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Abstract

Visual Question Answering (VQA) requires a simultaneous
understanding of images and questions. Existing methods
achieve well performance by focusing on both key objects in
images and key words in questions. However, the answer also
contains rich information which can help to better describe
the image and generate more accurate attention maps. In this
paper, to utilize the information in answer, we propose a re-
attention framework for the VQA task. We first associate im-
age and question by calculating the similarity of each object-
word pairs in the feature space. Then, based on the answer,
the learned model re-attends the corresponding visual objects
in images and reconstructs the initial attention map to produce
consistent results. Benefiting from the re-attention procedure,
the question can be better understood, and the satisfactory an-
swer is generated. Extensive experiments on the benchmark
dataset demonstrate the proposed method performs favorably
against the state-of-the-art approaches.

Introduction
Visual Question Answering (VQA) is one of the fundamen-
tal tasks that involve multiple modalities, i.e., text and im-
ages. It can be formulated as a classification problem, which
predicts the correct answer for the given question according
to an image. Besides answering the given question, VQA
also benefits to various applications in practice, such as ed-
ucation and blind person assistance (Gurari et al. 2018).

In the past years, extensive works are proposed to tackle
the VQA problem (Anderson et al. 2018; Yu et al. 2019).
They attempt to understand the image and question in the
fine-grained scenario. Some of the existing methods are de-
signed to obtain critical visual information relevant to the
question, in which the visual attention mechanism is widely
applied. In these models, the performance is improved by
learning meaningful regions or objects according to a uni-
fied question representation (Anderson et al. 2018). Some
other methods (Gao et al. 2019; Lu et al. 2016) also propose
that it is significant to focus on key words in the question.
Both the informative visual contents in images and impor-
tant words are utilized to achieve better performance.

∗corresponding author.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Example of the re-attention VQA scheme. Nor-
mally, for the question “Q”, the VQA model generates initial
attention for visual image and may focus on several relevant
components of the car. The proposed re-attention mecha-
nism obtains more accurate attention when taking additional
cues from answer “A” into consideration.

Actually, VQA includes three elements: images, ques-
tions, and answers (Antol et al. 2015). The goal of VQA is to
predict the correct answer to the question about the image.
Existing methods treat the answer as a classification label.
Yet the answer contains richer information. Both the ques-
tions and answers contribute to describing visual contents.
Take the question (“How many tires?”) in Figure 1 as an
example. In order to predict the correct answer “2”, VQA
methods need to understand the question and figure out the
“tires” in the image. As shown in in Figure 1, when only
the question is considered, the “car” numbered as “3” and
the “tires” are assigned higher weights compared to other
objects. Obviously, the weight assigned to the “car” is out
of place. After the answer is taken into account, i.e., “How
many tires? 2 (tires)”, the learned visual attention is more
centralized on the tires numbered as “7” and “8”. This accu-
rate attention map can guide the visual attention learning as
expected. And accurate visual attentions help VQA models
predict correct answers.

In this paper, we propose a novel re-attention framework,
in which the answer information is used for VQA. In the re-
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attention pattern, answers are exploited to help visual atten-
tion learning. Specifically, the answers are used to compute
attention weights for the image. Then, an attention consis-
tency loss is defined to measure the distance between the
visual attention maps learned with questions and answers.
The accurate attention map learned with answers can guide
the visual attention learning with questions by minimizing
the consistency loss.

Besides, as already mentioned, in most of the existing
attention-based methods, questions are used to learn mean-
ingful visual contents in images (Yu et al. 2019). However,
the words related to the visual content are also important. It
is necessary to consider visual contents when learning the
importance of words as well. We propose a new attention
module to model the relationship between the image and
question in a more fine-grained manner. Specifically, the at-
tention maps for the image and question are derived from a
matrix that contains the similarity scores of every object-
word pair. Then attended features of image and question
are fused into a unified representation. The fused represen-
tation is delivered into two branches. In the forward infer-
ence branch, it is classified into the correct answer. In the
re-attention branch, the representation is used to compute
the re-attention maps for the visual contents in images.

