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Abstract

Many annotation systems provide to add an unsure option
in the labels, because the annotators have different exper-
tise, and they may not have enough confidence to choose a
label for some assigned instances. However, all the existing
approaches only learn the labels with a clear class name and
ignore the unsure responses. Due to the unsure response also
account for a proportion of the dataset (e.g., about 10-30%
in real datasets), existing approaches lead to high costs such
as paying more money or taking more time to collect enough
size of labeled data. Therefore, it is a significant issue to make
use of these unsure.
In this paper, we make the unsure responses contribute to
training classifiers. We found a property that the instances
corresponding to the unsure responses always appear close
to the decision boundary of classification. We design a loss
function called unsure loss based on this property. We extend
the conventional methods for classification and learning from
crowds with this unsure loss. Experimental results on real-
world and synthetic data demonstrate the performance of our
method and its superiority over baseline methods.

1 Introduction

Preparing a sufficient amount of “appropriately labeled”
datasets is key to build a high-quality supervised machine
learning model. So far, such labeling process has relied
on expert annotators or wisdom of crowds (Dawid and
Skene 1979; Whitehill et al. 2009; Welinder et al. 2010;
Jin et al. 2017). However, those annotators are not always
being correct and the resulting datasets sometimes contain
incorrectly labeled instances in practice.

Conventional approaches try to avoid incorrect label-
ing by allowing annotators to give up a labeling task if
it is too difficult for them (Zhong, Tang, and Zhou 2015;
Ding and Zhou 2018). In these approaches, annotators are
permitted to choose the third option called “unsure” instead
of ordinary “Yes” or “No” when they are not so confident for
the label of the instance. Thus, conventional approaches can
just discard the instances with “unsure”, and train a high-
quality machine learning model with the remained high-
confident labeled instances.
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Figure 1: In our dog-wolf classification task, instances corre-
sponding to unsure responses from annotators (red triangles)
are located close to the ground-truth decision boundary.

In reality, however, a fair amount of instances are la-
beled as “unsure”. According to the real dataset (UDI Twit-
ter Crawl-Aug2012) in the related work (Zhong, Tang, and
Zhou 2015), there are about 32% “unsure” in all responses.
Moreover, we also conduct a preliminary experiment on
classifying the images of dogs and wolfs, and the “unsure”
instances make up 15.6% of all responses. In these cases,
with the conventional “let’s ignore unsure instances” strat-
egy, the size of the training dataset is decreased, which may
cause the issues such as (1) small training sets incur an over-
fitting problem, and (2) need an extra labeling process that
costs much and takes time.

Naturally, this comes up with an important research ques-
tion: can we leverage “unsure” instances instead of ignor-
ing them to train a high-quality model?

In this paper, we examine the behavior of the “unsure”
instances in real-world labeled datasets, we found that the
“unsure” instances tend to be located close to the ground
truth decision boundary (Section 2.1). Figure 1 shows the
concept of the relationship between “unsure” instances and
the decision boundary. It implies that “unsure” instances can
be a strong signal for determining the position of the deci-
sion boundary, that is, they can help training a high-quality
supervised model. Based on this observation, we first de-
fine two learning problems with unsure responses (Section
2.2). Then, we design a novel loss function named unsure
loss (Section 3.1). The unsure loss works like a regulariza-
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Table 1: Main symbols and description.
Symbol Description
X set of instances
J set of annotators
j ∈ J annotator j
xi ∈ X instance i

yji annotated label of instance i by annotator j
Dj labeled dataset by annotator j without unsure
Uj labeled instances with unsure by annotator j
f : X → R score function of personal classifier
θj parameter of the j-th personal classifier
θ0 parameter of the global classifier
λ, γ, η hyper-parameters of our model
L(·) original loss function
H(·) unsure loss

tion term that makes the estimated decision boundary close
to the “unsure” instances. We extend conventional methods
with our unsure loss and propose solutions for two classi-
fication problems (Sections 3.2 and 3.3). Through our ex-
periments (Section 4), we confirmed that our “unsure loss”
approach empirically outperforms the conventional “let’s ig-
nore unsure instances” approaches in many datasets.

Our contributions are summarized as follows:

• We find that the instances corresponding to unsure re-
sponses by annotators are close to the ground truth de-
cision boundary.

• We propose an unsure loss to consider the unsure re-
sponses for learning a classifier.

• We extend the conventional methods for the problems of
classification and learning from crowds by using the un-
sure loss to improve the performance.

• Experiments on both synthetic and real-world datasets
show the performance of our approach is better than those
of the conventional model.

2 Unsure Responses

In this section, we first introduce our assumption and the
observation of a preliminary experiment with unsure re-
sponses. Then, we define the problems of learning with un-
sure responses, which are tackled in this paper. The main
symbols in this paper are summarized in Table 1.

2.1 Assumption and Observation

For annotators, it is easy to annotate an instance if it is clear
to distinguish the class which this instance belongs to. On
the other hand, if the annotator does not have enough knowl-
edge on candidate classes of the instance, annotators may
feel hard to add a label. When using the labeled instances
to build a classifier with machine learning, those hard-to-
label instances may become a low-quality training data if
annotators are forced to label them. However, if we allow
annotators to annotate them as “unsure”, these hard-to-label
instances may help us to build a better classifier, since these
instances have all the features of the candidate class. There-
fore, we assume that the unsure instances located close to

Figure 2: Our annotation system for binary image classifica-
tion tasks.

Table 2: The number of all responses and the unsure re-
sponses with five annotators for the 400 dog-wolf images
classification task.

Annotator # Responses # unsure
#1 400 45
#2 200 18
#3 400 123
#4 25 0
#5 400 37

the ground truth decision boundary. Figure 1 is an illustrator
to help to understand our assumption.

