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Abstract

To better pre-process unlabeled data, most existing feature
selection methods remove redundant and noisy information
by exploring some intrinsic structures embedded in samples.
However, these unsupervised studies focus too much on the
relations among samples, totally neglecting the feature-level
geometric information. This paper proposes an unsupervised
triplet-induced graph to explore a new type of potential struc-
ture at feature level, and incorporates it into simultaneous
feature selection and clustering. In the feature selection part,
we design an ordinal consensus preserving term based on a
triplet-induced graph. This term enforces the projection vec-
tors to preserve the relative proximity of original features,
which contributes to selecting more relevant features. In the
clustering part, Self-Paced Learning (SPL) is introduced to
gradually learn from ‘easy’ to ‘complex’ samples. SPL alle-
viates the dilemma of falling into the bad local minima in-
curred by noise and outliers. Specifically, we propose a com-
pelling regularizer for SPL to obtain a robust loss. Finally,
an alternating minimization algorithm is developed to effi-
ciently optimize the proposed model. Extensive experiments
on different benchmark datasets consistently demonstrate the
superiority of our proposed method.

1 Introduction

Real-world data is often redundant or even noisy, which
may lead to heavy computational complexity and poor per-
formance (John, Kohavi, and Pfleger 1994; Liu and Mo-
toda 2007). Then, feature selection is proposed to help re-
move unimportant information (Yang et al. 2011; Witten
and Tibshirani 2012), which is beneficial for various appli-
cations (Law, Figueiredo, and Jain 2004; Nie et al. 2010;
Wang et al. 2016; Cheng, Li, and Liu 2017).

Feature selection can be roughly grouped into three ma-
jor categories in terms of label availability, i.e., supervised,
semi-supervised, and unsupervised (Han and Shen 2016).
Supervised feature selection (Jian et al. 2016; Fan et al.
2017a) is utilized to select discriminative features because
the class labels of data containing the essential discrimina-
tion are provided. However, the acquisition of class label
information is very laborious and time-consuming, which

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

makes feature selection based applications more challeng-
ing. Semi-supervised feature selection (Xu et al. 2010;
Chang et al. 2014) is desired to tackle the predicament of
rare labelled samples and abundant unlabelled data. Unsu-
pervised feature selection aims to filter out the unimpor-
tant features of unlabeled data. Similar to the class labels
in supervised scenarios, cluster structure can be discov-
ered in many ways (Du and Shen 2015; Wei et al. 2017;
Du et al. 2018; Guo and Zhu 2018; Zheng et al. 2018).

For unsupervised feature selection, filters (Dash et al.
2002), wrappers (Roth and Lange 2004), and embedding
(Hou et al. 2014) are three common branches. Recent litera-
tures (Yang et al. 2011; Li et al. 2012; Qian and Zhai 2013;
Wang, Tang, and Liu 2015; Han and Kim 2015; Nie, Zhu,
and Li 2016; Zhu et al. 2017; Li et al. 2018) have witnessed
fast development of the third branch “embedding”, whose
goal is to combine feature selection and pseudo label learn-
ing into a unified problem. In these works, a commonly-used
mechanism is to leverage the manifold structure and sparse
learning. Most of them benefit from various geometric in-
formation of data. However, they focus too much on the
sample-level structures, i.e., relations among samples, fail-
ing in fully exploiting the feature-level geometric informa-
tion . The major reasons and analyses are two-folds:

Above all, unsupervised feature selection aims to select
discriminative features meanwhile remove redundant fea-
tures. These two points are NOT the same. If two features
are similar, they usually encourage similar contributions for
clustering. If two similar features are both relevant to current
tasks, they should be simultaneously selected into the de-
sired feature subset. However, previous works consider this
case as feature redundancy, and try to repeal it. We think
that feature-level relations can help select more relevant fea-
tures. Hence, our work prefers to select more discriminative
features rather than remove similar features.

Furthermore, in the “embedding” branch of unsuper-
vised feature selection, various proposed graph-based mod-
els are utilized to uncover similarities (neighborhood rela-
tionships), whereas few of them address the relative proxim-
ities (neighborhood rankings). Besides feature-level similar-
ities, relative proximities among features are also important
in unsupervised scenarios. For a feature, this type of ordinal
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information emphasizes the comparative information among
other similar dimensions, i.e., which one is more similar to
it. Hence, exploiting this potential structure will help select
more relevant features to current clustering tasks.