Our contributions are summarized as follows: First, we
address the VQA problem via a novel re-attention pattern,
which sufficiently represents the answer and enables the
accurate attention of key question-related contents in vi-
sual image. Second, we propose a new attention module
which correlates the relationships of each object-word pairs
in a fine-grained perspective and generates attention maps
for image and question with the guidance of each other.
The proposed method is evaluated on the commonly used
large dataset VQA v2 (Goyal et al. 2017). The method per-
forms favorably against the state-of-the-art methods for vi-
sual question answering.

Related Work

In this section, we review fusion-based approaches and
attention-based models for visual question answering that
are relevant to our work.

Visual Question Answering (VQA)

VQA is an emerging research area to reason the accurate
answer of a given question about the visual content in an
image. Fusion-based methods are the most straightforward
strategy for this task. The image and question are repre-
sented as global features and then fused into a unified repre-
sentation to predict the correct answer.

For the images, most image features are extracted from
a pre-trained CNN (Antol et al. 2015). For the questions,
feature extraction methods have developed from the sim-
ple bag-of-words model (Zhou et al. 2015) to more complex
and useful language models, e.g., LSTM (Antol et al. 2015;
Ma et al. 2018) and GRU (Zhang, Hare, and Prügel-Bennett
2018). Fusion of question and image features is usually
implemented by existing effective multimodal feature fu-
sion methods. Many multimodal fusion methods are used

to learn accurate answer representations, such as residual
networks (Kim et al. 2016), multimodal compact bilinear
pooling (Fukui et al. 2016), and factorized high-order pool-
ing (Yu et al. 2018). There are some other methods fus-
ing the multimodal features by reasoning the complex in-
teraction between question and image. (Wu et al. 2018) pro-
poses a dynamic multi-step and dynamic model to reason the
changed relations between objects. (Haurilet, Roitberg, and
Stiefelhagen 2019) propose a model that aimes to capture
the interplay among objects guided by the query. (Cadene et
al. 2019) utilizes the MuRel cell to progressively refine the
interaction between images and questions. More recently,
some other methods focus on utilizing the graph to explore
the process of understanding images with questions and
predicting answers. (Norcliffe-Brown, Vafeais, and Parisot
2018) uses a graph-based methods to learn semantic and spa-
tial representations of image that capture question specific
interactions. (Tang et al. 2019) proposes to construct binary
trees to encode the relationships among objects.

Attention Models

The aforementioned fusion-based methods may lose critical
information to correctly answer the question about local im-
age contents (e.g., “How many people are wearing shorts at
the forefront of this photo?”). Consequently, a large amount
of attention-based deep neural networks are proposed for
VQA (Zhou et al. 2019; Anderson et al. 2018).

On the one hand, many works introduce visual atten-
tion mechanisms to adaptively learn the informative im-
age features guided by the given question (Gao et al. 2019;
Qiao, Dong, and Xu 2018; Lin et al. 2018). (Yang et al.
2016) propose a stacked attention network to iteratively
learn the important visual regions according to questions. In
(Shih, Singh, and Hoiem 2016), questions are answered by
selecting relevant image regions in line with the text-based
query. (Anderson et al. 2018) propose to align questions with
relevant object proposals in images generated by Faster R-
CNN (Ren et al. 2015), and use a bottom-up and top-down
attention method to learn important candidate objects in an
image according to the given question. The generated visual
features are widely used in later methods. The VQA method
in (Lu et al. 2018) performs attention on both free-form re-
gions and detected object proposals based on questions to
better utilize complementary information.

On the other hand, in addition to understanding the vi-
sual contents, VQA also requires fully understanding the se-
mantic of questions. A number of co-attentin based methods
are proposed to learn both the textual attention for questions
and visual attention for images (Kim, Jun, and Zhang 2018;
Yu et al. 2019; Nguyen and Okatani 2018). Lu et al. (Lu et
al. 2016) propose a co-attention model to jointly reason for
image and question. Our proposed attention module is more
accurate than the existing co-attention based methods. The
attention weights are derived from a similarity matrix that
contains the interaction between each pair of words and ob-
jects. When there is more than one word relevant to multiple
visual regions, the aggregated visual and textual features in
our proposed attention module contains more fine-grained
relationship between questions and images.
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Figure 2: Illustration of the proposed method. We can obtain the feature representation of each candidate objects in image and
words in question from LSTM (Hochreiter and Schmidhuber 1997) and the pre-trained Faster RCNN (Ren et al. 2015). The
attention layer learns the importance weights for all objects and words by considering the relationship of each object-word
pairs. Then we fuse the attended image and question features and deliver them into two branches. One of them is utilized to
predict the answer, and the other is used to re-attend the objects in images with the guidance of answer representation from the
proposed attention layer.

