

(
μ−ν+d

d

)
schemes of

the above type, one for each set ι = {i, j, k} ∈ J and for
each way of ordering them given by a permutation π ∈ Sd.
Probabilities that are not given are equal to 0.

Let us now fix a μ-ν-BALANCE instance P = (G =
(V ,E),P, I, k) resulting from the transform τ as image of
a DENSEST-k-SUB-d-HYPERGRAPH instance Q = (G =
(V,E), k). Clearly, V is of cardinality |V |+ λl|E| and E is
of cardinality λ(l+ d− 1)|E|. Let us denote by Σ the set of
feasible solutions for P . For each S ∈ Σ, it holds that the
objective function Φ(S) can be decomposed as

Φ(S) = Φ�(S) + Φ�(S),
where Φ�(S) := NoSMμ,ν(ρX (I ∪ S) ∩ V�)

and Φ�(S) := NoSMμ,ν(ρX (I ∪ S) ∩ V�),
for X being the only possible (deterministic) outcome pro-
file. Now, let S∗, S∗

�
, and S∗� denote optimal solutions to the

problem of maximizing Φ, Φ�, and Φ�, respectively, over
Σ. The following lemma collects three statements.

Lemma 3. (1) An optimal solution to Φ also maximizes
Φ�, i.e., Φ�(S∗�) = Φ�(S∗).

(2) It holds that Φ�(S∗�) ≥ l · p · DKSH∗
d, where

DKSH∗
d is the optimal value of DENSEST-k-SUB-d-

HYPERGRAPH in Q and p = d!/dd.
(3) Given S ∈ Σ, we can, in polynomial time, build a feasi-

ble solution S of Q such that |E(S)| ≥ Φ�(S)/(λl).
The first statement says that an optimal solution to Φ also

maximizes Φ�. This essentially holds since we have con-
structed the instance in a way that the contribution of circle-
nodes dominates. The second statement says that there ex-
ists a feasible solution to P which achieves at least a mul-
tiple of l · p of the objective value in DENSEST-k-SUB-d-
HYPERGRAPH with p = d!/dd. In the third statement, we
observe that from a feasible solution to P , we can construct
a feasible solution to Q while loosing only a factor of λl in
objective value. Using Lemma 3, we are now ready to prove
Theorem 1.

Proof of Theorem 1. Let Q = (G, k) be an instance of the
DENSEST-k-SUB-d-HYPERGRAPH problem and let P :=
(G = (V ,E),P, I, k) = τ(G, k) be the instance of
the μ-ν-BALANCE problem obtained by the transform τ .
For brevity, let n := |V | and n := |V |. Moreover,
let S be an α(|V |)-approximate solution to P , that is
Φ(S) ≥ α(|V |)Φ(S∗). We show how to construct a β(n)-
approximate solution S to Q.
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Using Lemma 3, (3), we obtain a feasible solution S
to Q with |E(S)| ≥ Φ�(S)/(λl). We proceed by lower-
bounding Φ�(S). We can w.l.o.g. assume that S ∩ V� = ∅
and that Φ�(S) ≥ l. Indeed, if Φ�(S) < l then Φ�(S) = 0
and we can build in polynomial-time a better solution by
identifying one edge (v1, . . . , vd) and propagating campaign
i in vi. This further implies that Φ�(S) ≥ Φ�(S) as
l > n ≥ Φ�(S). We obtain

Φ�(S) ≥ Φ(S)
2
≥ α(n)

2
· Φ(S∗) ≥ α(n)

2
· Φ�(S∗)

=
α(n)

2
· Φ�(S∗�) ≥ α(n) · l · p

2
·DKSH∗

d,

using Lemma 3, (1) and (2) in the last two steps. In sum-
mary, we have |E(S)| ≥ α(n)·p

2λ DKSH∗
d. Note that 2λ/p is

a constant. Moreover, by using that 2 ≤ n ≤ n ≤ 2λnd+1

and λ ≤ μd ≤ nd, we get that n ≤ n2d+2.
Case d = 2: Since g is non-increasing, it follows that

α(n) = n−g(n) ≥ n−(2d+2)g(n) = n−6g(n),

completing this case.
Case d ≥ 3: In this case

α(n) = n−ε(d) ≥ n−(2d+2)ε(d),

completing this case.

