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Abstract

Most existing studies on next location recommendation pro-
pose to model the sequential regularity of check-in se-
quences, but suffer from the severe data sparsity issue where
most locations have fewer than five following locations. To
this end, we propose an Attentional Recurrent Neural Net-
work (ARNN) to jointly model both the sequential regularity
and transition regularities of similar locations (neighbors). In
particular, we first design a meta-path based random walk
over a novel knowledge graph to discover location neigh-
bors based on heterogeneous factors. A recurrent neural net-
work is then adopted to model the sequential regularity by
capturing various contexts that govern user mobility. Mean-
while, the transition regularities of the discovered neighbors
are integrated via the attention mechanism, which seamlessly
cooperates with the sequential regularity as a unified recur-
rent framework. Experimental results on multiple real-world
datasets demonstrate that ARNN outperforms state-of-the-art
methods.

Introduction

With the advancement of mobile technologies, location-
based social network (LBSN) services (e.g., Foursquare,
Facebook place and Yelp) have become increasingly more
popular in recent years. Next location recommendation in
LBSNs is an important function as it enables users to ex-
plore more interesting locations and better plan their trips
(Cheng et al. 2013; Liu et al. 2016; Feng et al. 2018). Ex-
isting approaches mostly focus on capturing the sequential
regularity for modeling human mobility (Liu et al. 2016;
Feng et al. 2018; Tang and Wang 2018), i.e., users’ next
movement highly relates to previously visited locations. Yet
next location recommendation in LBSNs is still very dif-
ficult due to the extreme sparsity issue (Yao et al. 2017;
Feng et al. 2018; Sun et al. 2019) — our data analysis shows
that most locations are only followed by fewer than 5 loca-
tions consecutively. Such data sparsity issue makes it hard
to learn effective sequential patterns among locations.

To solve the sparsity problem, we leverage the transition
regularities of similar locations (neighbors) by assuming
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Figure 1: A running example

that they share similar transitional patterns. Fig. 1 presents
a running example to illustrate our intuition. /; is an Italian
restaurant followed by only a few locations, so it is challeng-
ing to predict the next location that a user might visit after
1 by only capturing the sequential regularity. In fact, the
transitional information of /;’s neighbors can help ease such
sparsity issue. For instance, if users often watch a film at a
cinema [3 after having dinner at l5 (/1 s neighbor which is a
nearby Sushi restaurant), then /3 can also be recommended
as the next location for /;. In other words, the transition reg-
ularities of neighbors serve as complementary information
for locations with insufficient following check-ins. Finally,
the transition regularities of neighbors at each time step can
cooperate with the sequential regularity of previous check-in
sequence to jointly predict users’ next movement.

Due to the heterogeneous nature of LBSNs, multiple fac-
tors make connections between two locations including ge-
ographical distance, semantics (POI categories and tags)
and user preference (Xie et al. 2016; Guo et al. 2017;
Yin et al. 2017). We expand similar locations by assuming
two locations are similar if they are: 1) geographically close;
2) described by the same semantics; 3) preferred by the same
user. Our idea can be considered as a neighborhood-based
strategy, i.e., aggregating useful features of neighbors for
recommendation. To our best knowledge, we are the first to
solve such data sparsity issue by coherently modeling the se-



quential regularity with the transition regularities of neigh-
bors for next location recommendation.

To jointly model both regularities, we propose a novel
Attentional Recurrent Neural Network framework (ARNN),
which seamlessly integrates RNN (Hochreiter and Schmid-
huber 1997) and attention mechanism (Bahdanau, Cho, and
Bengio 2014) in a unified framework. A multi-modal em-
bedding layer is first adopted to transform the sparse fea-
tures of each check-in in the sequence into dense represen-
tations that are further fed into the recurrent layer. To extract
various types of neighbors, we construct a novel knowledge
graph (KG) to accommodate the heterogeneous information
including users, locations and semantics (categories and tags
of locations) into a unified space. A meta-path based ran-
dom walk process over KG is then designed to efficiently
discover the neighbors based on geographical, semantic and
user preference factors. Next, we propose a novel method of
using attention mechanism to capture the transition regular-
ities of neighbors. Specifically, the attention layer is capable
of selecting highly salient neighbors that are positively cor-
related to the current location at each time step. Finally, the
attention layer is tailored to effectively cooperate with the
recurrent layer in a unified manner. The experimental results
on multiple LBSN datasets show that ARNN outperforms
state-of-the-art algorithms, with significant improvements of
accuracy by 9.21% on average.