Methodology

The overall structure of the proposed method is illustrated in
Figure 2. It takes the image-question pair as input and pre-
dicts the accurate answer by associating the question to rele-
vant image objects. Specifically, the method consists of three
parts: the feature representation layer, the attention layer,
and the loss layer. Features of the input question and image
are extracted from the representation layer. And the infor-
mative textual contents in questions and visual contents in
image are fused into a unified answer representation through
the proposed attention module. The answer representation is
delivered into two branches. One is the classification branch,
in which the answer representation is used to predict the cor-
rect answer about the given question. In the other branch, the
fused representation is used to perform re-attention for the
image. We use the answer representation to guide the model
to attend the objects in the image by minimizing the differ-
ence between the re-attention weights and the visual weights
learned in the proposed cross attention layer.

Feature Representation Layer

For an image-question pair, we first extract features of the
input image I and the question Q in the representation layer.
Following (Anderson et al. 2018), we represent the image as
a set of visual object features which are extracted from the
Faster R-CNN model (Ren et al. 2015) pre-trained on the
Visual Genome dataset (Krishna et al. 2017). We obtain a
dynamic number of objects for each image by controlling the
threshold to the detected object probabilities. The number of
detected objects is denoted as n. We use zero-padding to fill
n to 100 if there are less than 100 candidates from Faster
R-CNN. The i-th object in image I is denoted as oi ∈ R

dv .
The object features of the image I are represented as v =
[o1, o2, · · · , on] ∈ R

n×dv .
The question Q with l words can be represented as a

word sequence Q =< w1, w2, · · · , wl >. Every word is
represented as a real-valued vector xi, where xi ∈ R

k is

the k-dimensional word vector corresponding to the word
wi in the question. In our paper, we use fixed-length 300-
dimensional word embeddings extracted from GloVe (Pen-
nington, Socher, and Manning 2014). We use random vec-
tors to initialize the words that are not in the dictionary
of GloVe. The word vectors are fed into an LSTM net-
work (Hochreiter and Schmidhuber 1997). We use the se-
quence of the output from all the LSTM cells as the ques-
tion representation. The question Q is denoted as q =
[h1, h2, · · · , hl], hi ∈ R

dq , where hi is the output of the i-th
LSTM cell. The length of q is set to 14 following (Teney et
al. 2018) in this paper.

Attention Layer

Based on the representations from the feature representation
layer, we can obtain the answer representation by fusing the
informative contents of the question and image in this layer.
Because the words in question are related to some visual
contents in image. It is necessary to learn the textual atten-
tion for the question and the visual attention for the image.
Different from the self-attention mechanism or the question-
guided attention mechanism used in (Anderson et al. 2018;
Yu et al. 2019), in which semantic of the whole question is
used to guide the visual attention. In this section, we pro-
pose a cross attention mechanism. The interactions between
every word in the question and every object in the image are
considered. The weights for textual and visual contents are
computing according to the similarity of every word-object
pair. The structure of the proposed cross attention mecha-
nism is shown in Figure 3.

The extracted features of question and image, i.e., q and
v, are first transformed into the same dimensional space:

q̂ = mq(q) , v̂ = mv(v) , (1)

where mq and mv are the transformation function for
the question and image, and q̂ and v̂ are the transformed
representations with the same dimension of dc. q̂ =
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Figure 3: Overview of the proposed cross attention module.
First, a similarity matrix M is conducted by computing the
distance between the input features of the question q̂ and
image v̂. Every element Mij is computed by evaluating the
distance of every pair of words and objects < ĥi, ôj >. Then
the matrix is mapped into two attention maps for the input
question and image, respectively. Finally, the attention mod-
ule outputs the weight vectors (i.e., av and aq) and attended
features of question and image (i.e., q′ and v′).

