
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Minimizing the Bag-of-Ngrams Difference for
Non-Autoregressive Neural Machine Translation

Chenze Shao,1,2 Jinchao Zhang,3 Yang Feng,1,2∗ Fandong Meng,3 Jie Zhou3

1Key Laboratory of Intelligent Information Processing,
Institute of Computing Technology, Chinese Academy of Sciences (ICT/CAS)

2University of Chinese Academy of Sciences
3Pattern Recognition Center, WeChat AI, Tencent Inc, China

{shaochenze18z, fengyang}@ict.ac.cn
{dayerzhang, fandongmeng, withtomzhou}@tencent.com

Abstract

Non-Autoregressive Neural Machine Translation (NAT)
achieves significant decoding speedup through generating tar-
get words independently and simultaneously. However, in
the context of non-autoregressive translation, the word-level
cross-entropy loss cannot model the target-side sequential de-
pendency properly, leading to its weak correlation with the
translation quality. As a result, NAT tends to generate in-
fluent translations with over-translation and under-translation
errors. In this paper, we propose to train NAT to minimize
the Bag-of-Ngrams (BoN) difference between the model out-
put and the reference sentence. The bag-of-ngrams training
objective is differentiable and can be efficiently calculated,
which encourages NAT to capture the target-side sequential
dependency and correlates well with the translation quality.
We validate our approach on three translation tasks and show
that our approach largely outperforms the NAT baseline by
about 5.0 BLEU scores on WMT14 En↔De and about 2.5
BLEU scores on WMT16 En↔Ro.

1 Introduction

Neural Machine Translation (NMT) has achieved impres-
sive performance over the recent years (Cho et al. 2014;
Sutskever, Vinyals, and Le 2014; Bahdanau, Cho, and Ben-
gio 2014; Wu et al. 2016; Vaswani et al. 2017). NMT models
are typically built on the encoder-decoder framework where
the encoder encodes the source sentence into distributed rep-
resentations and the decoder generates the target sentence
from the representations in an autoregressive manner: to pre-
dict the next word, previously predicted words have to be fed
as inputs. The word-by-word generation manner of NMT
determined by the autoregressive mechanism leads to high
translation latency during inference and restricts application
scenarios of NMT.

To reduce the translation latency for neural machine
translation, non-autoregressive translation models (Gu et al.
2017) have been proposed. A basic NAT model takes the
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Figure 1: The cross-entropy loss gives a large penalty to the
unaligned translation and may cause the overcorrection. The
bag-of-2grams difference is robust to the unaligned transla-
tion and correlates well with the translation quality.

same encoder-decoder architecture as Transformer (Vaswani
et al. 2017). Instead of using previously generated tokens
as in autoregressive models, NAT takes other global sig-
nals as decoder inputs (Gu et al. 2017; Guo et al. 2019;
Kaiser et al. 2018; Akoury, Krishna, and Iyyer 2019), which
enables the simultaneous and independent generation of tar-
get words and achieves significant decoding speedup.

However, in the context of non-autoregressive translation,
the word-level cross-entropy loss cannot model the target-
side sequential dependency properly, leading to its weak cor-
relation with the translation quality. The cross-entropy loss
encourages NAT to generate the golden token in each posi-
tion without considering the global correctness. For exam-
ple, as Figure 1 illustrates, though the translation “I have to
get up and start working” is semantically close to the ref-
erence, the cross-entropy loss will give it a large penalty
due to its unalignment with the reference. Under the guid-
ance of cross-entropy loss, the translation may be corrected
to “I have to up up start start working” that is preferred by
the cross-entropy loss but actually gets worse and contains
repeated words, which is named as the overcorrection er-
ror (Zhang et al. 2019). The limitation of the cross-entropy
loss aggravates the weakness of NAT in modeling target se-
quential dependency, which often causes influent transla-
tion results with over-translation and under-translation er-
rors (Shao et al. 2019; Wang et al. 2019). In addition, since
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the cross-entropy loss does not correlate well with the trans-
lation quality, it usually takes a long time for NAT to con-
verge.