Related Work

There are two types of methods for user next movement
prediction — pattern-based and model-based methods (Yao
et al. 2017). Pattern-based methods can only mine explic-
itly pre-defined patterns on dense trajectories without cap-
turing all mobility regularities about user movement (Mon-
reale et al. 2009; Li et al. 2010). Thus, they are not suit-
able for LBSN scenario with extremely sparse trajectory
data. In contrast, model-based methods are favored in LB-
SNs, due to their ability to model complex movement
regularities and fuse heterogeneous data (He et al. 2016;
Tang and Wang 2018). Hence, we mainly discuss state-of-
the-art model-based methods that can be further classified
into Markov-based and NN-based methods.

Markov-based Models

Generally, Markov-based models (MMs) predict the prob-
ability of future visit by constructing a location transition
matrix. Due to the sparse check-in data, latent factor model
(Koren, Bell, and Volinsky 2009) is always adopted to help
learn dense representations. By combining MMs with matrix
factorization (MF) (Mnih and Salakhutdinov 2008), Ren-
dle et al. (2010) propose FPMC to model user sequential
behavior at personalized level. Cheng et al. (2013) extend
FPMC to learn transition regularities with localized spatial
constraint. He et al. (2016) incorporate temporal and cate-
gorical information via a weighting scheme based on first-
order Markov chain property.

However, MMs aim to learn transition probability be-
tween successive locations, thus failing to capture high-
order sequential regularity. Besides, existing MMs fuse dif-
ferent contexts in a linear fashion such that impacts of those
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contexts cannot be well captured. Instead, we adopt the re-
current neural network, which can model the long-term se-
quences and flexibly fuse the diverse contextual information
at each time step via the multi-modal embedding layer.

NN-based Models

Recent studies apply Neural Network (NN) in next location
recommendation, thanks to its strong capability of capturing
sequential information (Hochreiter and Schmidhuber 1997;
Mikolov et al. 2010; Zhang et al. 2014; Huang et al. 2019).
By leveraging the similar users, Massimo and Ricci (2018)
propose an approach based on Inverse Reinforcement Learn-
ing (IRL) that can allow users to maximise their estimated
reward (utility) by visiting the suggested POIs. By using
the attention mechanism, Huang et al. (2019) propose an
attention-based LSTM model (ATST-LSTM) that can fo-
cus on the relevant historical check-in records in a check-
in sequence by resembling the sequence to sequence model
in machine translation (Sutskever, Vinyals, and Le 2014).
To better capture the multi-level periodicity, Feng et al.
(2018) propose DeepMove by fusing an attention module
into Recurrent Neural Network (RNN), to automatically se-
lect highly correlated historical records for current status.
Caser adopts Convolutional Neural Network (CNN) to cap-
ture the joint effects of previous check-ins on the current
check-in (Tang and Wang 2018). This enables Caser to ad-
vance DeepMove, as DeepMove models the impact of each
check-in independently.

Another research line explores new methods of using con-
textual information. Some studies model human mobility by
using temporal and spatial contexts via time and distance
transition matrices (Liu et al. 2016; Zhang et al. 2017). How-
ever, the model training is complicated by the heavy pa-
rameters. SERM jointly learns the embeddings of multiple
contexts (e.g., temporal and semantic information) with user
preference (Yao et al. 2017). It is more flexible to incorpo-
rate various contexts with fewer parameters involved. How-
ever, only limited improvements are achieved by modeling
both sequential regularity and multiple contexts, as these
methods still cannot generate decent recommendations for
the locations with only few following records. Therefore, we
propose a novel recurrent framework (ARNN) to exploit the
transition regularities of neighbors based on the heteroge-
neous contextual factors to overcome the sparsity challenge.

Problem Analysis and Formulation
Problem Analysis

We adopt several real-world datasets from Foursquare (Yang
et al. 2015) and Gowalla!. As most successive check-ins
happen within 10km (Cheng et al. 2013; Feng et al. 2015),
we choose three major cities for the data analysis and exper-
iments: New York (NY) and Tokyo (TK) from Foursquare
and San Francisco (SF) from Gowalla. Foursquare APIs? are
applied to collect categories and tags of locations in SF.