[ĥ1, ĥ2, · · · , ĥl], ĥi ∈ R
dc and v̂ = [ô1, ô2, · · · , ôn], ôi ∈

R
dc . Then, we define a matrix M to represent the similarity

between every pair of object and word. M ∈ R
n×l can be

calculated as follows:

Mij = g(ôi, ĥj) , (2)

where g(ôi, ĥj) is the function to compute the distance be-
tween the i-th object ôi in the image and j-th word ĥj in the
question, which is defined as Mij = ôi × ĥ�

j . The impor-
tance of words and objects are learned from M :

av = softmax(fv(M)), av ∈ R
n×1 , (3)

aq = softmax(fq(M)), aq ∈ R
l×1 , (4)

where fv and fq are two transformation functions for the
image and the question. And av and aq are learned attention
weights for objects and words, respectively. The attended
image and question features are calculated as the weighted
summation of the features of the input image and the input
question, i.e., v̂ and q̂:

v′ =
∑n

i=1
aviôi , q′ =

∑l

i=1
aqiĥi . (5)

Then, the obtained question and image representations, i.e.,
v′ and q′, are fused into a unified representation as follows:

r = v′ + q′ , (6)

where r is used as the answer representation in the following
loss layer.

Loss Layer

The goal of this layer is to define an objective function to
train the whole model. Specifically, the loss layer consists
of two branches. One of them is the classification branch,
which is used to determine the accurate answer. We use the
binary cross-entropy as the loss function for the branch train-
ing following (Teney et al. 2018). The loss function Lc is
defined as follows:

Lc = −
N∑

i

C∑

j

yij log(ŷij)− (1− yij) log(1− ŷij) , (7)

where N and C are the number of training samples and can-
didate answers, respectively. y is the ground-truth answer
and ŷ denotes the predicted answer. ŷ = σ(fc(r)), where
σ(·) is the sigmoid function and fc is the function to project
the answer representation r to a vector with the dimension
of C.

The other branch is the re-attention procedure, which
utilizes answer representations to guide visual importance
learning. We use the answer representation to learn the im-
portance of visual contents again:

a′vi = softmax(ϕ((r + avg(q̂))� ôi)) , (8)

where ϕ(·) is a transformation function. The model is
trained to minimize the difference between the importance
of visual contents learned in the proposed cross attention
module and that learned in the re-attention branch. Specifi-
cally, the concatenation of r and q̂ is used to learn the impor-
tance of image objects again, and a′v indicates the learned
attention weight. We define the difference between a′v and
av as the attention consistency loss, denoted as Lr:

Lr =

n∑

i

(avi − a′vi)
2 . (9)

Therefore, we explicitly train the proposed network to opti-
mize the joint loss of the two branches:

Loss = Lc + λrLr , (10)

where λr is the trade-off of the strength of answer guidance.
The λr is also estimated by the large-scale VQA dataset in
the experiments. Since all the parameters can be derived, we
can conduct an effective end-to-end representation learning
using Adam (Kingma and Ba 2015) optimizer to minimize
the joint loss function. With this scheme, we can predict the
correct answer for the given question about the input image,
during which the learned visual attention is guided by the
obtained answer representation. It should be noted that we
minimize the joint loss only in the model training.

Experiment

In this section, we compare our method against state-of-the-
art methods to demonstrate the effectiveness of the proposed
method for visual question answering.

Experimental Setup

In the following subsections, we present the setups in our ex-
periments, including the used dataset and implement details
of the proposed method.
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Table 1: Performance evaluated on the test-dev and test-std splits of the VQA v2 dataset. The proposed method is compared
with several state-of-the-art methods. The best results are in bold.

