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Abstract

Vector quantization (VQ) techniques are widely used in simi-
larity search for data compression, computation acceleration
and etc. Originally designed for Euclidean distance, existing
VQ techniques (e.g., PQ, AQ) explicitly or implicitly mini-
mize the quantization error. In this paper, we present a new
angle to analyze the quantization error, which decomposes
the quantization error into norm error and direction error. We
show that quantization errors in norm have much higher influ-
ence on inner products than quantization errors in direction,
and small quantization error does not necessarily lead to good
performance in maximum inner product search (MIPS). Based
on this observation, we propose norm-explicit quantization
(NEQ) — a general paradigm that improves existing VQ tech-
niques for MIPS. NEQ quantizes the norms of items in a
dataset explicitly to reduce errors in norm, which is crucial
for MIPS. For the direction vectors, NEQ can simply reuse an
existing VQ technique to quantize them without modification.
We conducted extensive experiments on a variety of datasets
and parameter configurations. The experimental results show
that NEQ improves the performance of various VQ techniques
for MIPS, including PQ, OPQ, RQ and AQ.

1 Introduction

Given a dataset X ⊂ R
d that contains n vectors (also

called items) and a query q ∈ R
d, maximum inner product

search (MIPS) finds an item x∗ that has the largest inner
product with the query,

x∗ = argmax
x∈X

q�x. (1)

The definition of MIPS can be easily extended to top-k inner
product search, which is used more commonly in practice.
MIPS has many important applications such as recommen-
dation based on user and item embeddings (Koren, Bell, and
Volinsky 2009), multi-class classification with linear clas-
sifier (Dean et al. 2013), and object matching in computer
vision (Felzenszwalb et al. 2010). Recently, MIPS is also
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used for Bayesian interference (Mussmann and Ermon 2016),
memory network training (Chandar et al. 2016) and reinforce-
ment learning (Jun et al. 2017).

Vector quantization (VQ). VQ quantizes items in the
dataset with M codebooks C1, C2, . . . , CM . Each codebook
Cm contains K codewords and each codeword is a d-
dimensional vector, i.e., Cm = {cm[1], cm[2], ..., cm[K]},
cm[k] ∈ R

d for 1 ≤ m ≤ M and 1 ≤ k ≤ K. Denote imx as
the index of the codeword in codebook Cm that item x maps
to, then x is approximated by x̃ =

∑M
m=1 c

m[imx ]. Therefore,
the inner product between query q and item x, i.e., q�x, is ap-
proximated by q�x̃ =

∑M
m=1 q

�cm[imx ]. There are a number
of VQ algorithms with different quantization strategies and
codebook learning procedures, such as product quantization
(PQ) (Jégou, Douze, and Schmid 2011), optimized product
quantization (OPQ) (Ge et al. 2013), residual quantization
(RQ) (Chen, Guan, and Wang 2010) and additive quantiza-
tion (AQ) (Babenko and Lempitsky 2014). We describe them
in greater details in Section 2.

VQ can be used for data compression, fast inner prod-
uct computation and candidate generation in MIPS. For
data compression, the M codeword indexes {i1x, i2x, ..., iMx }
is stored instead of the original d-dimensional vector x,
which enables storing very large datasets (e.g., with 1 bil-
lion items) in the main memory of a single machine (John-
son, Douze, and Jégou 2017). When the inner products
between query q and all codewords are precomputed and
stored in look-up tables, the approximate inner product
of an item (i.e., q�x̃) can be computed with a complex-
ity of O(M) instead of O(d). With two codebooks, VQ
can use the efficient multi-index algorithm (Babenko and
Lempitsky 2012) to generate candidates for MIPS. Note
that VQ is orthogonal to existing MIPS algorithms, such as
tree-based methods (Koenigstein, Ram, and Shavitt 2012;
Ram and Gray 2012), locality sensitive hashing (LSH)
based methods (Neyshabur and Srebro 2015; Shrivastava
and Li 2014), proximity graph based method (Morozov and
Babenko 2018) and pruning based methods (Li et al. 2017;
Teflioudi, Gemulla, and Mykytiuk 2015). These algorithms
focus on generating good candidates for MIPS, while VQ
focuses on data compression and computation acceleration.
Actually, VQ can be used as a component of these algorithms
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for compression and fast computation as in (Douze, Sablay-
rolles, and Jégou 2018).