In this paper, we propose to model the target-side se-
quential dependency for NAT through minimizing the Bag-
of-Ngrams (BoN) difference between the model output and
the reference sentence. As the word-level cross-entropy loss
cannot model the target-side sequential dependency prop-
erly, we propose to evaluate the NAT output on the n-gram
level. Since the output of NAT may not be aligned with the
reference, we do not require the strict alignment and instead
optimize the bag-of-ngrams for NAT. As Figure 1 illustrates,
the bag-of-ngrams difference is robust to unaligned transla-
tions and correlates well with the translation quality. Opti-
mizing such a sequence-level objective usually faces the dif-
ficulty of exponential search space. Previous works (Ranzato
et al. 2015; Shao et al. 2019) usually observe the objective as
a reward and train the model under the reinforcement learn-
ing framework (Williams 1992), which has relatively slow
training speed and suffers from high estimation variance. We
introduce a novel method to overcome the difficulty of expo-
nential search space. Firstly, we define the BoN of NAT by
the expectation of BoN on all possible translations. Then the
BoN training objective is to minimize the BoN difference
between NAT output and reference. For NAT, we give a sim-
ple and efficient method to calculate the BoN objective. The
BoN training objective has the following advantages:

• It models the target-side sequential dependency for NAT
and correlates well with the translation quality.

• It does not assume specific NAT model architectures and
is easy to implement.

• It can be calculated accurately without making any ap-
proximation.

• It is differentiable and maintains fast training speed.
Therefore it can not only be utilized for fine-tuning but
also work together with cross-entropy loss to jointly train
NAT from scratch.

We evaluate the proposed method on three transla-
tion tasks (IWSLT16 En→De, WMT14 En↔De, WMT16
En↔Ro). Experimental results show that the fine-tuning
method achieves large improvements over the pre-trained
NAT baseline, and the joint training method further brings
considerable improvements over the fine-tuning method,
which outperforms the NAT baseline by about 5.0 BLEU
scores on WMT14 En↔De and about 2.5 BLEU scores on
WMT16 En↔Ro.

2 Background

2.1 Autoregressive Neural Machine Translation

Deep neural networks with autoregressive encoder-decoder
framework have achieved great success on machine transla-
tion, with different choices of architectures such as RNN,
CNN and Transformer. RNN-based models (Bahdanau,
Cho, and Bengio 2014; Cho et al. 2014) have a sequen-
tial architecture that prevents them from being parallelized.
CNN (Gehring et al. 2017), and self-attention (Vaswani et

al. 2017) based models have highly parallelized architec-
ture, which solves the parallelization problem during train-
ing. However, during inference, the translation has to be gen-
erated word-by-word due to the autoregressive mechanism.

Given a source sentence X = {x1, ..., xn} and a target
sentence Y = {y1, ..., yT }, autoregressive NMT models the
transaltion probability from X to Y sequentially as:

P (Y |X, θ) =
T∏

t=1

p(yt|y<t,X, θ), (1)

where θ is a set of model parameters and y<t =
{y1, · · · , yt−1} is the translation history. The standard train-
ing objective is the cross-entropy loss, which minimize the
negative log-likelihood as:

LMLE(θ) = −
T∑

t=1

log(p(yt|y<t,X, θ)), (2)

During decoding, the partial translation generated by decod-
ing algorithms such as the greedy search and beam search is
fed into the decoder to generate the next word.

2.2 Non-Autoregressive Neural Machine
Translation

Non-autoregressive neural machine translation (Gu et al.
2017) is proposed to reduce the translation latency through
parallelizing the decoding process. A basic NAT model
takes the same encoder-decoder architecture as Transformer.
The NAT encoder stays unchanged from the original Trans-
former encoder, and the NAT decoder has an additional po-
sitional attention block in each layer compared to the Trans-
former decoder. Besides, there is a length predictor that takes
encoder states as input to predict the target length.