Uhttps://snap.stanford.edu/data/loc-gowalla.htm]
*https://developer.foursquare.com/places-api
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Figure 2: Fig. 2(a) reports the distribution of locations w.r.t. # following locations; Fig. 2(b-d) presents the mean common ratio
of neighbors vs. non-neighbors based on the three factors, including geographical, semantic and user preference factors.

Sparsity Issue. To assess the sparsity, for each location [,
we calculate the number of its following locations. A fol-
lowing location of [}, is defined as the location visited af-
ter [, successively. Fig. 2(a) shows that most locations have
a very limited number of following locations. In particular,
over 50% locations have only one following location in NY
and TK while more than 80% have fewer than 5 following
locations in all three cities. Such insufficiency of following
locations create extreme hardness to learn the transitional
patterns between locations to predict the next movement.

Transition Regularities of Neighbors. To quantitatively
validate our assumption on transition regularities of neigh-
bors, we calculate the common ratio about the following lo-
cations for a given location pair — [;, and I;. Let L(l)) and
Ly(1;) denote the sets of following locations of I and [},
respectively. The common ratio measures the overlap degree

of L¢(l) and L(l;) defined as: a(lx, ;) = %

Based on our intuition, if [;; is similar to ;, Lf(l;;) and
L(l;) should have more overlap. We calculate the mean
common ratios of three types of neighbors w.r.t. geographi-
cal (Geo), semantic (Sem) and user preference (User) fac-
tors compared with non-neighbors. Fig. 2(b-d) show that
the mean common ratios of neighbors are consistently much
higher than non-neighbors. This verifies that similar loca-
tions share more similar transitional patterns. Therefore, ag-
gregating the transition regularities of neighbors can help
ease the sparsity issue for high-quality recommendation per-
formance.

Problem Formulation

To formulate the problem, let U = {uy,ug, ..., ujy}, L =
{l1,12,....,0i |} and V' = {w1, wy, ...,w)y |} denote a set of
users, locations and words (POI categories and tags), respec-
tively.

Definition 1. Historical Sequence. The historical sequence
of user u; is a temporally ordered sequential check-in
records, i.e., His(u;) = {r1,r2, ..., }. And each check-in
rr € His(u;) is a tuple (u;, I, t;) where I, is the location
and ¢, is the timestamp. S(l;) C V is the semantics of I,
including a bag of words (the categories and tags of [j).

Definition 2. Trajectory. A trajectory of a user u; is a subse-
quence of His(u;) where the time interval between two suc-
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Figure 3: The architecture of ARNN

cessive check-ins is smaller than the pre-defined time thresh-
old, At, i.e., Tra(u;) = {r1,re,...,ma} is a segment of
His(u;),if 0 < tppy1 — ty < AL VI <m < M.

The next location recommendation is formulated as: given a
trajectory of user u;, i.e., Tra(u;) = {r1,r2,...,Tk—-1}, a
list of locations that u; would visit at time step ¢ are gen-
erated. As the following location of [, is highly sparse, i.e.,
|Ls(1x)| is always fewer than 5, we thus leverage transition
regularities of neighbors at each time step to ease such spar-
sity issue for better recommendation.

The Proposed Framework

Our proposed Attentional Recurrent Neural Network frame-
work (ARNN) consists of four layers: embedding layer, at-
tention layer, recurrent layer and output layer, depicted in
Fig. 3. We first design a multi-modal embedding layer to
learn the dense representations of locations and various con-
texts. To find relevant neighbors, a novel knowledge graph
(KG) is built by fusing the heterogeneous data into a unified
space. Then, a meta-path based random walk over the KG
is designed to efficiently discover the neighbors based on
multiple factors. To capture the transition regularities of rel-
evant neighbors, an attention layer is developed to generate
a weighted embedding by distinguishing each neighbor of
the current location. By integrating the weighted embedding
from attention layer and current status, the recurrent layer
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Figure 4: An illustrative example of knowledge graph

can generate the hidden state that encodes the information
observed until the current time step. Finally, the output layer
jointly considers both the information of the trajectory and
user general interest to recommend the next location.