When using VQ for similarity search, the primary perfor-
mance indicator is the quality of the similarity value calcu-
lated with the codebook-based approximation x̃. Existing
VQ techniques were primarily designed for Euclidean near-
est neighbor search (Euclidean NNS) instead of MIPS. They
minimize the quantization error (‖x− x̃‖) explicitly or im-
plicitly because it provides an upper bound for the error of
the codebook based approximate Euclidean distance, i.e.,
|‖x− q‖ − ‖x̃− q‖| ≤ ‖x− x̃‖. However, inner product is
different from Euclidean distance in several important as-
pects. In particular, inner product does not satisfy the triangle
inequality and non-negativity. The inner product between an
item and itself (i.e., x�x) is not guaranteed to be the largest,
while self-distance (i.e., ‖x − x‖) is guaranteed to be the
smallest for Euclidean distance. These differences prompt us
to ask the following two questions: Does minimizing quanti-
zation error necessarily lead to good performance for MIPS?
Do we need a different design principle for VQ techniques
when used for MIPS (than for Euclidean NNS)?

To answer these questions, we start by analyzing the quan-
tization errors of VQ techniques from a new angle. Instead of
treating the quantization error ‖x− x̃‖ as a whole, we decom-
pose it into two parts: norm error (‖x‖ − ‖x̃‖) and angular
error (1− x�x̃

‖x‖‖x̃‖ ). We found that norm error has a more sig-
nificant influence on inner product than angular error. Based
on this observation, we propose norm-explicit quantization
(NEQ), which quantizes the norm ‖x‖ and the unit-norm di-
rection vector x/‖x‖ separately. Quantizing norm explicitly
using dedicated codebooks allows to reduce errors in norm,
which is beneficial for MIPS. The direction vector can be
quantized using existing VQ techniques without modifica-
tion. NEQ is simple in that the complexity of both codebook
learning and approximate inner product computation is not
increased compared with the baseline VQ technique used
for direction vector quantization. More importantly, NEQ is
general and powerful in that it can significantly boost the
performance of many existing VQ techniques for MIPS.

We evaluated NEQ on four popular benchmark datasets,
where the cardinalities of the datasets range from 17K to
100M and their norm distributions are significantly differ-
ent. The experimental results show that NEQ improves
the performance of PQ (Jégou, Douze, and Schmid 2011),
OPQ (Ge et al. 2013), RQ (Chen, Guan, and Wang 2010) and
AQ (Babenko and Lempitsky 2014) for MIPS consistently on
all datasets and parameter configurations (e.g., the number
of codebooks and the required top-k items). NEQ also sig-
nificantly outperforms the state-of-the-art LSH-based MIPS
methods and provides better time-recall performance than
the graph-based ip-NSW algorithm.

Contributions. Our contributions are three-folds. First, we
challenge the common wisdom of minimizing the quantiza-
tion error in existing VQ techniques and questioned whether
it is a suitable design principle for MIPS. Second, we show
that norm error has more significant influence on inner prod-
uct than angular error, which leads to a more suitable design
principle for MIPS. Third, we propose NEQ, a general frame-

work that can be seamlessly combined with existing VQ
techniques and consistently improves their performance for
MIPS, which is beneficial to applications that involve MIPS.

2 Related Work
In this section, we introduce some popular VQ techniques to
facilitate further discussion and discuss the relation between
NEQ and some related work.

PQ and OPQ. PQ (Jégou, Douze, and Schmid 2011) first
generates M sub-datasets X 1,X 2, ...,XM for the original
dataset, each containing d′ = d/M features from all items.
K-means is used to learn a codebook on each sub-dataset
independently and each codeword is a d′-dimensional vec-
tor. An item x is approximated by the concatenation of its
corresponding codewords from each of the codebooks, i.e.,
x̃ = [c1[i1x], c

2[i2x], ..., c
M [iMx ]]. OPQ (Ge et al. 2013) uses

an orthonormal matrix R to rotate the items by Rx before ap-
plying PQ. OPQ achieves lower quantization error when the
features are correlated or some features have larger variance
than others. However, codebook learning is more complex
for OPQ as it involves multiple rounds of alternating opti-
mization of the codebooks and the rotation matrix R.