Given a source sentence X = {x1, ..., xn} and a tar-
get sentence Y = {y1, ..., yT }, NAT models the translation
probability from X to Y as:

P (Y |X, θ) =
T∏

t=1

p(yt|X, θ), (3)

where θ is a set of model parameters and p(yt|X, θ) indi-
cates the translation probability of word yt in position t. The
cross-entropy loss is applied to minimize the negative log-
likelihood as:

LMLE(θ) = −
T∑

t=1

log(p(yt|X, θ)), (4)

During training, the target length T is usually set as the ref-
erence length. During inference, the target length T is ob-
tained from the length predictor, and then the translation of
length T is obtained by taking the word with the maximum
likelihood at each time step:

ŷt = argmax
yt

p(yt|X, θ). (5)
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Figure 2: The calculation process of BoNθ(“get up”). First
calaulate the probability of the bigram “get up” in each sub-
area and then accumulate the probabilities.

3 Model

In this section, we will discuss the BoN objective for NAT in
detail. We first formulize the BoN of a discrete sentence by
the sum of n-gram vectors with one-hot representation. Then
we define the BoN of NMT by the expectation of BoN on all
possible translations and give an efficient method to calcu-
late the BoN of NAT. The BoN objective is to minimize the
difference between the BoN of NAT output and reference,
which encourages NAT to capture the target-side sequential
dependency and generate high-quality translations.

3.1 Bag-of-Ngrams

Bag-of-words (Joachims 1998) is the most commonly used
text representation model which discards the word order
and represent sentence as the multiset of its belonging
words. Bag-of-ngrams (Pang, Lee, and Vaithyanathan 2002;
Li et al. 2017) is proposed to enhance the text representa-
tion by takeing consecutive words (n-gram) into considera-
tion. Assume that the vocabulary size is V , Bag-of-Ngrams
(BoN) is a vector of size V n, which is the sum of zero-one
vectors where each vector is the one-hot representation of
an n-gram. Formally, for a sentence Y = {y1, ..., yT }, we
use BoNY to denote the bag-of-ngrams of Y . For an n-gram
g = (g1, . . . , gn), we use BoNY (g) to denote the value of g
in BoNY , which is the number of occurrences of n-gram g
in sentence Y and can be formulized as follows:

BoNY (g) =

T−n∑

t=0

1{yt+1:t+n = g}, (6)

where 1{·} is the indicator function that takes value from
{0, 1} whose value is 1 iff the inside condition holds.

For a discrete sentence, our definition of BoN is consistent
with previous work. However, there is no clear definition
of BoN for sequence models like NMT, which model the
probability distribution on the whole target space. A natural
approach is to consider all possible translations and use the

expected BoN to define the BoN for sequence models. For
NMT with parameter θ, we use BoNθ to denote its bag-of-
ngrams. Formally, given a source sentence X , the value of
n-gram g in BoNθ is defined as follows:

BoNθ(g) =
∑

Y

P (Y |X, θ) · BoNY (g). (7)

3.2 Efficient Calculation

It is unrealistic to directly calculate BoNY (g) according to
Eq.(7) due to the exponential search space. For autoregres-
sive NMT, because of the conditional dependency in model-
ing translation probability, it is difficult to simplify the cal-
culation without loss of accuracy. Shao, Chen, and Feng
(2018) only focuses on greedily chosen words and makes the
search space very limited. Ma et al. (2018) sums up the dis-
tribution of all positions to generate the bag-of-words, which
is biased by the teacher forcing.

Fortunately, NAT models the translation probability in
different positions independently, which enables us to di-
vide the target sequence into subareas and analyze the BoN
in each subarea without being influenced by other positions.
Guiding by this unique property of NAT, we convert Eq.(7)
to the following form:

BoNθ(g) =
∑

Y

P (Y |X, θ) ·
T−n∑

t=0

1{yt+1:t+n = g}

=

T−n∑

t=0

∑

Y

P (Y |X, θ) · 1{yt+1:t+n = g}

=

T−n∑

t=0

∑

Yt+1:t+n

P (Yt+1:t+n|X, θ) · 1{yt+1:t+n = g}

=

T−n∑

t=0

n∏

i=1

p(yt+i = gi|X, θ).

(8)
Eq.(8) gives an efficient method to calculate BoNθ(g): slide
a window on NAT output distributions to obtain subareas
of size n, and then accumulate the values of n-gram g in
all subareas. Figure 2 illustrates the calculation process of
a bigram “get up”. It does not make any approximation and
requires little computational effort.