In order to address the above issues, this paper proposes a
joint learning framework of feature selection and clustering.
To the best of our knowledge, it is the first attempt for the
“embedding” branch of unsupervised feature selection to un-
cover feature-level ordinal information. We design a triplet-
induced graph considering the relative proximity of original
features, and incorporate it into the overall self-paced ob-
jective function. An alternating minimization algorithm is
developed to efficiently optimize the resulting robust model.
Experimental analysis on benchmark datasets demonstrates
the superiority of our approach.

In summary, our main contributions are as follows.
1) A novel triplet-induced graph is proposed to capture

the feature-level relative proximity of data. Based on this
pragmatic graph, we design an ordinal consensus preserving
function for unsupervised feature selection.

2) Self-Paced Learning (SPL) is incorporated into clus-
tering to decrease the risk of involving in bad local minima.
Considering the existence of noise and outliers, we propose
a compelling regularizer for SPL to obtain a robust loss.

3) An efficient algorithm is developed for the proposed
model of joint feature selection and clustering. Extensive ex-
periments well validate the effectiveness of our work.

2 The Proposed Method

2.1 Problem Definition

Let X ∈ R
d1×n denote the original data matrix with n

samples and d1 features. In the “embedding” branch of un-
supervised feature selection, the objective function is gen-
erally formulated based on the regularized regression, i.e.,
minW �

(
WTX,H

)
+ β‖W‖2,1, where � (·, ·) is the loss

function, β is a regularization parameter, and ‖W‖2,1 stands

for the l2,1 norm (
∑

i

√∑
j W

2
ij).

The typical choices of � (·, ·) include logistic regres-
sion, correntropy, and least square. The target matrix H =
[h1,h2, · · · ,hn] ∈ R

d2×n is usually the corresponding la-
bel matrix in a supervised scenario. The projection matrix
W ∈ R

d1×d2 (d1 > d2) is named feature selection matrix.
The l2,1 norm guarantees its row-wise sparseness. Wi· will
shrink to 0 when Xi· is less correlated to the labels.

However, in unsupervised cases, the label information is
directly unavailable, which makes it challenging for feature
selection. In the past decade, researchers determined H by
learning pseudo labels through linear regression (Yang et al.
2011), spectral clustering (Li et al. 2012), K-means cluster-
ing (Qian and Zhai 2013), consensus clustering (Liu, Shao,
and Fu 2016), and so on. Besides, some works (Han and
Kim 2015; Zheng et al. 2019) utilized bi-orthogonal semi
Nonnegative Matrix Factorization (NMF) to decompose H
into two matrices: the latent orthogonal bases U ∈ R

d2×c

and the pseudo-label indicators V ∈ R
c×n.

min
W,U,V

�
(
WTX,UV

)
+ β‖W‖2,1

s.t. UTU = I, VVT = I, V ≥ 0,
(1)

where c is the number of latent clusters, all elements of V
are non-negative. Hereafter, I denotes the identity matrix
with a compatible size. In this paper, we decompose H as
well, but we have some considerations:

1) For the constraint on W: The constraint WTW = I
can not only suppress the feature similarity of arbitrary two
selected dimensions, but also avoid arbitrary scaling and the
trivial solution of all zeros. For the effectiveness of ‖W‖2,1,
Theorem 1 guarantees the ideal efficacy of feature selection.
Theorem 1. (Wang, Nie, and Huang 2014) Given W ∈
R

d1×d2 with d1 > d2, the problem minWTW=I ‖W‖2,1
is equivalent to minWTW=I ‖W‖2,0.

2) For the constraint on U: From the perspective of
signal processing, W stands for analytic projection that is
compact and precise. Meanwhile, U represents synthetic de-
composition highly relied on residuals. As stated in (Qian
and Zhai 2013), when we decompose H as H � UV, the
adverse effect induced by noise and outliers is often accumu-
lated in U but seldom hurts V severely. Therefore, we put
aside the orthogonal constraint on U for simplicity. In terms
of computational complexity, the removal of UTU = I
makes the model more efficient than (Han and Kim 2015;
Zheng et al. 2019) in which Singular Value Decomposition
(SVD) is used twice for optimization at each iteration.