RQ and AQ. Different from PQ and OPQ, in RQ (Chen,
Guan, and Wang 2010) every codebook covers all features
and each codeword is a d-dimensional vector. The original
data are used to train the first codebook with K-means and the
residues (x− c1[i1x]) are used to train the second codebook.
This process is recursive in that the m-th codebook is trained
with the residues from the previous (m− 1) codebooks. Sim-
ilar to RQ, each codebook in AQ (Babenko and Lempitsky
2014) also covers all features. AQ improves RQ by jointly
optimizing all the M codebooks. Beam search is used for
encoding (finding the optimal codeword indexes of an item
in the codebooks) with given codebooks and a least-square
formulation is used to optimize the codebooks under given
encoding.

In addition to the VQ techniques introduced above,
there are many other VQ techniques, such as CQ (Zhang,
Du, and Wang 2014), TQ (Babenko and Lempitsky 2015)
LOPQ (Kalantidis and Avrithis 2014) and LSQ (Martinez
et al. 2016). Although these VQ techniques differ in their
quantization strategies (e.g., partitioning the features or not)
and the codebook learning algorithms (e.g., K-means or al-
ternating minimization), all of them explicitly or implicitly
minimize the quantization error ‖x− x̃‖, which is believed
to provide good performance for Euclidean NNS. In the next
section, we show that this principle does not apply for MIPS.

Existing work. Similar to some other VQ algorithms used
for similarity search (e.g., PQ and RQ), the prototype of NEQ
can also be found in earlier researches on signal compression.
The shape-gain algorithm (Gersho and Gray 1991) separately
quantizes the magnitude and direction of a signal to achieve
efficiency with some loss in accuracy. Instead of hurting
accuracy, NEQ shows that the separate quantization of norm
and direction actually improves performance for MIPS. A
recent work, multi-scale quantization (Wu et al. 2017) also
explicitly quantizes the norm and the motivation is to better
reduce the quantization error when the dynamic range (i.e.,
spread of the norm distribution) is large. In contrast, NEQ
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Figure 1: Illustration of Theorem 1

does not try to minimize the quantization error and is not
limited to the case that the data have large dynamic range. In
fact, NEQ still provides significant performance improvement
even if items in the dataset have almost identical norm.

3 Analysis of Quantization Error for MIPS

For Euclidean distance, quantization error provides an upper
bound on the error in the approximate Euclidean distance
due to the triangle inequality, i.e., |‖x− q‖ − ‖x̃− q‖| ≤
‖x − x̃‖. Therefore, almost all VQ techniques try to min-
imize the quantization error when learning the codebooks.
For approximate inner product, ‖x − x̃‖ provides a trivial
error bound because

∣∣q�x− q�x̃
∣∣ ≤ ‖q‖‖x− x̃‖. As high-

dimensional vectors tend to be orthogonal to each other (Cai,
Fan, and Jiang 2013), the bound is loose and q�(x− x̃) can
be significantly smaller than ‖q‖‖x − x̃‖. Thus, we need
to understand the influence of quantization error on inner
product from a new angle. The exact inner product and its
codebook-based approximation can be expressed as,

q�x = ‖x‖ ·
(
q�

x

‖x‖
)
and q�x̃ = ‖x̃‖ ·

(
q�

x̃

‖x̃‖
)

(2)
in which x/‖x‖ and x̃/‖x̃‖ are the unit-norm direction vec-
tors of x and x̃, respectively. It can be observed from (2)
that the accuracy of the approximate inner product depends
on two factors, i.e., the quality of norm approximation (‖x̃‖
for ‖x‖) and the quality of direction vector approximation
(x̃/‖x̃‖ for x/‖x‖). But how do the two factors affect the
quality of approximate inner product? Does one have greater
influence than the other? To facilitate further analysis, we
formally define inner product error, norm error, and angular
error as follows.
Definition 1. For an item x and its codebook-based approxi-
mation x̃, given a query q, the inner product error u, norm
error γ, and angular error η are given as:

u =

∣
∣
∣
∣

q�x− q�x̃

q�x

∣
∣
∣
∣
, γ =

∣
∣
∣
∣

‖x‖ − ‖x̃‖
‖x‖

∣
∣
∣
∣
, η = 1− x�x̃

‖x‖‖x̃‖ .