3.3 Bag-of-Ngrams Objective

The training objective is to minimize the BoN difference
between NAT output and reference. The difference can be
measured by several metrics such as the L1 distance, L2 dis-
tance and cosine distance. In previous sections, we define the
BoN for NAT and give an efficient calculation method for
BoNθ(g). However, since there are V n different n-grams,
calculating the complete BoN vector for NAT still consumes
a huge amount of storage space and computing resources.

We use the sparsity of bag-of-ngrams to further simplify
the calculation. As shown in Eq.(8), for NAT, its bag-of-
ngrams BoNθ is dense. On the contrary, assume that the ref-
erence sentence is Ŷ , the vector BoNŶ is very sparse where
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only a few entries of it have non-zero values. Using this
property, we show that the L1 distance between the two BoN
vectors can be calculated efficiently. Unfortunately, some
other distance metrics like L2 distance and cosine distance
cannot be simplified in this way.

Assume that the target length is T . Intutively, a sentence
of length T has T−n+1 n-grams. We first verify the intution
that the L1-norm of BoNY and BoNθ are both T − n+ 1:

∑

g

BoNY (g) =

T−n∑

t=0

∑

g

1{yt+1:t+n = g} = T − n+ 1.

(9)∑

g

BoNθ(g) =
∑

g

∑

Y

P (Y |X, θ) · BoNY (g)

=
∑

Y

P (Y |X, θ) ·
∑

g

BoNY (g) = T − n+ 1.
(10)

On this basis, we can derive the L1 distance between
BoNθ and BoNŶ , where Ŷ is the reference sentence. We
denote the L1 distance as BoN-L1 and convert it to the fol-
lowing form:

BoN-L1 =
∑

g

|BoNθ(g)− BoN
Ŷ
(g)|

=
∑

g

(BoNθ(g) + BoN
Ŷ
(g)− 2min(BoNθ(g),BoN

Ŷ
(g))

= 2(T − n+ 1−
∑

g

min(BoNθ(g),BoN
Ŷ
(g))).

(11)

The minimum between BoNθ(g) and BoNŶ (g) can be
understood as the number of matches for the n-gram g, and
the L1 distance measures the number of n-grams predicted
by NAT that fails to match the reference sentence. Notice
that the minimum will be nonzero only if the n-gram g ap-
pears in the reference sentence. Hence we can only focus
on n-grams in the reference, which significantly reduce the
computational effort and storage requirement. Algorithm 1
illustrates the calculation process of BoN-L1.

We normalize the L1 distance to range [0, 1] by dividing
the constant 2(T − n+ 1). The BoN training objective is to
minimize the normalized L1 distance:

LBoN (θ) =
BoN-L1

2(T − n+ 1)
. (12)

As is usual practice in sequence-level training, we can use
the BoN objective to fine-tune a pre-trained baseline model.
We denote this method as BoN-FT. In addition, since the
BoN objective is differentiable and can be calculated effi-
ciently, it can also work together with cross-entropy loss to
jointly train NAT from scratch. We use a hyper-parameter α
to combine the two losses:

Ljoint(θ) = α · LMLE(θ) + (1− α) · LBoN (θ). (13)

The joint training method is denoted as BoN-Joint. After
the joint training, we can fine-tune the model using the BoN
objective only. We denote this method as BoN-Joint+FT.

Algorithm 1 BoN-L1

Input: model parameters θ, input sentence X , reference
sentence Ŷ , prediction length T , n
Output: BoN precision BoN-p

1: construct the reference bag-of-ngrams BoNŶ
2: ref-ngrams={g|BoNŶ (g) != 0}
3: match = 0
4: for g in ref-ngrams do
5: calculate BoNθ(g) according to Eq.(8)
6: match += min(BoNθ(g),BoNŶ (g))