4 Approximation Algorithm for the

Heterogeneous Case

Our approach for maximizing Φ(S) is to decompose it
as Φ(S) = Φ0(S) + Φ≥1(S) and work on each sum-
mand separately. In this section, we give two different al-
gorithms GREEDYTUPLE and GREEDYITER for maximiz-
ing Φ≥1(S). These two algorithms are inspired by a simi-
lar approach for the so-called maximum coverage with pairs
problem (D’Angelo, Olsen, and Severini 2019).

The complete approximation algorithm then works as fol-
lows: Using GREEDYTUPLE(ε, δ/2, 1, I, ν, k), we obtain a
set S1 that with probability 1 − δ/2 satisfies Φ≥1(S1) ≥
α1 · Φ≥1(S∗≥1), where S∗≥1 denotes an optimal solution of
size k to maximizing Φ≥1 and α1 is the approximation
factor that will be achieved by GREEDYTUPLE, see The-
orem 3. On the other hand GREEDYITER(ε, δ/2, I, ν, k)
outputs a set S2 that with probability 1 − δ/2 satisfies
Φ(S2) ≥ α2 ·Φ≥1(S∗≥1), where α2 is as in Theorem 4. Now,
we define S ′ to be the solution that achieves the maximum
max{Φ(S1),Φ(S2)} and S to be the solution that achieves
the maximum max{Φ(∅),Φ(S ′)}. It follows that

2Φ(S) ≥ Φ(∅) + Φ(S ′) ≥ Φ0(∅) +√α1 · α2Φ
≥1(S∗≥1),

using that the maximum Φ(S ′) is lower bounded by the ge-
ometric mean of Φ(S1) and Φ(S2), which are in turn lower
bounded by α1 ·Φ≥1(S∗≥1) and α2 ·Φ≥1(S∗≥1), respectively.
Now, let S∗ be an optimal solution of size k to maximiz-
ing Φ. Using that the empty set maximizes Φ0, we have
Φ0(∅) ≥ Φ0(S∗). Furthermore, Φ≥1(S∗≥1) ≥ Φ≥1(S∗),
thus

Φ(S) ≥
√
α1α2

2
(Φ0(S∗) + Φ≥1(S∗)) =

√
α1α2

2
Φ(S∗).

Plugging in α1 and α2, see Theorems 3 and 4, and using
kν−2 ≥

(
k−1
ν−2

)
, we get the following theorem.

Theorem 2. Let 0 < ε < 1 and δ ≤ 1/2. There is an
algorithm that, with probability 1 − δ, outputs a solution S
that satisfies

Φ(S) ≥
(
1− 1

e
− ε

) ν
2
( 1

2|V |

) ν−2
2

ν−
2ν−3

2 · Φ(S∗),

where S∗ denotes a solution of size k maximizing Φ(·).
We remark that this result is mostly interesting for the case

where ν = 3. Indeed, in this case we obtain an algorithm
with an approximation ratio of order n−1/2. It remains to
describe algorithms GREEDYTUPLE and GREEDYITER.

Greedily Picking Tuples. This paragraph presents
GREEDYTUPLE (Algorithm 1). For given �, the algorithm
computes a solution maximizing Φ≥�. For � = ν − 1, it
is identical to the standard greedy hill climbing algorithm.
For the general case of � ≤ ν − 1, we show the following
theorem.
Theorem 3. Let ε ∈ (0, 1), δ ≤ 1/2, and � ∈ [1, ν − 1].
If k ≥ 2ν/ε, with probability at least 1 − δ, the algorithm
GREEDYTUPLE(ε, δ, �, I, ν, k) returns a solution S with

Φ≥�(S) ≥
1− 1

e − ε(
k−1

ν−�−1

) · Φ≥�(S∗≥�),

where S∗≥� denotes a solution of size k maximizing Φ≥�.