We define the inner product error and norm error as ratios
over the actual values to exclude the scaling effect of q and
‖x‖. For angular error, η = 0 if x and x̃ are perfectly aligned
in direction.

To analyze the influence of norm error and angular error
individually, we need to exclude the influence of the other.
Therefore, we used the approximation x̂ = ‖x̃‖· x

‖x‖ , which is
accurate in direction, to calculate inner product error caused

Figure 2: Influence of norm error and angular error on inner
product for PQ (left) and RQ (right), all red points reside on
the red line

by norm approximation. Similarly, we used x̄ = ‖x‖ · x̃
‖x̃‖ ,

which is accurate in norm, to calculate the inner product error
caused by direction approximation. A norm error of γ will
cause an inner product error u=γ when there is no angular
error as u =

∣∣∣ q�x−q�x̂
q�x

∣∣∣ = ∣∣∣‖x‖−‖x̃‖
‖x‖

∣∣∣. Theorem 1 formally
establishes that there are cases that an angular error η results
in an inner product error u < η.

Theorem 1. For an item x, its approximation x̄ which is
accurate in norm but inaccurate in direction, and a query
q, denote the angle between x and x̄ as α and assume
α ∈ (0, π/2), the angle between x̄ and q as β and assume
β ∈ (0, π/2), the angle between the two planes defined by

(x, x̄) and (x̄, q) as t. The inner product error
∣∣∣ q�x−q�x̄

q�x

∣∣∣
is not larger than the angular error 1 − x�x̄

‖x‖‖x̄‖ if angle

t satisfies cos(β)
sin(α) sin(β)

[
1

2−cos(α) − cos(α)
]

≤ cos(t) ≤
cos(β)

sin(α) sin(β)

[
1

cos(α) − cos(α)
]
.

We provide an illustration of the vectors in Theorem 1
in Figure 1 and the proof can found in the supplementary
material. We also plot the width of the feasible region of
t in the range of (0, π/2), i.e., the difference between the
maximum value and minimum value for Theorem 1 to hold,
under different configurations of α and β in Figure 1. The
results show that when both α and β are small and α < β, for
almost all t ∈ (0, π/2), the the inner product error is smaller
than the angular error. The required conditions are not very
restrictive as we analyze below.

We consider an item x having large inner product with q as
it is easy to distinguish items having large inner products with
the query from those having small inner products. To achieve
good performance, a VQ method should be able to distinguish
items having large but similar inner products with the query.
Firstly, the conditions that α ∈ (0, π/2) and α is small are
easy to satisfy as x̄ is the codebook based approximation of x
and it should have a small angle with x. Secondly, as x has a
large inner product with query q, its approximation x̄ should
also have a small angle with q, therefore the condition that
β ∈ (0, π/2) and β is small is likely to hold. Finally, as x̄ is
trained to approximate x and q is not, α < β is again easy to
satisfy. As q, x and x̄ have small angles with each other, t is
likely to fall in (0, π/2).

Theorem 1 is also supported by the following experiment
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on the SIFT1M dataset 1. We used 10,000 randomly selected
queries and the errors are calculated on their ground-truth top-
20 MIPS results 2 in the dataset. We experimented with PQ
and RQ using 8 codebooks each containing 256 codewords.
For each item-query pair (x, q), we plot two points in Figure 2.
One (in red) shows the norm error and the inner product error
caused by inaccurate norm (using x̂). The other (in gray)
shows the angular error and the inner product error caused
by inaccurate direction vector (using x̄). The results show
that all red points reside on the line with a slope of 1, which
verifies that a norm error of γ will cause an inner product
error u = γ. In contrast, most of the gray points are below
the red line, which means that an angular error η usually
results in an inner product error u < η. We fitted a line for
the gray points and the slopes for PQ and RQ are 0.510 and
0.426, respectively. The Pearson’s correlation coefficients
between norm error and inner product error are 1 for both PQ
and RQ. While the Pearson’s correlation coefficients between
angular error and inner product error are 0.475 and 0.382
for PQ and RQ, respectively. We also plot the influence of
norm error and angular error on Euclidean distance in the
supplementary material 3, which shows that angular error has
larger influence than norm error on Euclidean distance.