Neighbor Discovery

To capture the heterogeneous factors that enable the con-
nections among locations, we leverage the knowledge graph
and meta-path for neighbor discovery. First, a novel knowl-
edge graph is constructed, i.e., G = {UU LUV, Eyr, U
Ep;, UFELy}, where Epp, represents location-location rela-
tions, that is, two locations are linked if they are geograph-
ically close to each other, i.e., dist(ly,l;) < Ad where Ad
is a distance threshold; Ey denotes location-word affilia-
tions; Fy denotes user historical visits. Each input tuple
(u;, Ik, ti) denotes a check-in, ry, while each location is de-
scribed by a set of words, S(I). By aggregating the his-
torical check-ins, the words of locations, and geographical
distance between locations, G is capable of accommodating
the heterogeneous data of historical records into a unified
representation space as illustrated in Fig. 4.

Next, we utilize meta-path, which is a critical technique
to capture diverse semantic relations in a heterogeneous net-
work (Sun et al. 2011), to extract various kinds of neigh-
bors from G. Specifically, a meta-path is represented by a
sequence of linked entities at the scheme level, e.g., meta-
path LUL can build bridges for two locations visited by
the same users. Based on our analysis in Fig. 2 (b-d), three
meta-paths, LL, LV L and LU L, are selected, representing
geographical, semantic and user preference factors, respec-
tively. For each location, a random walk process is con-
ducted to generate paths based on the above meta-paths.
Then, the neighbors are extracted from those paths. The ran-
dom walk process is illustrated as follows. A meta-path is
defined as p = 11T --- Ty, ---, where T,, is the type of
m-th entity. The transition probability between two linked
entities is determined by the neighborhood size with con-
straint based by p, i.e., Prob(v,,|v;m—1,p) = m
if T'(vy—1) = Tyt and T'(vy,) = Ty, where T'(v) is the
type of entity v and Nt (v) is the first-order neighbor set of
v in type T},. By following p with the transition probability,
the random walker could generate a path until it reaches the
walk length. The process terminates if enough paths are cre-
ated. Finally, we extract locations from those paths to create
the neighbor set of a given location. For example, we have
l1 — we — l3in Fig. 4,503 € Np(ll) where p = LV L
and N, (I1) is the neighbor set of /1 w.r.t. meta-path p. Algo-
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Algorithm 1: Meta-Path based Random Walk

Input: G, location [;, meta-path p, walk length
walk_len, walk number walk_num
Output: A set of neighbors, N, (Ix)
Paths = [];
for 1 < 1 to walk_num do
path = [J;
m < 1;
while m < walk_len do
walk to entity v,,, by Prob(vy,|vm_1,p);
if T'(v,,) == T,, then
Add vy, to path ;
L m <— m + 1 ; //move one step forward

o X T NN R W N -

0 | Add path to Paths ;

11 Extract neighbors from Paths as Ny (Ix);
2 return N, (1) ;

o=

rithm 1 describes the details about the random walk process.

Embedding Layer

A multi-modal embedding layer is devised to jointly learn
the embeddings of the location with its temporal context,
semantic context, and user general interest. Specifically, dif-
ferent information of each check-in is initially represented
as one-hot vectors. As the timestamp is a continuous value,
we then map one day into 24 hours so that ¢; can be trans-
formed into 24-dimensional one-hot vector. Each location is
represented by a |L|-dimensional one-hot vector. For the se-
mantics of each location, we first transfer each word into
a |V|-dimensional one-hot vector, and sum them up as a
new vector. Besides, we assume each user has her general
preference, represented as a |U|-dimensional one-hot vec-
tor. These one-hot vectors are fed into the embedding layer
to learn the low-dimensional dense representations of the
timestamp, location, semantics and user general interest, de-
noted as e; € RPt, e; € Rt e, € RP: and e,, € RP«, re-
spectively. Note, unlike other embeddings, user embedding,
e, is not taken as an input into the recurrent layer, but only
used by the output layer at the last time step of the trajectory,
as it is considered to be stable through time (Yao et al. 2017;
Feng et al. 2018; Tang and Wang 2018). These dense repre-
sentations can model the semantic and spatio-temporal fea-
tures of each check-in more precisely as well as reduce the
computation.