3) For the constraints on V: It is obvious that the con-
straints VVT = I, V ≥ 0 can ensure that each V·i has
only one non-zero element. According to Theorem 2, we
can regard V as a weighted cluster indicator matrix in K-
means clustering. Then, we can explicitly utilize the con-
straints V·i ∈ {0, 1}c, ‖V·i‖0 = 1, ∀i instead of VVT =
I, V ≥ 0. In such a way, K-means clustering is naturally
performed on the selected feature groups WTX.
Theorem 2. (Ding, He, and Simon 2005) The problem

min
U,V

‖Y −UV‖2F
s.t. VVT = I, V ≥ 0

(2)

is equivalent to relaxed K-means clustering.
Based on the above three considerations, we formulate a

basic model of joint feature selection and clustering as

min
W,U,V

�
(
WTX,UV

)
+ β‖W‖2,1

s.t. WTW = I, V·i ∈ {0, 1}c, ‖V·i‖0 = 1, ∀i.
(3)

2.2 Exploiting Feature-Level Ordinal Consensus

In this subsection, we propose a triplet-induced graph to ex-
ploit the feature-level relative proximity of data. Based on
this pragmatic graph, we further design an ordinal consen-
sus preserving term Θ(W) for the basic model (3).
Observation 1. The features and projection vectors share
one-to-one correspondences.
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The projected data WTX can be calculated as WT
1·X1·+

· · · + WT
i·Xi· + · · · + WT

j·Xj· + · · · + WT
d1·Xd1·, where

Xi· ∈ R
1×n(i = 1, · · · , d1) is the ith feature of all n sam-

ples. Wi· ∈ R
1×d2(i = 1, · · · , d1) denotes the correspond-

ing projection vector of Xi·. Therefore, we can observe that
each Xi· and Wi· do share a one-to-one correspondence.

Readers can regard this one-to-one correspondence as an
implicit function. If the projection vector Wi· shrinks to 0,
the corresponding feature Xi· will be discarded. We can uti-
lize the projection vectors to measure whether the features
are related to current tasks. Similar features encourage their
corresponding projection vectors to be similar. Meanwhile,
if two similar features are relevant to clustering, they should
be simultaneously selected. However, previous studies con-
sider this case as feature redundancy, and try to repeal it.
We prefer to select more discriminative features rather than
remove similar features. Uncovering feature-level relation-
ships contributes to selecting more relevant features.

In the “embedding” branch of unsupervised feature se-
lection, various graphs were proposed to uncover similari-
ties (neighborhood relationships), whereas few of them ad-
dress the relative proximities (neighborhood rankings). Be-
sides feature-level similarities, relative proximities also play
a vital role in unsupervised tasks. To fully exploit this type
of ordinal information embedded in the features, we design
an ordinal consensus preserving term Θ(W) for Eq.(3). A
concrete definition is as follows.
Definition 1. Given a triplet of features {Xi·,Xu·,Xv·}
comprised of Xi· and its two neighbors Xu· and Xv·,
their corresponding projection vectors form a triplet
{Wi·,Wu·,Wv·}. Denote the function dis (·, ·) as a dis-
tance metric. Then, the feature selection process is called
ordinal consensus preserving when the following relative
proximities holds: if dis (Xi·,Xu·) ≤ dis (Xi·,Xv·), then
dis (Wi·,Wu·) ≤ dis (Wi·,Wv·).

According to the classic Rearrangement Inequality1, pre-
serving ordinal consensus for feature selection means to de-
termine appropriate {Wi·,Wu·,Wv·} that can yield the
maximum product of dis (Xi·,Xu·)− dis (Xi·,Xv·) and
dis (Wi·,Wu·)− dis (Wi·,Wv·).

Therefore, determining an appropriate projection matrix
W is identical to optimize the following ordinal consensus
preserving objective function over a collection of triplets.

max
W

d1∑
i=1

∑
u∈Ni

∑
v∈Ni

Di
uv [dis (Wi·,Wu·)− dis (Wi·,Wv·)] ,

(4)
where Di is an antisymmetric matrix whose (u, v)

th ele-
ment is dis (Xi·,Xu·)− dis (Xi·,Xv·), and Ni is a set of
indexes for the k nearest neighbors of Xi·.

We define M ∈ R
d1×d1 as a weighting matrix with

Mij �
{ ∑

u∈Ni

Di
uj , j ∈ Ni

0 , j /∈ Ni

. (5)

According to the proof of Proposition 1 in (Guo et al. 2016),
we can easily obtain that the objective function (4) is equiv-
alent to minW

∑d1

i=1

∑d1

j=1 Mijdis (Wi·,Wj·).

1http://en.wikipedia.org/wiki/Rearrangement inequality.

Therefore, the aforementioned ordinal consensus preserv-
ing term Θ(W) =

∑d1

i=1

∑d1

j=1 Mijdis (Wi·,Wj·). De-
fined over a set of triplets, Eq.(5) actually defines a novel
graph to simultaneously reflect neighborhood relationship as
well as ordinal information.