In conclusion, the results in this section show that norm
error has more significant influence on inner product than
angular error in most cases. Therefore, to improve the per-
formance of VQ techniques for MIPS, we should reduce
quantization errors in norm. To achieve this goal, we can
modify the formulations of the codebook learning problem
in existing VQ algorithms to consider norm error (e.g., in-
corporating norm error into the cost function or constraints).
However, this methodology has a problem in generality as we
need to modify each VQ algorithm individually. In contrast,
norm-explicit quantization (NEQ) uses the fact that norm is
a scalar summary of the vector and explicitly quantizes it to
reduce error. As a result, NEQ can be naturally combined
with any VQ algorithm by using it to quantize the direction
vector.

4 Norm-Explicit Quantization

Existing VQ techniques try to minimize the quantization
error and do not allow explicit control of norm error and an-
gular error. However, MIPS could benefit from methods that
explicitly reduce the error in norm because accurate norm is
important for MIPS. Therefore, the core idea of NEQ is to
quantize the norm ‖x‖ and the direction vector x

‖x‖ of the
items separately. The norm is encoded explicitly using sepa-
rate codebooks to achieve a small error, while the direction
vector can be quantized using an existing VQ quantization
technique without modification. To be more specific, the M
codebooks in NEQ are divided into two parts. The first M ′

1SIFT1M is sampled from the SIFT100M dataset used in the
experiments in Section 5.

2Researches (Neyshabur and Srebro 2015; Shrivastava and Li
2014; Guo et al. 2016) on MIPS usually use a value of k ranging
from 1 to 50, 20 is the middle of this range.

3See https://arxiv.org/pdf/1911.04654.pdf for the supplementary
material.

codebooks L1,L2, ...,LM ′
are norm codebooks, in which

each codeword lm[k] ∈ R for 1 ≤ m ≤ M ′ and 1 ≤ k ≤ K.
The other M−M ′ codebooks CM ′+1, CM ′+2, .., CM are vec-
tor codebooks for the direction vector. In NEQ, the codebook
based approximation x̃ of x can be expressed as,

x̃ =

⎛
⎝ M ′∑

m=1

lm[imx ]

⎞
⎠ ·

(
M∑

m=M ′+1

cm[imx ]

)
, (3)

in which i1x, i
2
x, ..., i

M
x are the codeword indexes of x in the

codebooks. According to (3), NEQ-based approximate in-
ner product q�x̃ can be calculated using Algorithm 1. Lines
4-6 reconstruct the approximate norm of x and Lines 7-9
compute the inner product between q and the approximate
direction vector of x. Note that the inner product computa-
tion q�cm[imx ] in Line 8 can be replaced by table lookup
when the inner products between q and the codewords are
precomputed.

Algorithm 1 NEQ: Approximate Inner Product Calculation

1: Input: Query q, M codeword indexes i1x, i
2
x, ..., i

M
x of

item x
2: Output: An approximation of q�x
3: l = 0, p = 0;
4: for m from 1 to M ′ do
5: l = l + lm[imx ];
6: end for
7: for m from M ′ + 1 to M do
8: p = p+ q�cm[imx ];
9: end for

10: return l · p;

The remaining problem is how to train the norm and vector
codebooks. A straightforward solution, which trains the norm
codebooks with ‖x‖ and the vector codebooks with x/‖x‖,
does not work. This is because the codebook based approxi-
mation x̄ =

∑M
m=M ′+1 c

m[imx′ ] of the direction vector is not
guaranteed to be unit norm due to the intrinsic norm errors
of vector quantization. Therefore, even if we quantize ‖x‖
accurately with the norm codebooks, x̃ in (3) can still have
large norm error. NEQ solves this problem with the codebook
learning process in Algorithm 2.

Algorithm 2 NEQ: Codebook Learning

1: Input: Dataset X , # codebook M , # norm codebook M ′
2: Output: M ′ norm codebooks, M − M ′ vector code-