Attention Layer

To model the transition regularities of neighbors, we exploit
the attention mechanism (Mnih et al. 2014) to choose salient
neighbors based on current location automatically at each
time step along the sequence. Specifically, the attention layer
is designed to calculate the similarity (i.e., attention weights)
between current location and each neighbor. If a neighbor is
more similar with current location w.r.t. transition patterns,
it would be assigned with a larger attention weight. Besides,
the attention layer is parametrized as a feed-forward neural



network, which is jointly trained with other layers. Fig. 3
also illustrates the structure of the attention layer. The fol-
lowing describes the attention computation at time step tx:

cr=1 arne,, M
ay(n) = softmax(f, (e, e, )), 2)
fa(e,, er,) = tanh(e] - W, -e,) 3)

where e, is the embedding of current location; e;, is the
embedding of location [,,, a neighbor of lj; ¢ € R s
computed as the weighted average embedding over all the
neighbors; W, is the weight matrix; a;(n) € [0, 1] is the
attention weight of /,, and ) a(n) = 1; f, is the score
function, which measures the relevance between the neigh-
bor and current location.

Recurrent Layer

To capture the high-order sequential regularity, we adopt
Long Short-Term Memory (LSTM) as the recurrent unit,
due to its strong capability of memorizing long-range se-
quential information (Hochreiter and Schmidhuber 1997).
At time step tj, we have the representations generated by
different components of ARNN, including: 1) e;,, e, , es,
from the multi-modal embedding layer, which embed cur-
rent location, its temporal and semantic contexts; 2) ¢ from
the attention layer, which represents the weighted embed-
ding based on relevant neighbors; 3) hj;_; from previous
recurrent unit, which encodes the information of the trajec-
tory until ¢;_;. The goal of the recurrent unit is to jointly
integrate the three groups of representations to update the
hidden state, which preserves the information observed un-
til the current time step tj. First, they are concatenated to
generate a new representation, i.e., ey = [elk; €1, €55 ck],
where e;, € RP<, and D, = 2D; + D, + D,. Then, the k-th
recurrent unit takes e; and hj_; to update the hidden state
as follows:

hy=f(W,, -hpy_1+W,, e, +b,) “4)
where h;, € RP" is a Dj,-dimensional vector which repre-
sents the hidden state at ¢;,; W,., and W,.,, are the weight

matrices, and b,. is the bias term; f(-) denotes the forward
function of LSTM?.

Output Layer

By performing Eq. 4 through time, we can obtain the hid-
den state, h 1, which coherently inherits the information
of the trajectory until time step tx 1. We combine it with
user general preference to predict where user u; would visit
at tx . For this purpose, we first decode hx_; into a D,,-
dimensional vector, i.e., 0x_1; € RPx. Then, we concate-
nate the user embedding, e,,, with ox_; to calculate the
distribution over |L| locations as follows:

OKg—1 = Wo1 “hg_1+ b01 ()
s =W, |6 . ©)
Y3 = softmax (o _,) (7

3The activation functions of input, forget and output gates are
all sigmoid function while it is the fanh function for cell gate.
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Table 1: Statistics of datasets (At = 12h)

City Users Locations Check-ins Trajectories Words

NY 490 19253 77853 9082 242
TK 1499 33530 247794 31180 235
SF 170 7340 32058 2953 306

where W,, € RP«*Pn W, ¢ RIH*2Du are transforma-
tion matrices and by, , b,, are the bias terms; g}/ represents
the probability distribution over L via softmax function at
time step ¢ . Note that user embedding, e,,,, is only utilized
in the output layer as it represents the general interest of u;,

which does not change with time.

Model Optimization

Given the training samples, the parameters are optimized by
minimizing the following loss function:

U] L, s
J=3" " 0y - logii (1) + N[Ol (8)

where J is the Cross Entropy Loss between the predictions
and ground truth; y}? is a one-hot vector to describe the
ground truth location at ¢, i.e., Yy (I) = 1 if u; visited [,
at t; ||®]|2 is the regularization term to avoid over-fitting;
A controls the strength of the regularization.

Experiments

We carry out experiments to investigate the following ques-
tions: (1) How will different meta-paths affect our model
performance? (2) How will the time threshold and the em-
bedding dimensionality affect our model accuracy? (3) How
will our approach compare with state-of-the-art methods?
(4) What is the convergence property of our model?