Method test-dev test-std

Yes/No Number Other Overall Yes/No Number Other Overall

MCB (Fukui et al. 2016) - - - - 78.82 38.28 53.36 62.27
HAN (Qiao, Dong, and Xu 2018) 78.54 37.94 53.38 61.99 - - - -
ReNet-3000 (Ma et al. 2018) - - - - 79.2 39.5 52.6 62.10
PMC (Hu, Chao, and Sha 2018) - - - 63.90 - - - -
UpDn (Anderson et al. 2018) 81.82 44.21 56.05 65.32 - - - 65.67
Dual-MFA (Lu et al. 2018) 83.59 40.18 56.84 66.01 83.37 40.39 56.89 66.09
rTV/rTV (Lin et al. 2018) 82.50 45.80 57.34 66.40 82.44 44.93 57.60 66.52
CoR-3 (Wu et al. 2018) 85.22 47.95 59.15 68.62 85.76 48.40 59.43 69.14
Graph (Norcliffe-Brown et al. 2018) - - - - 82.91 47.13 56.22 66.18
DCN (Nguyen and Okatani 2018) 84.48 41.66 57.44 66.83 84.61 41.27 56.83 66.66
Counting (Zhang et al. 2018) 83.14 51.62 58.97 68.09 83.56 51.39 59.11 68.41
BLOCK (Ben-Younes et al. 2019) 82.86 44.76 57.30 66.41 - - - -
MuRel (Cadene et al. 2019) 84.77 49.84 57.85 68.03 - - - 68.41
VCTREE-HL (Tang et al. 2019) 84.28 47.78 59.11 68.19 84.55 47.36 59.34 68.49

Ours 87.00 53.06 60.19 70.43 86.97 52.62 60.72 70.72

Dataset In our experiments, we use the VQA v2
dataset (Goyal et al. 2017) to evaluate the performance of
the proposed method. VQA v2 is the most commonly used
balanced benchmark with significantly reduced language bi-
ases. The images are from the Microsoft COCO dataset (Lin
et al. 2014). Every image corresponds to several questions,
and every question corresponds to ten answers collected
from human annotators. The complete dataset contains al-
most 1.1 million image-question pairs. The dataset is typi-
cally split into train set, validation set, and test set, which
contain 82k, 40k, and 81k images with 443k, 214k, and
447k questions, respectively. Performances of VQA models
are evaluated online on the developing (test-dev) and stan-
dard (test-std) subsets.

Implementation Details The hyper-parameters used in
our model are set as follows. The number of objects in the
image and the number of words in the question are padded as
100 and 14, respectively. For the hyper-parameters like the
hidden size of the LSTM, dq , the experimental results are
stable when hq changes. Therefore, it is set as 512 follow-
ing (Tang et al. 2019) after we comprehensively consider the
trade-off between model complexity and performance. The
input size of the LSTM is set as 300 in the same way. The
dimension of the object features dv is 2048. The dimension
of q̂ and v̂, i.e., dc is 512. The size of the answer set is 3, 129
following the strategy in (Teney et al. 2018). All the mod-
els are trained with batch size 64. Our framework is imple-
mented using PyTorch and trained with Adam (Kingma and
Ba 2015). All of our approaches are trained on an NVIDIA
GTX 1080ti with 11GB on-board memory. Only the train
split is used during model training for the results evaluated
on the validation split. For the performance on the test split,
part of samples in the Visual Genome dataset (Krishna et al.
2017) is used as the augmented dataset to facilitate model
training following (Yu et al. 2019).

Comparison with State-of-the-Art Methods

In this section, we evaluate the proposed method against the
state-of-the-art algorithms for visual question answering, in-
cluding the fusion-based methods, the attention-based meth-
ods, and visual reasoning methods.

We compare our method with fusion-based methods, such
as, MCB (Fukui et al. 2016) and ResNet-3000 (Ma et al.
2018). We also compare it with some attention-based meth-
ods. HAN (Qiao, Dong, and Xu 2018) uses the generated
human-like attention maps as supervision to an attention-
based VQA model. The UpDn (Anderson et al. 2018) pro-
poses to use the object features from Faster RCNN which
is used in many later methods. And DCN (Nguyen and
Okatani 2018) uses the stack of multiple co-attention lay-
ers and significantly improves the performance. Besides,
beyond the attention mechanism, there are other methods
reasoning the relationship among images, question, such
as, rTV/rTV (Lin et al. 2018), Counting (Zhang, Hare,
and Prügel-Bennett 2018), Dual-MFA (Lu et al. 2018),
and Graph (Norcliffe-Brown, Vafeais, and Parisot 2018).
We also compare with other VQA methods, including
BLOCK (Ben-Younes et al. 2019), MuRel (Cadene et al.
2019), VCTREE-HL (Tang et al. 2019), and PMC (Hu,
Chao, and Sha 2018).