7: BoN-L1 = 2(T-n+1-match)
8: return BoN-L1

4 Related Work

Gu et al. (2017) introduced the non-autoregressive Trans-
former to reduce the translation latency of NMT, which
comes at the cost of translation quality. Instead of using pre-
viously generated tokens as in autoregressive models, NAT
take other global signals as decoder inputs. Gu et al. (2017)
introduced the uniform copy and fertility to copy from
source inputs. Kaiser et al.; Roy et al.; Ma et al. (2018; 2018;
2019) proposed to use latent variables to improve the per-
formance of non-autoregressive Transformer. Akoury, Kr-
ishna, and Iyyer (2019) introduced syntactically supervised
Transformers, which first autoregressively predicts a chun-
ked parse tree and then generate all target tokens conditioned
on it. Lee, Mansimov, and Cho (2018) proposed to itera-
tively refine the translation where the outputs of decoder are
fed back as inputs in the next iteration. Li et al. (2019) pro-
posed to improve non-autoregressive models through dis-
tilling knowledge from autoregressive models. Gu, Wang,
and Zhao (2019) introduced Levenshtein Transformer for
more flexible and amenable sequence generation. Wang,
Zhang, and Chen (2018) introduced the semi-autoregressive
Transformer that generates a group of words each time.
Guo et al. (2019) proposed to enhance decoder inputs with
phrase-table lookup and embedding mapping. Libovickỳ
and Helcl (2018) proposed an end-to-end non-autoregressive
model using connectionist temporal classification. Wei et
al. (2019) proposed an imitation learning framework where
the non-autoregressive learner learns from the autoregres-
sive demonstrator through an imitation module. Wang et al.
(2019) pointed out that NAT is weak in capturing sequential
dependency and proposed the similarity regularization and
reconstruction regularization to reduce errors of repeated
and incomplete translations. Anonymous; Ran et al. (2020;
2019) proposed to model the reordering information for non-
autoregressive Transformer. Shao et al. (2019) proposed
Reinforce-NAT to train NAT with sequence-level objectives.
As the techniques for variance reduction makes the training
speed relatively slow, this method is restricted in fine-tuning.

Training NMT with discrete sequence-level objectives
has been widely investigated under the reinforcement learn-
ing framework (Ranzato et al. 2015; Shen et al. 2015;
Wu et al. 2016; 2018; Shao et al. 2019). Recently, differ-
entiable sequence-level training objectives for autoregres-
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sive NMT have attracted much attention. Gu, Cho, and Li
(2017) applied the deterministic policy gradient algorithm
to train NMT actor with the differentiable critic. Ma et al.
(2018) proposed to use bag-of-words as target during train-
ing. Shao, Chen, and Feng (2018) proposed to evaluate
NMT outputs with probabilistic n-grams.

5 Experimental Setting

Datasets We use several widely adopted benchmark
datasets to evaluate the effectiveness of our proposed
method: IWSLT16 En→De (196k pairs), WMT14 En↔De
(4.5M pairs) and WMT16 En↔Ro (610k pairs). For
WMT14 En↔De, we employ newstest-2013
and newstest-2014 as development and test sets.
For WMT16 En↔Ro, we take newsdev-2016 and
newstest-2016 as development and test sets. For
IWSLT16 En→De, we use the test2013 for validation.
We use the preprocessed datasets released by Lee, Mansi-
mov, and Cho (2018), where all sentences are tokenized
and segmented into subwords units (Sennrich, Haddow, and
Birch 2016). The vocabulary size is 40k and is shared for
source and target languages. We use BLEU (Papineni et al.
2002) to evaluate the translation quality.

Baselines We take the Transformer model (Vaswani et al.
2017) as our autoregressive baseline as well as the teacher
model. The non-autoregressive model with 2 iterative refine-
ment iterations (IRNAT) (Lee, Mansimov, and Cho 2018) is
our non-autoregressive baseline, and the methods we pro-
pose are all experimented on this baseline model. We also
include three relevant NAT works for comparison, NAT with
fertility (NAT-FT) (Gu et al. 2017), NAT with auxiliary regu-
larization (NAT-REG) (Wang et al. 2019) and reinforcement
learning for NAT (Reinforce-NAT) (Shao et al. 2019).