2.3 Self-Paced Joint Learning Model

Non-convex models are often stuck in bad local minima,
especially when there exist outliers, heavy noise and miss-
ing data. A frequently-used way to alleviate this difficulty is
to run the algorithm multiple times with different initializa-
tions and then pick the best solution among them (Zhao et al.
2015). Nevertheless, this strategy is time-consuming and in-
convenient to implement in unsupervised cases, since there
is no explicit criterion for determining a proper solution.

Another heuristic way to handle the dilemma of bad local
minima is Self-Paced Learning (SPL) (Kumar, Packer, and
Koller 2010). In the past decade, SPL has attracted much
attention and been proven to be a powerful technique. It is a
learning paradigm mimicking the learning process of human
and animal. The samples are not learned randomly but in a
significant order which illustrates from ‘easy’ to gradually
more ‘complex’ ones (Jiang et al. 2015).

A general SPL model is comprised of a weighted loss
term on all samples and a self-paced regularizer term im-
posed on the weights of samples, i.e.,

min
w,r

∑
i

ri�i (xi,w) + f (λ, r)

s.t. ri ∈ [0, 1] , ∀i, (6)

where r = [r1, · · · , ri, · · · ]T is a vector and ri is a latent
weight for the ith sample. �i (xi,w) stands for the loss func-
tion for the ith sample. w is a model parameter. f (λ, r) is
the self-paced regularizer. λ is a scalar controlling the learn-
ing rate. By increasing the penalty on the regularizer step
by step during optimization, more samples are automatically
chosen for training in a pure self-paced way.

In this paper, we adopt SPL to help the clustering part of
our model circumvent the bad local minima. We further de-
velop a self-paced joint learning framework of feature selec-
tion and clustering. Finally, the overall objective function
of our proposed method is formulated as follow. For all i,

min
W,U,V,ri∈[0,1]

J =

⎧⎪⎪⎨
⎪⎪⎩

n∑
i=1

ri�i + f (λ, r) + β‖W‖2,1

+α
2

d1∑
i=1

d1∑
j=1

Mijdis (Wi·,Wj·)

⎫⎪⎪⎬
⎪⎪⎭

s.t. WTW = I, V·i ∈ {0, 1}c, ‖V·i‖0 = 1,

(7)
where �i stands for �

(
WTX·i,UV·i

)
, β and α are two reg-

ularization parameters. On the one hand, Eq.(7) is compati-
ble with a group of regularizers and hard/soft weights, which
effectively contribute to bad local minima eradication. On
the other hand, it can be incorporated with various graph-
based learning methods (Yan et al. 2007).

3 Optimization

3.1 Optimization Procedure

For the convenience of calculation, we adopt the common
least square as a metric to establish each loss function � (·, ·)
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and pairwise distance function dis (·, ·). The overall model
(7) can be optimized by alternative search strategy.

1) U-step: To update U with other variables fixed,
we solve minU ||

(
WTX−UV

)
diag

(√
r
)||2F . The func-

tion
√
r denotes the element-wise square root of r, and

diag
(√

r
)

returns a diagonal matrix with the elements of
vector

√
r on the main diagonal. We set the first-order par-

tial derivative w.r.t. U to zero and obtain

U = WTXdiag (r)VT
[
Vdiag (r)VT

]−1
. (8)

2) V-step: To update V when other variables are fixed,
we decouple the problem and assign the nearest cluster cen-
troid for each sample. We can adopt an exhaustive search to
solve each sub-problem

min
V·i

∥∥WTxi −UV·i
∥∥2
F

s.t. V·i ∈ {0, 1}c, ‖V·i‖0 = 1.
(9)

3) W-step: The l2,1 norm of W equals
∑d1

i=1

√
||Wi·||22.

Lemma 1. (He et al. 2014) For a fixed u, there exists a con-
jugate function ψ (·), such that

√
u2 + ε = infp∈R{ 12pu2+

ψ (p)}, where p is determined by δ (u) = 1/
√
u2 + ε.

According to Lemma 1, we solve W by alternately mini-
mizing the following augmented function

min
P,W:WTW=I

⎧⎪⎪⎨
⎪⎪⎩

∥∥(WTX−UV
)
diag

(√
r
)∥∥2

F

+β
d1∑
i=1

{
Pii

2 ‖Wi·‖22 + ψi (Pii)
}

+αTr
(
WTLW

)

⎫⎪⎪⎬
⎪⎪⎭ ,

(10)
where L

Δ
= G − M+MT

2 is the Laplacian matrix and
G is a diagonal matrix whose (i, i)

th element equals∑n
j=1

Mij+Mji

2 . P is a d1 × d1 diagonal matrix storing the

auxiliary variables. {ψi}d1

i=1 are conjugate functions.
Based on Lemma 1, Eq.(10) is alternately minimized as2

Pt+1
ii = 1/

√
‖Wt

i·‖22 +ε , (11)

Wt+1 = argmin
W:WTW=I

Tr
(
WTQW

)
. (12)

where tmeans the tth iteration. Q = αL+Xdiag (r)XT−
Xdiag (r)VT

[
Vdiag (r)VT

]−1
Vdiag (r)XT + β

2P
t+1.