books
3: Extract the direction vector x′ = x

‖x‖ ;
4: Train M − M ′ vector codebooks on x′ using a VQ

method;
5: Encode x′ with the vector codebooks, obtain the code-

book based approximation x̄ of x′;
6: Get the relative norm lx of item x as ‖x‖

‖x̄‖ ;
7: Train M ′ norm codebooks to quantize lx;
8: Return the M codebooks;
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Line 4 trains the vector codebooks using an exiting VQ
method, such as PQ or RQ. Instead of quantizing the actual
norm ‖x‖, NEQ quantizes the relative norm lx = ‖x‖/‖x̄‖
in Line 7 of Algorithm 2. This design absorbs the norm error
of VQ into the relative norm lx and ensures that the codebook
based approximation x̃ in (3) has the same norm as x if lx
is quantized accurately. As we will show in the experiments,
NEQ also works for datasets in which items have almost
identical norms thanks to this design. The norm codebooks
are learned in a recursive manner similar to RQ. The norm
is used to train the first codebook L1 with K-means. The
residuals (‖x‖ − l1[i1x]) are used to train L2 and this process
is conducted iteratively. The normalization in Line 3 may look
unnecessary as we can quantize the original item x directly
using the vector codebooks and define the relative norm as
‖x‖/‖x̃‖. However, we observed that this alternative does
not perform as well as Algorithm 2. One possible reason is
that unit vectors may be easier to quantize for VQ techniques.

As a demonstration of the effectiveness of NEQ in reducing
the quantization error in norm, we report some statistics
of the Yahoo!Music dataset. For the original RQ, a norm
error of 1.51 × 10−2 and 6.47 × 10−3 are achieved with 8
and 16 codebooks, respectively. Keeping the total number
of codebooks the same and using only one codebook for
norm, norm explicit quantization based RQ reaches a norm
error of 1.1× 10−3 under both 8 and 16 codebooks. We will
show that the lower norm error of NEQ translates into better
performance for MIPS in the experiments in Section 5.

Setting the number of norm codebooks. Generally, a
good M ′ can be chosen by testing the recall-item perfor-
mance of all M − 1 4 configurations on a set of sample
queries. When the number of codewords in each codebook
is 256 (i.e., K = 256), we found empirically that using one
codebook for norm provides the best performance in most
cases. This is because the norm error is already small with
one norm codebook. Using more codebooks for norm pro-
vides limited reduction in norm error but increases angular
error as the number of angular codebooks is reduced.

Why not storing the norm? As the relative norm lx is a
scalar, one may wonder why not storing its exact value to
completely eliminate norm error. This is because storing lx
with a 4-byte floating point number costs too much space and
VQ algorithms are usually evaluated with a fixed per-item
space budget (especially when used for data compression).
With the usual setting K = 256, using M codebooks results
in a per-item index size of M bytes. If lx is stored exactly, the
direction vector can only use M − 4 codebooks. Empirically,
we found that using 1 norm codebook already makes the
norm error very small, which leaves direction vector M − 1
codebooks and achieves better overall performance.

Complexity analysis. For index building, NEQ learns
M−M ′ vector codebooks and the original VQ method learns
M vector codebooks. Although NEQ needs to conduct nor-
malization twice (Line 3 and Line 6 of Algorithm 2) and learn
the norm codebooks, the complexity of these operations is
generally low compared with learning vector codebooks. For
inner product computation with lookup table, the original VQ

4There should be at least 1 and at most M − 1 norm codebooks.

method needs M lookups and M − 1 additions. NEQ needs
M ′ lookups and M ′ − 1 additions to reconstruct the relative
norm, and M−M ′ lookups and M−M ′−1 additions to add
the inner product. Then one more multiplication is needed
to assemble the final result. Thus, approximate inner product
computation in NEQ costs M lookups and M − 1 additions,
which is exactly the same as the original VQ method. There-
fore, NEQ does not increase the complexity of codebook
learning and approximate inner product computation.

We would like to emphasize that the strength of NEQ lies
in its simplicity and generality. NEQ is simple in that it uses
existing VQ methods to quantize the direction vector without
modifying their formulations of the codebook learning prob-
lem. This makes NEQ easy to implement as off-the-shelf VQ
libraries can be reused. NEQ is also general in that it can be
combined with any VQ methods, including PQ, OPQ, RQ and
AQ. In the supplementary material, we show that NEQ with
two codebooks can adopt the multi-index algorithm (Babenko
and Lempitsky 2012) for candidate generation in MIPS. We
will also show in Section 5 that NEQ boosts the performance
of many VQ methods for MIPS.