Model Configurations We closely follow the settings
of Gu et al. (2017), Lee, Mansimov, and Cho (2018)
and Shao et al. (2019). For IWSLT16 En→De, we use
the small Transformer (dmodel=278, dhidden=507, nlayer=5,
nhead=2, pdropout=0.1, twarmup=746). For experiments on
WMT datasets, we use the base Transformer (Vaswani
et al. 2017) (dmodel=512, dhidden=512, nlayer=6, nhead=8,
pdropout=0.1, twarmup=16000). We use Adam (Kingma and
Ba 2014) for the optimization. In the main experiment, the
hyper-parameter α to combine the BoN objective and cross-
entropy loss set to be 0.1. We set n=2, that is, we use the
bag-of-2grams objective to train the model. The effects of α
and n will be analyzed in detail later.

Training and Inference During training, we apply the
sequence-level knowledge distillation (Kim and Rush 2016),
which constructs the distillation corpus where the target side
of the training corpus is replaced by the output of the autore-
gressive Transformer. We directly use the distillation corpus
released by Lee, Mansimov, and Cho (2018). We use the
original corpus to train the autoregressive Transformer and
distillation corpus to train non-autoregressive models. For
NAT baseline, we stop training when the number of training
steps exceeds 300k and there is no further improvements in
the last 100k steps. For BoN-Joint, we stop training when

the number of training steps exceeds 150k and there is no
further improvements in the last 100k steps. For BoN-FT,
the number of fine-tuning steps is fixed to 5k.

After training NAT, we train a target length predictor to
predict the length difference between the source and target
sentences. The target length predictor takes the sum of en-
coder hidden states as input and feeds it to a softmax classi-
fier after an affine transformation. During inference, we first
run the encoder and apply the length predictor to predict the
target length. Then we construct decoder inputs through uni-
form copy (Gu et al. 2017) and run the decoder to generate
the translation. During postprocessing, we remove any to-
ken that is generated repeatedly. The training and decoding
speed are measured on a single Geforce GTX TITAN X.

6 Results and Analysis

6.1 Main Results

We report our main results in Table 1, from which we have
the following observations:
1. BoN-FT achieves significant training speedup over
Reinforce-NAT and outperforms Reinforce-NAT on
BLEU scores. BoN-FT and Reinforce-NAT are both fine-
tuning approaches. BoN-FT slightly outperforms Reinforce-
NAT on four translation directions and achieves at most
3.74 BLEU improvements over the NAT-Base on WMT14
De→En. More importantly, since the BoN objective is dif-
ferentiable and can be efficiently calculated, the training
speed of BoN-FT is nearly 10 times faster than Reinforce-
NAT, which makes the fine-tuning process very efficient.
2. BoN-Joint+FT achieves considerable improvements
over BoN-FT. By combining the BoN objective and cross-
entropy loss, we obtain BoN-Joint, which achieves consider-
able improvements over BoN-FT. Though the training speed
for BoN-Joint is about two times slower, BoN-Joint only
needs about half of training steps to converge, so the training
time is almost the same as NAT-Base. BoN-Joint+FT further
improves the performance through fine-tuning BoN-Joint
with the BoN objective, which achieves about 5.0 BLEU im-
provements on WMT14 En↔De, about 2.5 BLEU improve-
ments on WMT16 En↔Ro and 1.59 BLEU improvements
on IWSLT16 En→De.
3. Our methods achieve higher improvements on WMT
datasets than the IWSLT dataset. One interesting phe-
nomenon is that our methods achieve higher improvements
on WMT datasets. The BLEU improvement is 4.85 on
WMT14 En→De but only 1.59 on IWSLT16 En→De. As
we will analyze later, this has a lot to do with the sentence
length of datasets since the cross-entropy loss does not per-
form well on long sentences.