The solution of Eq.(12) is computed by performing eigen de-
composition of Q. The optimal W is made up of d2 eigen-
vectors corresponding to the d2 smallest eigenvalues.

4) r-step: For f (λ, r), (Xu, Tao, and Xu 2015) designed∑n
i=1

(
1 + e−λ − ri

)
ln
(
1 + e−λ − ri

)
+ ri ln ri − λri to

obtain a soft weighting manner. When λ and other variables
are fixed in each iteration, ri is calculated as ri = 1+e−λ

1+e�i−λ .
Considering the existence of noise and outliers, we pro-

pose a new regularizer to obtain a robust loss: f (λ, r, z) =
n∑

i=1

zi
(
1 + e−λ − ri

)
ln
(
1 + e−λ − ri

)
+ ziri ln ri − λri,

2ε = 10−6 when the denominator is zero, and 0 otherwise.

Algorithm 1: The algorithm to solve Eq.(7)

Input: Data matrix X ∈ R
d1×n; number of nearest

neighbors k, latent clusters c, and projected
dimension d2; regularization parameters β and
α.

Output: m selected features.
1 Find k nearest neighbors for each feature Xi·. Compute

M via Eq.(5) and its Laplacian matrix L;
2 Initialize W(0) with d2 columns randomly selected

from a d1 × d1 identity matrix. Initialize U(0) and
V(0) by K-means clustering on W(0)X, r(0) = 1n,
t = 0, μ = 1.1, and λ = 10−6;

3 repeat
4 t← t+ 1, λ← λμ;
5 Update U(t) via Eq.(8);
6 Update V(t) by exhaustive search;
7 Update P(t) via Eq.(11);
8 Update W(t) by eigen decomposition;
9 Update r(t) via ri = 1+e−λ

1+e
�i−λ
zi

for each i;

10 until convergence;
11 Sort all features according to ‖Wi·‖2 (i = 1, · · · , d1)

in descending order and select the top-m ranked ones.

where z is a vector storing n independent Bernoulli random
variables {zi}ni=1 with the probability s of being 1. Then,
the optimal r has a closed-form solution ri = 1+e−λ

1+e
�i−λ
zi

.

The robust effect can be demonstrated in each ri’s closed-
form solution3: with the probability 1 − s, ri approaches 0;
with the probability s, ri approaches the solution of the plain
regularizer in (Xu, Tao, and Xu 2015). Our proposed regular-
izer helps improve the compatibility for noise and outliers.

3.2 Algorithmic Analysis

Variables U, V, P, W, and r are alternately optimized
for several iterations in Algorithm 1. Since the augmented
function Ĵ of Eq.(7) is bounded below and minimized in
each iteration, the sequences generated by Algorithm 1 will
be converging, i.e., Ĵ (

Ut+1,Vt+1,Pt+1,Wt+1, rt+1
) ≤

Ĵ (Ut,Vt,Pt,Wt, rt). Concrete analysis for each variable
can be yielded by referring to: unsupervised feature selec-
tion with K-means clustering/exhaustive search (Wang et al.
2015), half-quadratic theory for l2,1-norm (He et al. 2014),
eigen decomposition with an l2,1-norm regularizer (Yang et
al. 2011), and self-paced learning (Jiang et al. 2015).

Generally, c 
 min (d1, n). V is sparse, i.e., each col-
umn V·i has only one non-zero element. The computational
cost for U is O (ncd2), which is the same as V. The com-
putational cost for P is O (d1d2), which is highly related to
the l2,1 norm of W ∈ R

d1×d2 . The computational cost for
W is O(d31), which involves the eigen decomposition. The

3The experimental results are insensitive to s ∈ [0.7, 0.9] since
there are not so many outliers or noise in our datasets.
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Table 1: Description of Benchmark Datasets.

Dataset # of
Samples

# of
Features

# of
Classes Type

LUNG 203 3312 5 cancer
COIL20 1440 1024 20 object
Isolet1 1560 617 26 spoken letter
USPS 9298 256 10 written digit
AT&T 400 644 40 human face
UMIST 575 644 20 human face

computational cost for r isO (nd2). Therefore, the total time
complexity of our algorithm isO(d31) for each iteration. The
overall time cost tends to be small since our algorithm con-
verges in a few iterations in the experiments.