Experimental Setup

Data Prepossessing. Following previous work (Yao et al.
2017), users with fewer than 5 trajectories and trajectories
with fewer than 3 check-ins are removed. Previous works
(Yao et al. 2017; Zhang et al. 2017; Feng et al. 2018) also
usually filter out inactive locations to ease the sparsity, but
this filtering operation may induce the model to learn wrong
transition information. Thus, no filtering is conducted to lo-
cations in our experiments. We adopt the time threshold
At = 12h to create high-quality trajectories, because our
experiments show that it is the optimal setting (see Table 2).
The statistics of datasets are summarized in Table 1.

Comparison Methods. We compare ARNN with state-of-
the-art methods: 1) UCF (Sarwar et al. 2001): is a user-
based collaborative filtering by using the user-location ma-
trix; 2) FPMC (Rendle, Freudenthaler, and Schmidt-Thieme
2010): extends Markov Chain for sequential prediction; 3)
FPMC-LR (Cheng et al. 2013): extends FPMC by consid-
ering geographical constraints; 4) LSTM (Hochreiter and
Schmidhuber 1997): is a popular variant model of RNN for
sequential prediction; 5) ST-RNN (Liu et al. 2016): is a re-
cent RNN-based model that incorporates temporal and geo-
graphical information; 6) SERM (Yao et al. 2017): is a state-
of-the-art method combining multiple contexts in a recurrent
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Figure 5: Performance of variants of ARNN on the three
datasets when various meta-path are cumulatively incorpo-
rated.

model; 7) DeepMove (Feng et al. 2018): is a state-of-the-art
recurrent model capturing multi-level influence of previous
check-ins; 8) Caser (Tang and Wang 2018): is a state-of-
the-art method that models the joint effects of previous visits
based on CNN.

Evaluation Metrics. Following the existing works (Zhang
et al. 2017; Yao et al. 2017; Feng et al. 2018), we employ
prediction accuracy (AccQN, N = 1,5,10,20) to check
whether the ground-truth location appears in the top-/V rec-
ommendation list.

Parameter Settings. We use the earliest 70% check-ins of
each user as training set (70%), and the latest 20% as test
set and remaining 10% as validation set. The parameters
are turned to achieve the best results, or set as suggested
by the original papers for all comparison methods. For the
neighbor discovery procedure in ARNN, the distance thresh-
old Ad = 2km, walk number walk_num = 50 and walk
length walk_len = 10 for the meta-path based random
walk. We apply a grid search to find the optimal settings
for the size of user embedding (D,,), location embedding
(Dy), timestamp embedding (D;) and semantics embedding
(Dy) (see Fig. 6). The 4 embedding sizes are set as the same
(D, = Dy = Dy = Dy) and are 120/160/120 for NY, TK
and SF, respectively. The number of hidden units, Dy, is set
as 64 for all cities. The number of recurrent layers is 1. The
epoch number is set as 20. The learning rate is 0.01. The reg-
ularization parameter A is chosen as 0.01. The hidden state
and cell state are initialized as zero. We use Stochastic Gra-
dient Descent (Bottou 1991) and Back Propagation Through
Time (Rumelhart, Hinton, and Williams 1986) to learn the
parameters with a batch size of 64.

Analysis of Meta-paths

To investigate the effect of various meta-paths, we cumula-
tively incorporate the selected meta-paths into neighbor dis-
covery (see Fig. 5). The results w.r.t. Acc@1 and Acc@5,
where Geo, Sem and User represent LL, LV L and LUL,
respectively. None means no meta-path is used, i.e., ARNN
is degraded to LSTM. Note that similar trends can also be
observed for Acc@10 and Acc@?20. It can be observed that
the performance becomes better as more meta-paths are in-
corporated. Moreover, all the ARNN variants outperform
LSTM, which confirms the effectiveness of utilizing transi-
tion regularities of neighbors. In addition, meta-path LU L
delivers more significant enhancement than others, which
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Table 2: Performance variation of ARNN with different time
threshold (At) on three datasets evaluated by Acc@N. The
best performance is highlighted in bold.