5 Experiments

Experiment setting. We used four popular datasets, Netflix,
Yahoo!Music, ImageNet and SIFT100M, whose statistics
are summarized in Table 1. Netflix and Yahoo!Music record
user ratings for items. We obtained item and user embed-
dings from these two datasets using alternating least square
(ALS) (Yun et al. 2013) based matrix factorization. The item
embeddings were used as dataset items, while the user embed-
dings were used as queries. ImageNet and SIFT100M contain
descriptors of images. The four datasets vary significantly in
norm distribution (see details in the supplementary material)
and we deliberately chose them to test NEQ’s robustness to
different norm distributions. ImageNet has a long tail in its
norm distribution, while items in SIFT100M have almost the
same norm. For Netflix and Yahoo!Music, most items have a
norm close to the maximum 5.

Following the standard protocol for evaluating VQ tech-
niques (Babenko and Lempitsky 2014; 2015; Zhang, Du, and
Wang 2014), we used the recall-item curve as the main per-
formance metric and it measures the ability of a VQ method
to preserve the similarity ranking of the items. To obtain
the recall-item curve, all items in a dataset are first sorted
according to the codebook based approximate inner products.
For a query, denote the set of items ranking top T as S ′ and
the set of ground truth top-k MIPS results as S, the recall
is |S ′ ∩ S|/|S|. At each value of T , we report the average
recall of 10,000 randomly selected queries. We do not report
the running time as the VQ methods have almost identical
running time 6 given the same number of codebooks M .

For a VQ method X (e.g., RQ), its NEQ version is denoted
as NE-X (e.g., NE-RQ). The NEQ variants use the same num-

5See https://github.com/xinyandai/product-quantization for all
experiment code and data.

6AQ and RQ have more expensive inner product table compu-
tation than PQ and OPQ. However, this difference has negligible
impact on the running time when the dataset is large.
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Table 1: Dataset statistics

DATASET NETFLIX YAHOO!MUSIC IMAGENET SIFT100M

# ITEMS 17,770 136,736 2,340,373 100,000,000
# DIMENSIONS 300 300 150 128

Figure 3: Item-recall performance of the VQ methods and their NEQ-based variants

ber of codebooks (norm codebooks plus direction codebooks)
as the original VQ methods. Each codebook has K = 256
codewords and only one codebook is used for norm in NEQ.
The default value of k (the number of target top inner product
items) is 20 7. For Neflix, the codebooks were trained using
the entire dataset. For the other datasets, the codebooks were
trained using a sample of size 100,000.

Improvements over existing VQ methods. We report the
performance of the original VQ methods (in dotted lines) and
their NEQ-based variants (in solid lines) in Figure 3. The
number of codebooks is 8. We do not report the performance
of AQ and NE-AQ on SIFT100M as the encoding process of
AQ did not finish in 72 hours. The results show that the NEQ-
based variants consistently outperform their counterparts on
all the four datasets. The performance improvements of NEQ
on PQ and OPQ are much more significant than on AQ and
RQ. Moreover, there is a trend that the performance benefit in-
creases with the dataset cardinality. These two phenomenons
can be explained by the fact that reducing the error in norm
is more helpful when the quantization error is large. With
8 codebooks, the small Netflix dataset is already quantized
accurately, while the SIFT100M dataset is not well quantized.
With the same number of codebooks, PQ and OPQ generally
have larger quantization errors than RQ and AQ and thus the

7The performance of MIPS is usually evaluated by setting k as
1, 10, 20 or 50 and the results are usually consistent under different
configurations of k. Due to space limit, we provide the results under
more configurations of k in the supplementary material.

Figure 4: Different number of codebooks

Figure 5: Different values of k

performance gain of NEQ is more significant.
Next, we test the robustness of NEQ to the parameter con-

figurations, i.e., the number of codebooks M and the value
of k. We report the performance of RQ and NE-RQ on the
SIFT100M dataset in Figure 4 and Figure 5 (the results of
other VQ methods and datasets can be found in the supple-
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Figure 6: Comparison with LSH & graph methods

Figure 7: Quantization error of NE-RQ and RQ

mentary material). Figure 4 shows that NE-RQ outperforms
RQ across different number of codebooks. Figure 5 shows
that NE-RQ consistently outperforms RQ for different values
of k with 8 codebooks and the performance gap is similar
for different values of k. The results in the supplementary
material show that the robustness of NEQ to the parameter
configurations also holds for PQ, OPQ and AQ. In addition,
we examine the robustness of the VQ methods and their NEQ
variants across different runs of the codebook learning algo-
rithm in the supplementary material. The results show that
NEQ usually provides smaller standard deviation in recall
across different runs.