Moreover, we can list the time complexities of our com-
petitors: � MCFS (Cai, Zhang, and He 2010): O(d1n2 +
cd32 + cnd22 + d1log d1). � UDFS (Yang et al. 2011):
O(d31). � NDFS (Li et al. 2012): O(cn + d31). � RUFS
(Qian and Zhai 2013): O(cn2 + d31). � SOCFS (Han and
Kim 2015): O(c2n+ n3). Hence, our proposed method has
an acceptable time complexity.

4 Experiments

4.1 Experimental Setup

Datasets. We utilize six datasets: LUNG (Bhattacharjee et
al. 2001), COIL20 (Nene et al. 1996), Isolet1 (Fanty and
Cole 1990), USPS (Hull 1994), AT&T (Samaria and Harter
1994), and UMIST4. Detailed information is in Table 1.

Comparing algorithms. Our method is compared to the
following unsupervised feature selection algorithms:

� All Features: All original features are used as baseline.
� Laplacian Score (He, Cai, and Niyogi 2005): Features

corresponding to the largest Laplacian scores are selected to
preserve the local manifold structure well.

� MCFS (Cai, Zhang, and He 2010): Features are se-
lected by sparse regression and spectral analysis.

� UDFS (Yang et al. 2011): Features are selected by joint
l2,1-norm minimization and discriminative analysis.

� NDFS (Li et al. 2012): Features are selected by joint
l2,1-norm regression and nonnegative spectral analysis.

� RUFS (Qian and Zhai 2013): Features are selected by
joint l2,1-norm regression and NMF with local learning.

� SOCFS (Han and Kim 2015): Features are selected by
bi-orthogonal semi-NMF.

We also evaluate UDFS, NDFS, RUFS, and SOCFS with
feature-level graph regularizations. Note that (Zheng et al.
2019) is like a method combining SOCFS and doublet-
induced graph. Our proposed framework (7) has two vari-
ants: � α = 0; � doublet-induced (similarity) graph. We
also evaluate them on benchmark datasets.

Settings. Some parameters need to be pre-determined.
Consistent with (Han and Kim 2015), d2 is set as the number
of latent clusters c. The number of neighboring parameter k
is set to 5 for all related methods on all datasets to specify
the size of neighborhood. Due to dimension limitation, the

4http://www.sheffield.ac.uk/eee/research/iel/research/face

Figure 1: NMI of different methods with different selected
feature numbers over LUNG dataset.

(a) α = 1 (b) β = 100

Figure 2: NMI over USPS dataset with different β, α, and
selected feature numbers.

number of selected features is set as {50, 80, · · · , 200} for
the USPS dataset. For other datasets, we set the numbers of
selected features as {50, 100, · · · , 300}. For NDFS, we fix
γ = 108 to guarantee the orthogonality. For similarity graph,
we employ Gaussian kernel with σ = 1 to calculate the
similarity Mij . Other parameters may be different for each
method on these datasets. We report the best results from the
optimal parameters for all algorithms. All the results in the
tables and figures are produced by their published works.
Our experiments adopt K-means algorithm whose perfor-
mance depends on initialization. Following (Cai, Zhang, and
He 2010), we repeat all experiments 20 times with random
initialization. Normalized Mutual Information (NMI) (Cai,
Zhang, and He 2010) is employed to measure the perfor-
mance in clustering. The larger NMI is, the better perfor-
mance is.

4.2 Clustering with Selected Features

The comparison results are reported in Table 2. The number
in the parentheses denotes the number of selected features
when the performance is achieved. Table 2 significantly
demonstrates the superiority of our approach on all datasets.
We have three additional observations based on compar-
ison in Table 2. First of all, simultaneous feature selec-
tion and clustering achieves competitive results than select-
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Table 2: Clustering results (NMI%±STD). The best results are in boldface.