6.2 Correlation with Translation Quality

In this section, we experiment with the correlation between
the loss function and translation quality. We are interested in
how the cross-entropy loss and BoN objective correlate with
the translation quality. As a common practice, the BLEU
score is used to represent the translation quality. We experi-
ment on the WMT14 En→De development set, which con-
tains 3000 sentences. Firstly we randomly divide the dataset
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IWSLT’16 En-De WMT’16 En-Ro WMT’14 En-De
En→ speedup secs/b En→ Ro→ speedup En→ De→ speedup

A
R b=1 28.64 1.09× 0.20 31.93 31.55 1.23× 23.77 28.15 1.13×

b=4 28.98 1.00× 0.20 32.40 32.06 1.00× 24.57 28.47 1.00×

N
A

T
M

od
el

s NAT-FT (Gu et al. 2017) 26.52 15.6× – 27.29 29.06 – 17.69 21.47 –
IRNAT(iter=2) (2018) 24.82 6.64× – 27.10 28.15 7.68× 16.95 20.39 8.77×
IRNAT(adaptive) (2018) 27.01 1.97× – 29.66 30.30 2.73× 21.54 25.43 2.38×
NAT-REG (Wang et al. 2019) – – – – – – 20.65 24.77 27.6×
Reinforce-NAT (Shao et al. 2019) 25.18 8.43× 13.40 27.09 27.93 9.44× 19.15 22.52 10.73×

O
ur

M
od

el
s NAT-Base 24.13 8.42× 0.62 25.96 26.49 9.41× 16.05 19.46 10.76×

BoN-FT (n=2) 25.03 8.44× 1.41 27.21 27.95 9.50× 19.27 23.20 10.72×
BoN-Joint (n=2, α=0.1) 25.63 8.39× 1.49 28.12 29.03 9.44× 20.75 24.47 10.79×
BoN-Joint+FT (n=2, α=0.1) 25.72 8.40× 1.41 28.31 29.29 9.51× 20.90 24.61 10.77×

Table 1: Generation quality (4-gram BLEU), speedup and training speed (seconds/batch). Decoding speed is measured sentence-
by-sentence from the En→ direction. AR: the autoregressive Transformer baseline and the teacher model. b: beam size. NAT-
Base: the non-autoregressive Transformer baseline trained by the cross-entropy loss. BoN-FT: fine-tune the NAT-Base with the
BoN objective. BoN-Joint: combine the BoN objective and cross-entropy loss to jointly train NAT from scratch. BoN-Joint+FT:
fine-tune the BoN-Joint with the BoN objective.

into 100 subsets of size 30. Then we use the NAT model to
decode the 100 subsets and compute the BLEU score and
loss function on every subset. Finally we calculate the pear-
son correlation between the 100 BLEU scores and losses.

For the cross-entropy loss, we normalize it by the target
sentence length. The BoN training objective is the L1 dis-
tance BoN-L1 normalized by 2(T −n+1). We respectively
set n to 1, 2, 3 and 4 to test different n-gram size. Table 2
lists the correlation results.

Loss function CE n = 1 n = 2 n = 3 n = 4
Correlation 0.37 0.56 0.70 0.67 0.61

Table 2: The pearson correlation bewteen loss functions and
translation quality. n = k represents the bag-of-kgrams
training objective. CE represents the cross-entropy loss.

We can see that between different BoN objectives, n = 1,
which represents the bag-of-words objective, underperforms
other choices of n, indicating the necessity of modeling se-
quential dependency for NAT. Another observation is that all
the four BoN objectives outperform the cross-entropy loss
by large margins. To find out where the performance gap
comes from, we analyze the effect of sentence length in the
following experiment. We evenly divide the dataset into two
parts according to the source length, where the first part con-
sists of 1500 short sentences and the second part consists of
1500 long sentences. We respectively measure the pearson
correlation on the two parts and list the results in Table 3:

From Table 3, we can see that the correlation of cross-
entropy loss drops sharply as the sentence length increases,
where the BoN objective still has strong correlation on long
sentences. The reason is not difficult to explain. The cross-
entropy loss requires the strict alignment between the trans-
lation and reference. As sentence length grows, it becomes

all short long
Cross-Entropy 0.37 0.52 0.21

BoN (n=2) 0.70 0.79 0.81

Table 3: The pearson correlation bewteen loss functions and
translation quality on short sentences and long sentences.

harder for NAT to align the translation with reference, which
leads to a decrease of correlation between cross-entropy loss
and translation quality. In contrast, the BoN objective is ro-
bust to unaligned translations, so its correlation with trans-
lation quality stays strong when translating long sentences.