Performances of our method and the compared meth-
ods are reported in Table 1. Our method outperforms all of
the compared fusion-based methods, attention-based meth-
ods, and other reasoning methods. Compared with other
attention-based methods, like the classical attention-based
method UpDn (Anderson et al. 2018), our method gains sig-
nificant performance improvement of 5.11% for the overall
accuracy on the test-dev split. The UpDn utilizes the feature
of the whole question to learn the importance of different
objects, while our method models the relationship between
each pair of words and objects. Benefiting from it, both the
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Table 2: Accuracies of the “base+re-att” and “base+co+re-att (Ours)” when the value of λr in Equation (10) varies from 0 to
2.0. All the accuracies are evaluated on the validation split of the VQA v2 dataset. Note that λr = 0 represents that only the
forward branch is employed in the model training phase. “base+re-att” denotes the baseline model with the re-attention branch.
“base+co+re-att” is the baseline model with the proposed cross attention and re-attention.

Method Type 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

base+re-att
Yes/No 83.28 84.74 84.65 84.66 84.74 84.72 84.74 84.71 84.66 84.67 84.56
Number 44.71 49.35 49.29 49.04 49.30 49.16 49.35 49.46 49.67 49.35 49.16
Other 57.15 57.86 57.98 58.05 57.97 57.95 57.86 57.96 57.90 57.86 57.74

Overall 65.34 66.84 66.86 66.87 66.89 66.86 66.84 66.89 66.88 66.82 66.69

Yes/No 84.40 84.49 84.35 84.64 84.85 84.41 84.64 84.55 84.55 84.65 84.61
base+co+re-att Number 48.62 49.27 49.55 49.15 49.30 49.75 49.15 48.85 49.05 49.15 49.05

(Ours) Other 57.86 58.10 58.02 58.12 58.40 58.15 58.12 58.07 58.06 58.13 58.17
Overall 66.62 66.86 66.80 66.91 67.15 66.92 66.90 66.81 66.83 66.92 66.90

Table 3: Ablation analysis on the validation split. “base” in-
dicates the baseline model with a self-attention for questions
and a question guided image attention module. “base+co”,
“base+re-att”, and “base+co+re-att” denote the baseline
model with the cross attention module, re-attention branch,
or both, respectively.

Method Yes/No Number Other Overall

base 83.28 44.71 57.15 65.34
base+co 84.40 48.62 57.86 66.62
base+re-att 84.74 49.30 57.97 66.89

Ours 84.85 49.30 58.40 67.15

question and image can be better understood and the satis-
factory answer will be generated. This demonstrates the sig-
nificance of the interaction between every word and object.
In addition, our method performs favorably against the state-
of-the-art method, VCTREE-HL (Tang et al. 2019) by 2.24
points for the overall accuracy on the test-dev split. We all
consider interactions between images and questions, while
in the proposed re-attention strategy, answers are insight-
fully used to re-attend meaningful visual regions in images.
The rich information in answers are fully used to help our
model learn more accurate visual attention maps.

Ablation Study

This experiment is conducted to verify the effect of every
part in the proposed model. We show the results of the pro-
posed method with different configurations on the validation
set. We perform the ablation study to illustrate the effec-
tiveness of the proposed attention module and the answer-
guided re-attention module. The “base” model is a basic
attention-based VQA model with a self-attention for the
question and a question-guided attention module for the in-
put image. The “base+co” method is the “base” model with
the proposed cross attention module to further learn the in-
formative textual and visual contents based on features of
the “base” model. The “base+re-att” method is the “base”
model with a re-attention branch, in which the difference be-

tween the attention learned in the question-guided module
and that learned in the re-attention branch are minimized.
“base+co+re-att” is our proposed method, in which the pro-
posed re-attention branch is build on the top of “base+co”
model. The four methods use the same classifier and repre-
sentation layer.