LUNG COIL20 Isolet1 USPS AT&T UMIST

All Features 51.7±5.4 76.3±1.8 75.9±1.6 60.9±0.8 80.5±1.8 42.1±2.3
Laplacian Score 42.9±5.0 (300) 71.8±2.0 (300) 73.1±1.5 (300) 59.5±2.1 (200) 80.4±1.8 (300) 45.1±3.4 (200)
MCFS 45.6±4.5 (300) 74.9±2.2 (150) 74.4±1.9 (200) 61.2±1.8 (200) 80.2±1.9 (200) 45.1±3.2 (150)
UDFS 49.6±5.1 (300) 74.7±1.6 (300) 73.6±1.6 (300) 56.8±1.4 (200) 80.6±1.8 (150) 44.9±2.7 (300)
UDFS + doublet 49.9±5.0 (300) 75.0±1.8 (300) 73.9±1.9 (250) 57.0±1.5 (200) 81.2±1.9 (200) 45.1±2.9 (250)
UDFS + triplet 51.7±5.1 (250) 75.4±1.7 (250) 74.4±1.7 (250) 57.5±1.5 (170) 82.5±1.8 (150) 45.6±2.7 (300)
NDFS 48.3±5.2 (250) 76.0±1.6 (300) 78.4±1.8 (250) 60.7±1.3 (140) 80.3±1.8 (300) 47.8±3.1 (150)
NDFS + doublet 48.8±5.0 (300) 76.2±1.7 (250) 78.8±1.8 (300) 62.7±1.5 (170) 80.9±2.0 (300) 48.0±2.9 (150)
NDFS + triplet 49.9±5.0 (250) 76.9±1.9 (250) 79.1±1.7 (250) 63.5±1.3 (140) 82.2±1.9 (300) 48.5±2.8 (200)
RUFS 49.1±5.1 (250) 77.0±2.2 (150) 78.9±1.1 (300) 61.5±1.4 (170) 80.9±1.7 (300) 46.4±3.0 (150)
RUFS + doublet 49.7±5.2 (250) 77.3±2.4 (200) 79.2±1.3 (250) 61.9±1.7 (200) 81.1±1.7 (300) 46.9±3.1 (200)
RUFS + triplet 51.0±5.0 (250) 77.8±2.1 (150) 79.7±1.2 (250) 62.5±1.6 (170) 82.3±1.7 (300) 47.2±3.0 (200)
SOCFS 55.7±6.2 (250) 74.8±2.3 (300) 78.3±1.9 (300) 61.6±1.4 (110) 81.1±1.6 (100) 49.4±3.2 (50)
SOCFS + doublet 55.9±6.0 (300) 75.0±2.2 (250) 79.2±2.0 (300) 61.9±1.1 (110) 81.4±1.3 (200) 50.0±3.0 (100)
SOCFS + triplet 56.6±5.9 (250) 75.3±2.1 (250) 80.0±2.0 (250) 62.2±1.0 (110) 82.3±1.2 (100) 50.3±3.0 (100)
Ours (α = 0) 52.3±6.3 (300) 74.7±2.6 (250) 77.3±2.1 (250) 62.1±1.7 (200) 79.8±1.9 (150) 48.3±3.5 (50)
Ours (doublet) 56.8±6.1 (250) 77.5±2.3 (250) 78.9±2.0 (300) 62.9±1.5 (200) 83.6±1.6 (200) 51.5±3.3 (100)
Ours (triplet) 60.2±5.8 (250) 80.1±2.2 (200) 82.2±1.6 (200) 64.5±1.0 (200) 86.2±1.6 (200) 52.6±3.1 (100)

Figure 3: Convergence curves over COIL20 dataset.

ing features one by one or using two-step strategies. Then,
uncovering feature-level geometric information of data im-
proves the performance of state-of-the-art methods. Last but
not least, triplet-induced graph outperforms doublet-induced
graph for unsupervised feature selection.

Figure 1 contains the clustering results of NMI under each
selected feature number setting from various unsupervised
feature selection methods over the LUNG dataset. The con-
crete explanation and analysis is as follows. Firstly, our
method learns the feature selection matrix and the pseudo-
labels simultaneously, which can select discriminative fea-
tures in unsupervised cases. Secondly, our method substi-
tutes the orthogonal constraint on latent cluster centers by
directly projecting data into an orthogonal subspace. Thus,
orthogonal basis learning and feature selection are naturally
combined together. Thirdly, our method enforces the projec-
tion vectors to preserve feature-level ordinal information of
original data, which contributes to selecting more relevant
features. Our work is the continuation and distillation of the
previous structure-based feature selection methods.

4.3 Parameter Sensitivity and Convergence Study

We find that the numbers of hyper-parameters for MCFS,
UDFS, NDFS, RUFS, and SOCFS are 4, 4, 6, 5, and 5, re-
spectively. However, not all of them are major parameters
to be fine-tuned. Hence, these papers do not list all hyper-
parameters in their algorithms. Parameters for minor cases,
such as determining convergence tolerance and avoiding sin-
gularity or zero-denominator, can be set to small values, e.g.,
10−7. The number of selected features m should be deter-
mined by users. In our experiments, all methods can have
the same range of m for fairness, e.g., {50, 80, · · · , 200}
for USPS dataset and {50, 100, · · · , 300} for other datasets.
The number of latent clusters c is given prior, which is com-
mon in existing works. Consistent with the settings in RUFS
and SOCFS, the dimension of projected space d2 is set as
the number of latent clusters c. The number of neighboring
parameter k is set to 5 for all used datasets to specify the size
of neighborhood. This setting is also consistent to previous
works, e.g., MCFS, NDFS, and RUFS. The remaining pa-
rameters are major parameters that should be fine-tuned for
each method. If there is no specific constraint, all methods
will tune them in a range of

{
10−6, 10−4, · · · , 106}.