6.3 Number of Removed Tokens

In this section, we study the number of tokens removed dur-
ing postprocessing to see how our method improves transla-
tion quality. We sort the WMT14 En→De development set
by sentence length and split it evenly into the short part and
long part accordingly. Then we translate them using NAT-
Base and BoN-Joint respectively and record in table 4 the
number of removed repeated tokens during postprocessing.

short long all
Total 22023 56142 78165

NAT-Base 1232(5.6%) 7317(13.0%) 9643(12.3%)
BoN-Joint 515(2.3%) 1726(3.1%) 2241(2.9%)

Table 4: The number of removed repeated tokens for NAT-
Base and BoN-Joint. Total represents the total length of ref-
erence sentences.

As shown in table 4, NAT-Base suffers from the repeated
translation when translating long sentences, which is effi-
ciently alleviated in BoN-Joint. This is in line with our anal-
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ysis. As sentence length grows, it becomes harder for NAT
to align the translation with reference, which results in more
overcorrection errors and makes more repeated tokens be
translated.

6.4 Effect of Sentence Length

Previously, we give the correlation between loss functions
and the translation quality under different sentence lengths.
In this section, we will experiment on the BLEU perfor-
mance of NAT baseline and our models on different sentence
lengths and see whether the better correlation contributes to
better BLEU performance. We conduct the analysis on the
WMT14 En→De development set and divide the sentence
pairs into different length buckets according to the length of
the reference sentence. Figure 3 shows our results.

We can see that the performance of NAT-Base drops
quickly as sentence length increases, where the autoregres-
sive Transformer and BoN models have stable performance
over different sentence lengths. This can be well explained
by the correlation results. As sentence length grows, the cor-
relation between the cross-entropy loss and the translation
quality drops sharply, which leads to the weakness of NAT
in translating long sentences.

Figure 3: BLEU performance on different length buckets.

6.5 Effect of α

In this section, we study the effect of the hyper-parameter α,
which is defined in Eq.(13) and is used to control the propor-
tion of the cross-entropy loss and BoN loss. We set n = 2
and use different α to train BoN-Joint on WMT14 En→De.
Figure 4 shows the BLEU scores on the development set.

We can see from Figure 4 that α = 0.1 has a stable and
fast BLEU improvement over time. When we set α = 0.1,
the time required for model convergence is the shortest, and
the BLEU score after convergence is the best over other
choices of α. In addition, we find that when we set n = 2,
α = 0.1 performs well in all the three datasets, which frees
us from the hyper-parameter tuning.

Figure 4: Training curves for BoN-Joint with different
hyper-parameter α.

6.6 Effect of N-gram Size

In this section, we study the effect of n-gram size. We re-
spectively set n to 1, 2, 3, and 4 and evaluate the perfor-
mance of BoN-FT and BoN-Joint on the WMT14 En→De
development set. When training BoN-Joint, we tune the
hyper-parameter α for every n to obtain the optimal perfor-
mance. The results are listed in Table 5. For BoN-FT, the
BoN objective is only used to fine-tune the NAT baseline,
and different choices for n do not have a large impact on
the BLEU performance. For BoN-Joint, the choice of n be-
comes more important, and n = 2 significantly outperforms
other choices of n, which is consistent with the correlation
result in Table 2.

n = 1 n = 2 n = 3 n = 4
BoN-FT 18.06 18.13 18.17 18.08

BoN-Joint 17.73 19.28 18.45 17.97

Table 5: The BLEU performance of BoN-FT and BoN-Joint
under different choices of n.

7 Conclusion

In the context of non-autoregressive translation, the cross-
entropy loss cannot model the target-side sequential depen-
dency properly and suffers from the weak correlation with
the translation quality. In this paper, we propose a novel
Bag-of-Ngrams objective to model the target-side sequen-
tial dependency for NAT. The BoN objective is differentiable
and can be calculated efficiently. Experiments show that the
BoN objective correlates well with the translation quality
and achieves large improvements over the NAT baseline.
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