City Metric 3h 6h 12h 1d 2d
Acc@] 0.1816  0.2058  0.1738  0.1526  0.1220
Acc@5 03437  0.348  0.3530  0.2943  0.2498

NY Acc@l0 0.4076  0.4087  0.4162 0.3317  0.2977
Acc@20 0.4474 04571 04393 0.3544  0.3097
Pet(< At) 46.75% 54.45% 63.83% 80.04% 90.45%
Acc@] 0.1811  0.1801  0.1867 0.1651  0.1321

TK Acc@5 0.3448  0.3605 0.3657 0.3044  0.2283
Acc@10 0.4121 04180 0.4285 0.3569  0.2637
Acc@20 0.4625 0.4889 0.4864 04125 0.3392
Pet(< At) 5896% 63.89% 71.74% 84.33% 92.18%
Acc@] 0.0699  0.1297  0.1324  0.0816  0.0829

SF Acc@5 0.1441  0.2010  0.2128 0.1780  0.1685
Acc@10 0.1594  0.2318  0.2336  0.2126  0.2072
Acc@20 0.1703  0.2431  0.2530  0.2336  0.2251
Pet(< At) 5026% 56.68% 63.48% 80.34% 90.52%

verifies that the similar properties of two locations can be
well captured by user preference.

With the incorporation of all meta-paths, the performance
is enhanced significantly by 14.69% and 18.05% averagely
w.r.t. Acc@1 and Acc@5 across the three datasets. Never-
theless, the improvements are not always significant with
LV L and LL. With LV L, the random walker could reach
neighbors that are far away from the location. The distant
locations may have no common transition patterns, as the
distance of two successive check-ins is often less than 10km
(Feng et al. 2015). By following L L, although the random
walker can find nearby neighbors, these neighbors (e.g., a
museum) may not share similar characteristics with the lo-
cation (e.g., a gym club). Despite some unsatisfactory neigh-
bors could be retrieved, their saliences can be distinguished
automatically by the attention layer.

Analysis of Time Threshold

As the time interval of two successive check-ins has crit-
ical influence on users’ next location (Yao et al. 2017,
Feng et al. 2015), it is necessary to investigate the im-
pact of various settings of the time threshold (At) on
the accuracy of ARNN (Table 2). To better understand
the results, we calculate the percentage of the succes-
sive check-in pairs that happen within various At, i.e.,
S (re—1,rn) [re€His(us) by —ty—1 <At
Pot(s AY) S H{(rk—1mk) i€ His(ui)}|
where His(u;) represents the historical sequences of w;,
r,—1 indicates a check-in and its following check-in is 7.
For about 50% and 60% of successive check-ins, their
time interval is smaller than 3h and 6h, respectively, rein-
forcing the previous finding that the majority of successive
check-ins happen within a few hours (Cheng et al. 2013).
The best results are achieved with At = 12h, implying suc-
cessive check-ins with the time interval in 64 — 124 still carry
effective transition information. However, the performance
deteriorates when At increases to 245, because the time in-
terval exceeds to a point such that wrong transition informa-
tion is introduced. Overall, At = 12h is a robust setting to

s



Table 3: Performance of all the comparison methods on the three real-world datasets measured Acc@N. The best performance

is highlighted in bold while the second best performance is marked by ‘}’.

| City | Metric | UCF  FPMC FPMC-LR LSTM ST-RNN SERM Caser ARNN | Improve |
Acc@] 0.0010 0.0214 0.0248 0.1384  0.1292  0.1571  0.1608"  0.1738 8.07%

Ny | Acc@5 | 0.0055 0.0386 0.0403 02378  0.2474  0.2830  0.32107  0.3530 9.97%
Acc@10 | 0.0096 0.0735 0.0783 02752 02803 03230 0.37677 0.4162 10.50%
Acc@20 | 0.0131 0.0872 0.0929 0.3058  0.3299 03437  0.4016" 0.4393 9.37%
Acc@1 | 0.0092 0.0196 0.0227 0.1458  0.1572  0.1608  0.1709" 0.1867 | 10.34%