Algorithm 1: GREEDYTUPLE(ε, δ, �, I, ν, k)

t← � k
ν−�

( |V̂ |
ν−�

)
; δ′ ← δ

t ; ε′ ← ε

2e·( k
ν−�)

; S ← ∅;
while |S| ≤ k − (ν − �) do

Add argmaxτ⊆V̂ ,|τ |=ν−�{
approx(Φ≥�,S ∪ τ, I, ν, ε′, δ′)} to S;

return S;

The main idea underlying GREEDYTUPLE is very much
related to the standard greedy algorithm. That is instead of
greedily adding elements to the set S , here we greedily add
tuples of size ν−� using the key observation from Lemma 1
that there is always an element that yields a 1/

(
k

ν−�

)
frac-

tion of the optimum possible progress. Thus, (ignoring the
approximation issue) every step of the algorithm incurs a
factor of (1− (1− 1/

(
k

ν−�

)
)) to the approximation ratio.

Being Iteratively Greedy. This paragraph presents
GREEDYITER (Algorithm 2). Recall that we defined the
function Φ≥�. We now extend this notation by letting

Φ≥�
β (R,S) := EX [NoSMμ,β(ρX (R∪ S) \

⋃�−1
j=0 V

j,R
X )]

where � ∈ [ν − 1] and β ∈ [ν]; we will mainly be working
with β = �+1. This function measures the expected number
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Algorithm 2: GREEDYITER(ε, δ, I, ν, k)
δ′ ← δ/ν; ε′ ← ε/2;R[1] ← I;
for � = 1, . . . , ν − 1 do

S [�] ←
GREEDY(Φ≥�

�+1(R[�], ·), ε′, δ′,R[�], �+ 1, � k
ν−1�);

R[�+1] ← R[�] ∪ S [�];
return

⋃ν−1
i=1 S [i];

of nodes reached by at least β campaigns fromR∪S among
the nodes that have been reached by at least � campaigns
fromR.

We apply the following iterative scheme in GREEDYITER:
For � from 1 to ν − 1, find sets S [�] of size �k/(ν − 1)�
maximizing Φ≥�

�+1(R[�], ·), where R[�] := I ∪
⋃�−1

j=1R[j].
That is, in the �th iteration, we maximize the number of
nodes reached by �+1 campaigns that have previously been
reached by at least � campaigns. The approach is motivated
by the observation that, for any � ∈ [ν − 1] and initial sets
R, the function Φ≥�

�+1(R,S) is monotone and submodular
in S , compare with Section 2 where we used this fact for
� = ν − 1. Using Lemma 2 applied to Φ≥�

�+1(R, ·) with
ν = � + 1 we get that the standard greedy algorithm can
be used in order to obtain a (1− 1/e− ε)-approximate solu-
tion for Φ≥�

�+1(R, ·). This leads to the following theorem re-
garding the approximation ratio achieved by GREEDYITER.

Theorem 4. Let 0 < ε < 1 and δ ≤ 1/2. With probability
1− δ, GREEDYITER(ε, δ, I, ν, k) returns S satisfying

Φ(S) ≥
(1− 1

e − ε)ν−1

ν2ν−3

( k

2|V |

)ν−2

· Φ≥1(S∗≥1),

where S∗≥1 denotes a solution of size k maximizing Φ≥1.