Comparison with other methods LSH are widely used
for similarity search (Li et al. 2018), and Norm-Range
LSH (Yan et al. 2018) and Simple-LSH (Neyshabur and
Srebro 2015) are the state-of-the-art LSH-based algorithms
for MIPS (based on binary hashing). QUIP (Guo et al.
2016) is a vector quantization method specialized for MIPS,
which explicitly minimizes the squared inner product error
((q�x − q�x̃)2) to learn the codebooks. QUIP has several
variants and we used QUIP-cov(x) for fair comparison as
other variants use knowledge about the queries but NEQ
does not. According to the QUIP paper, the performance gap
between other variants and QUIP-cov(x) is small for the Im-
ageNet dataset. For Norm-Range LSH, we partitioned the
dataset into 64 sub-datasets as recommended in (Yan et al.
2018). We report the performance results on the ImageNet
dataset in Figure 6 (left). Simple-LSH and Norm-Range used
64 bit binary code. NE-PQ and QUIP use two codebooks each
containing 256 codewords. This means that the per item index
size of NE-PQ (and QUIP) is 16 bit and only a quarter of that
of the LSH-based methods. The results show that the vector
quantization based methods (NE-PQ and QUIP) outperform
the LSH-based algorithms with smaller per-item index size.
Moreover, NE-PQ significantly outperforms QUIP even if
QUIP uses a more complex codebook learning strategy.

We also compared the recall-time performance of NE-RQ

with the proximity graph-based ip-NSW algorithm (Moro-
zov and Babenko 2018) on the ImageNet dataset in Fig-
ure 6 (right). ip-NSW is shown to achieve the state of the art
recall-time performance in existing MIPS algorithms in (Mo-
rozov and Babenko 2018). NE-RQ with two codebooks was
used for candidate generation (by combining with the multi-
index algorithm (Babenko and Lempitsky 2012)) and the
candidates were verified by calculating the exact inner prod-
uct in this experiment. The results show that NE-RQ achieves
higher recall than ip-NSW given the same query processing
time. As the implementation may affect the running time, we
also plot recall vs. inner product calculation in the supple-
mentary material, which shows that NE-RQ requires fewer
inner product computation at the same recall. However, we
found ip-NSW provides better recall-time performance than
NEQ on the SIFT1M dataset. Although the main design goal
of NEQ is good recall-item performance instead of recall-
time performance, this experiment shows that using NEQ to
generate candidate is beneficial to some datasets.

Insights. A natural question arises after observing the
good performance of NEQ: Does NEQ only reduce the error
in norm? Or it reduces the quantization error as a by-product
of its design? To answer this question, we compared the quan-
tization error (‖x − x̃‖ normalized by the maximum norm
in the dataset) and the norm error of RQ and NE-RQ in Fig-
ure 7. The number of codebooks is 8 and the reported errors
are averaged over all items in the dataset. The results show
that NE-RQ indeed reduces norm error significantly but its
quantization error is slightly larger than RQ on all the four
datasets. This can be explained by the fact that NE-RQ uses
1 codebook to encode the norm and has fewer vector code-
books than RQ. This result shows that a smaller quantization
error does not necessarily result in better performance for
MIPS. Originally designed for Euclidean distance, existing
VQ methods minimize the quantization error. With NEQ, we
have shown that the minimizing quantization error is not a
suitable design principle for inner product due to its unique
properties.

6 Conclusions

In this paper, we questioned whether minimizing the quanti-
zation error is a suitable design principle of VQ techniques
for MIPS. We found that the quantization error in norm have
great influence on inner product and can be significantly re-
duced by explicitly encoding it using separate codebooks.
Based on this observation, we proposed NEQ — a general
paradigm that specializes existing VQ techniques for MIPS.
NEQ is simple as it does not modify the codebook learning
process of existing VQ methods. NEQ is also general as it
can be easily combined with existing VQ methods. Experi-
mental results show that NEQ provides good performance
consistently on various datasets and parameter configurations.
Our work shows that inner product requires different design
principles from Euclidean distance for VQ techniques and
we hope to inspire more researches in this direction.
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