Then, we study the sensitivity of parameters for our pro-
posed method. As aforementioned, we follow SOCFS (Han
and Kim 2015) to set the dimension of projected space d2 as
the number of latent clusters c, meanwhile, k is set to 5 for
all methods over all datasets for fair comparison. Parameter
μ ∈ [1.1, 1.5] is a step-size to monotone increase λ from an
initial value 10−6. We just follow previous work (Fan et al.
2017b) to set μ and initialize λ. They are common parame-
ters in self-paced learning, which do not need to be tuned.

Hence, there are two major parameters to be fine-tuned in
our algorithm, i.e., β and α. Consistent with previous works
UDFS, NDFS, RUFS, and SOCFS, we tune them by grid-
search strategy in the range of

{
10−6, 10−4, · · · , 106}. We
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Figure 4: Tendency of NMI over COIL20 dataset.

report the NMI results of USPS dataset and similar trends
can be observed on other datasets as well. The experiment
results are shown in Figure 2. We can see that our method is
not sensitive to β and α with relatively wide ranges.

We also find that our proposed algorithm converges
rapidly. It converges in less than 40 iterations in most of our
experiments. Without loss of generality, we report the con-
vergence curves over COIL20 dataset in Figure 3. To better
understand the behavior of Self-Paced Learning (SPL), we
plot the tendency curves of NMI for our model (7) in Figure
4. The clustering performance improves rapidly in the first
few iterations because more and more ‘easy’ samples are
selected in these phases. As the iteration number increases,
more and more samples are considered for optimizing. Due
to some ‘complex’ samples or outliers, the improvements
gradually become steady and inconspicuous.

5 Related Work

Recent years have witnessed many efforts devoted to the
“embedding” branch of unsupervised feature selection. Due
to 8-page limitation, we only choose some methods that are
closely related to our proposed approach. These investiga-
tions have emerged to leverage the manifold structure and
sparse learning mechanism.

Cai et al. (2010) proposed an unsupervised feature selec-
tion method to preserve the multi-cluster structure of data.
In (Yang et al. 2011), the local discriminative score was in-
troduced to reflect structure information with an l2,1 regu-
larizer. In (Li et al. 2012), the local discriminative informa-
tion, manifold structures, and features’ correlations were si-
multaneously exploited. Qian and Zhai (2013) jointly per-
formed robust label learning and robust feature learning.
Wang et al. (2015) directly embedded feature selection into
clustering via sparse learning without projection. Han and
Kim (2015) conducted simultaneous orthogonal basis clus-
tering and feature selection by estimating the latent clus-
ter centers for the projected data. In (Du and Shen 2015;
Nie, Zhu, and Li 2016), the structure of selected features
was determined by the adaptively learned similarity matrix.
Liu et al. (2016) employed consensus clustering for pseudo-
labeling and feature selection. Guo et al. (2017) defined a
new type of graph to preserve the ordinal locality of sam-
ples for unsupervised feature selection. In (Zhu et al. 2017),
a hypergraph was adaptively learned to better uncover the
structure of unlabeled multimedia data when selecting fea-
tures. Li et al. (2018) exploited the shared features by all
instances and instance-specific features tailored to each in-

stance. However, most of these previous works focus too
much on various sample-level structures, totally neglecting
the feature-level geometric information.

6 Conclusion

In this paper, we proposed a novel self-paced unsupervised
feature selection method to facilitate and simplify cluster-
ing tasks. A triplet-induced graph has been proposed to en-
force the projection vectors to preserve the feature-level or-
dinal consensus of original data, which contributes to select-
ing more relevant features. Meanwhile, we have designed
a compelling self-paced regularizer, resulting in a robust
framework of simultaneous feature selection and clustering.
Based on alternative search strategy, an iterative minimiza-
tion algorithm has been developed for efficient optimization.
Extensive experiments demonstrate the effectiveness of un-
covering feature-level geometric structures for unsupervised
feature selection. Comparison results also validate that our
method outperforms the state-of-the-art alternatives.
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