5 Approximation Algorithm for the

Correlated Case

We now turn to the correlated case. Recall that here the
probability functions are identical for all campaigns, i.e.,
p1(e) = . . . = pμ(e) for every edge e ∈ E. Moreover,
the cascade processes are completely correlated, that is, for
any edge (u, v), if node u propagates campaign i to v, then
node u also propagates all other campaigns that reach it to v.
In contrast to the heterogeneous case, in the correlated set-
ting, we show that there is a constant factor approximation
algorithm for μ-ν-BALANCE for any μ ≥ ν ≥ 2:
Theorem 5. Let 0 < ε < 1 and δ ≤ 1/2. If k ≥ 2ν/ε,
there is an algorithm for the correlated setting that, with
probability 1− δ, outputs a solution S that satisfies Φ(S) ≥
(1 − 1/e − ε)/(2(ν + 1)) · Φ(S∗), where S∗ is an optimal
solution of size k to maximizing Φ.

Also here, the idea is to consider the decomposition of
Φ(S) as Φ(S) = Φ≥1(S)+Φ0(S) for a solution S . Clearly,
Φ0(S) is still optimal when S = ∅. In order to approximate
Φ≥1, we however apply a different technique: The idea is

to pick ν campaigns and propagate them in the same �k/ν�
nodes, exploiting that all campaigns spread in an identical
manner. To that end, we consider one fictitious campaign,
say campaign 0, spreading with the same probabilities as
the others. We now maximize the number of reached nodes
among all nodes that were (a) reached by at least one cam-
paign from I and were (b) reached by no more than ν cam-
paigns from I. For this purpose, we had defined the function
Ψ in Section 2. Recall that

Ψ(T ) := EX [|(ρ(0)X0
(T ) ∩

ν−1⋃
j=1

V j
X ) ∪

μ⋃
j=ν

V j
X |]

and observe that Ψ(T ) measures the expected number of
nodes that are either (1) reached by more than ν campaigns
from I or (2) are reached by campaign 0 from T and
were reached by at least one campaign from I. Recall that
Ψ is submodular and thus can be approximated to within
1− 1/e− ε for any ε > 0 by the greedy algorithm. To prove
Theorem 5 we make use of a combination of three claims:
The first claim states that the optimum of Ψ has a higher
value than the one of Φ≥1. The second statement of the
lemma says that we loose a factor of roughly ν when choos-
ing a set of size �k/ν� instead of k when maximizing Ψ (this
is due to submodularity). The last statement shows that given
a solution T of size �k/ν� for Ψ, one can build a certain so-
lution S ′ of size k for Φ≥1 such that Ψ(T ) = Φ≥1(S ′).

6 Conclusion and Future Work

In this paper, we introduced the μ-ν-BALANCE problem
which is a general form of the problem of balancing
information exposure in a social network introduced by
Garimella et al. (2017) for two campaigns. As in this original
work of Garimella et al., we considered two different scenar-
ios called the correlated and heterogeneous setting. While in
the special case of μ = ν = 2 studied by Garimella et al.,
both settings lead to an identical picture from an approxima-
tion algorithms perspective, we showed that this situation
changes drastically for μ ≥ ν > 2: For the correlated set-
ting, we designed a constant factor approximation algorithm
for any values of μ and ν. In the heterogeneous case though,
we obtained several approximation hardness results stating
that it is unlikely to find an n−g(n)-approximation algorithm
with g(n) = o(1) if ν ≥ 3 or even an n−ε-approximation
algorithm where ε is a constant depending on ν if ν ≥ 4. We
complemented this finding by designing an algorithm with
approximation ratio Ω(n−1/2) for ν = 3.

Several directions of future work are conceivable. First,
it would be interesting to improve the approximation guar-
antee for the μ-ν-BALANCE problem in both settings, most
importantly for the heterogeneous case with ν > 3. Sec-
ond, since the ν parameter in the problem is of a threshold
flavor, it would be worth investigating a smoother objective
function by considering various ν values, such that a node
reached by ν1 campaigns contributes more to the objective
function than a node reached by ν2 < ν1 campaigns.
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