As reported in Table 3, “base+co+re-att (Ours)” achieves
the best performance. Both of the “base+co” method and
the “base+re-att” method outperform the “base” model. The
performance of “base+re-att” is slightly better than the per-
formance of the “base+co” method. We can draw the follow-
ing conclusions: First, the proposed cross attention method
proposed in this paper achieves better performance by tak-
ing into account fine-grained relationships between the ques-
tions and images. Second, our proposed re-attention model
achieves the best accuracy by utilizing the answer informa-
tion to help the visual attention learning.

Therefore, it is necessary to consider the fine-grained in-
teraction between questions and images, and the information
contained in answers.

Hyperparameter Analysis

Since the objective function consists of the classification loss
and attention consistency loss. In this section, we analyze the
performance of the proposed method when the trade-off of
the re-attention branch, i.e., λr in Equation (10), is set as
different values. In Table 2, we report detailed accuracies of
the “base+re-att” and “base+co+re-att” (Ours) with differ-
ent λr for the types of “Yes/No”, “Number”, and “Other”.
As shown in Table 2, the performance varies along with the
λr. And both of the “base+re-att” method and “base+co+re-
att” (Ours) method achieve best performance when λr is 0.8.
Therefore, we set λr as 0.8 in the section of ablation study
and the comparison with state-of-the-art methods.

Visualization

The learned image and question attentions and the predicted
answers of nine typical examples in the VQA v2 dataset
are represented in Figure 4. They cover types as broad as
“Yes/No”, “Number”, and “Other”. The highlighted parts in
the image are the attended object proposals. Words in bold
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Figure 4: Visualization of learned attentions for some typical examples in the VQA v2 dataset. For each example, the image
on the left indicates the input image; the learned image attention is visualized in the right. We also display the question at-
tention (Q), ground-truth answer (T A), and predicted answer (P A) below the image. The highlighted part in the images and
words in bold denote the attended visual and textual contents, respectively. The content in red indicates the missed attention or
the wrong answer predicted by the method.

are the learned meaningful words. In the last row, the content
in red indicates the missed attention or the wrong answer
predicted by the method.

For the correctly answered questions, the keywords in
questions and objects closely related to the questions are
accurately attended. Then, the model gives the correct an-
swers according to the attended visual and textual contents.
Take the first sample in the type of “Number” as an exam-
ple, the proposed model focuses on the keyword “tires” and
the question is correctly understood. And then, the tires of
the car in the image are attended according to the semantic
of the question. The correct answer “2” is predicted based
on the accurate understanding of the question and the im-
age. It is the same to the first sample in the type of “other”,
our model correctly attended the smiling mouth of the man,
thus giving the answer that the emotion of the man in the
image is “happy”. For the incorrectly answered questions,
there are two main limitation: First, the model fails to dis-
tinguish the keywords in the question or key objects in the
image, which hinders the model learning the correct an-
swer (e.g., the model fails to focus on the keyword “ready”,
which causes the incorrect answer for the first failure in-
stance); Second, the model fails to predict the correct answer
even from the closely attended textual and visual contents.
Take the last failure instance as an example, because some
common sense is involved, which is difficult to understand
through the attention-based methods. Our model predicts a
wrong answer, although the model focuses on the key words
“yellow strip”, “platform”, and the closely relevant objects

in the image. These observations can help us to further im-
prove our model.

Conclusion

In this paper, we propose a re-attention model to address the
problem of visual question answering. Inspired by the obser-
vation that both questions and answers contribute to describ-
ing visual contents, rather than only using answers as classi-
fication labels, we utilize the answer representation to guide
visual attention learning. Specifically, we conduct an atten-
tion consistency loss to evaluate the difference between the
learned visual attention by only questions and that learned
in the re-attention. Besides, a new attention module is pro-
posed to correlate the relationship of each object-word pair
in the fine-grained perspective than other co-attention based
methods. Our method outperforms the compared methods
on a commonly used benchmark dataset, and experimental
results show the effectiveness of the proposed cross attention
and re-attention module.
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