TK | Acc@5 | 0.0197 0.0312 0.0358 0.2554  0.2443 02899 0.3302F 0.3657 8.74%
Acc@10 | 0.0385 0.0597 0.0626 02089  0.2794 03407 038527 0.4285 10.51%
Acc@20 | 0.0199 0.0686 0.0753 03399  0.3285 0.3842 043877 0.4864 13.09%
Acc@1 | 0.0005 0.0122 0.0167 0.1116  0.1035  0.1205  0.1220"7  0.1324 8.54%

gp | Acc@5 | 0.0025 0.0245 0.0314 0.1667  0.1630  0.1949"  0.1894 0.2128 9.43%
Acc@10 | 0.0045 0.0426 0.0512 0.1845  0.1860 02098 021777 0.2336 7.33%
Acc@20 | 0.0076 0.0541 0.0625 02009  0.2098  0.2321  0.23457  0.2530 7.90%

methods. Table 3 presents the performance of all compar-

° e e ison methods evaluated by Acc@N. UCF performs worst
, ot /g\f/e/"i\g/@ since it only models user general interest without consid-
[ e b ering sequential regularity. By modeling sequential regular-

Acc@1

S
&
Acc@1

080 80 100 720 140 7520 25 30
Dimension Iteration

(a) Dimentionality (b) Convergence

Figure 6: Analysis of Dimensionality and Convergence.

generate high-quality trajectories for model training.

Analysis of Dimensionality and Convergence

Fig. 6(a) describes the recommendation performance w.r.t.
Acc@1 for various dimensionality (i.e., embedding size)
with other optimal hyperparameters fixed on all the three
datasets. Note similar trends can be observed for other met-
rics. The performance becomes stable when the dimension
increases to a certain level. Besides, the optimal dimension
size of Tokyo is higher than others, since there are much
more locations in Tokyo. Moreover, ARNN consistently out-
performs other state-of-the-art methods when its results be-
come stable, indicating that it can well deal with the varia-
tion of dimensionality. Furthermore, to understand the con-
vergence of ARNN, we report the performance change with
respect to the number of iterations. As shown in Fig. 6(b),
we can observe that ARNN can converge within 20 itera-
tions. In summary, with strong ability to dealing with the di-
mensionality and fast convergence speed, ARNN is a robust
approach that can be applied in practical scenarios.

Comparative Results

With optimal settings of involved parameters, we conduct
experiments to evaluate our ARNN with state-of-the-art
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ity, FPMC performs better than UCF. FPMC-LR outper-
forms FPMC by further fusing geographical information.
However, the results of both Markov-based methods are still
poor, as they fail to model high-order sequential regularity.

In general, RNN-based methods outperform Markov-
based methods because of their capability of memoriz-
ing long-term dependencies (Hochreiter and Schmidhuber
1997). ST-RNN delivers decent results by exploiting spatial
and temporal contexts. However, ST-RNN is outperformed
by LSTM in some cases due to the stronger ability of LSTM
to model long sequence than basic RNN. By considering se-
mantic context, SERM performs better than ST-RNN. Deep-
Move adopts a similar attention-based GRU architecture ap-
plied in language translation (Luong, Pham, and Manning
2015), to capture the multi-level influence of distant check-
ins in the sequence. The way of integrating attention layer
in ARNN is divergent from DeepMove. To explain, the at-
tention layer in ARNN is designed to capture the transi-
tion regularities of each neighbor at each time step while
DeepMove captures the impacts of previous check-ins along
the entire sequence in DeepMove. In general, Caser outper-
forms other RNN-based methods by modeling the effects of
past check-ins jointly while others model previous check-
ins independently. However, either the methods of learning
embeddings of different contexts (ST-RNN and SERM) or
modeling the complex sequential regularity (DeepMove and
Caser) are deficient in solving the sparsity issue. By jointly
modeling the transition regularities of various neighbors and
sequential regularity, our ARNN performs the best — the av-
erage improvements are 9.48%, 10.26%, 7.89% on the three
datasets, respectively. The significant improvement margins
demonstrate the strong ability of ARNN in resolving the
sparsity for more accurate recommendation.



Conclusion and Future Work

In this paper, we explore the transition regularities of neigh-
bors to resolve the sparsity issue for next location recom-
mendation. We first design a meta-path based random walk
on a novel knowledge graph to discover relevant neighbors
based on heterogeneous factors. Next, we jointly model both
sequential regularity and transition regularities of neigh-
bors by proposing a novel attentional recurrent neural net-
work framework, ARNN. Experimental results on multiple
real-world datasets demonstrate the superiority of ARNN to
state-of-the-art approaches. In the future, we plan to explore
more useful data sources such as weather and traffic infor-
mation, to provide more satisfying recommendations.
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