To test the above assumption, we conducted a prelimi-
nary experiment in our annotation system. We used 400 im-
ages of dogs and wolves from an open-source dataset Ima-
geNet (Deng et al. 2009) and asked five annotators to clas-
sify them. As shown in Figure 2, we allowed the annotators
to choose an unsure option when they feel hard to classify.

We first observed the number of unsure responses for each
annotator. As shown in Table 2, we collected 1425 responses
in total and there are 223/1425 � 15.6% unsure responses.
Then, we also took a deep observation that calculating the
distance between all responses and the ground truth deci-
sion boundary, then sorted them from near to far, and sum-
marized in Figure 3. In this figure, the dashed line represents
that the unsure responses distributed uniformly according to
the decision boundary. However, all solid lines of annotators
are located on the left up above the dashed line, this means
unsure responses tend to distribute around to the decision
boundary rather than a uniform distribution. To our surprise,
we observed that there are 114 unsure responses in the 160
nearest neighbor instances to the decision boundary. In other
words, the majority (114 / 223 � 51.1%) of unsure responses
are located in a close range (160 / 400 = 40%) to the ground
truth decision boundary.

2.2 Problem Definition

When training a classifier with the labeled dataset of an-
notators’ responses, the unsure responses can be used to
make a better performance since they are located close to
the ground truth decision boundary. We defined two prob-
lems on “learning with the unsure responses”, one targets to
a single annotator, and another one targets to multiple anno-
tators.
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Figure 3: The proportion of the unsure responses (vertical
axis) from near to far according to the ground truth decision
boundary.

Learning a Classifier with Unsure Responses First, we
define the problem of learning a classifier with unsure re-
sponses by a single annotator. Let j denote an annotator. Let
X = {x1, x2..., xN | x ∈ X} denote N instances to be clas-
sified, and Dj = {(xi, y

j
i ) | yji ∈ {−1, 1}}Ni=1 denote the

labeled dataset by j. Note that {−1, 1} mean binary classi-
fication labels. Uj = {xu

1 , . . . x
u
m} denote a set of instances

with the unsure responses by j. In the rest of the paper, “in-
stances with the unsure responses” is called unsure instances
by abbreviation. Note that the each unsure instance poten-
tially belongs to a class of {−1, 1}.

We formalize the problem of learning a classifier with un-
sure responses by a single annotator as follows:

Problem 1 (Learning a Classifier with Unsure Responses).
Given a set of labeled dataset Dj by an annotator j, and a
set of unsure instances Uj by an annotator j, estimate the
classifier f : X → R that accurately predicts the best label
of an instance.

Learning from Crowds with Unsure Responses Then,
we define the problem of learning from crowds with unsure
responses by multiple annotators. Let Ij ⊆ {1, . . . , N} be
the index set of labeled instances by annotator j, and Iuj ⊆
{1, . . . , N} be the index set of unsure instances by annotator
j. Let Dj = {(xi, y

j
i ) | i ∈ Ij} denote the pair of instances

and annotated labels by the annotator j, and Uj = {xi | i ∈
Iuj } denote the instances corresponding to unsure responses
by the annotator j.

We formalize the problem of learning from crowds with
unsure responses by multiple annotators as follows:

Problem 2 (Learning from Crowds with Unsure Response).
Given a set of labeled data {Dj}Jj=1 and instances with un-
sure responses {Uj}Jj=1 annotated by annotators J , esti-
mate the global classifier that predicts the best label of an
instance.

3 Learning with Unsure Responses

Inspired by the assumption in Section 2.1, we propose a se-
ries of methods LEUR-*, which train classifiers with the un-
sure responses from annotators. We first design a loss func-

tion named unsure loss. Then, by using the unsure loss, we
give two concrete LEUR models to solve Problems 1 and 2.

3.1 Unsure Loss

Training a classifier on a set of labeled instances D is mod-
eled as Empirical Risk Minimization:

min
θ

∑

(xi,yi)∈D

L(yi, f(xi; θ)), (1)

where L is a loss function and f is a score function that mea-
sures the distance between the instance x and the estimated
decision boundary θ. Based on our assumption that unsure
responses xu ∈ U are close to the decision boundary, we
design a component in empirical risk minimization called
unsure loss in the form of

Hsq(U, θ) =
∑

xu∈U

f(xu; θ)2. (2)

The unsure loss measures distances between the unsure in-
stances U and the estimated decision boundary, and regular-
ize the decision boundary to be placed close to the unsure
instances.

Besides the square function, unsure loss can take a variety
of forms such as

Hlog(U, θ)

= −
∑

xu∈U

(log σ(f(xu; θ)) + log(1− σ(f(xu; θ)))) (3)

and

Habs(U, θ) =
∑

xu∈U

|f(xu; θ)|. (4)

In the experiments section, we examine the performance dif-
ference of unsure losses.

3.2 Learning a Classifier with Unsure Response

To solve the Problem 1, we propose a method for learning
a classifier with the unsure responses. In this method, the
unsure loss is utilized to improve performance.

Problem 1 can be formalized as that optimizing the Equa-
tion (5) with the parameter θ

min
θj

∑

(xi,y
j
i )∈Dj

L(yji , f(xi; θj)) + γH(Uj , θj). (5)

The unsure loss is similar to a regularization term to avoid
overfitting.

For example, we can use the logistic regression model to
solve Problem 1 with the unsure loss. The original loss func-
tion in Equation (6) is called log-loss. The unsure loss H(.)
calculates the loss between the decision boundary and the
projected instances.

L(y, v) = −y log σ(v)− (1− y) log(1− σ(v)) (6)

Training a classifier with the unsure loss is model-
agnostic because the unsure loss does not depend on a clas-
sification model. For instance, when using a logistic regres-
sion model as the classifier, the training loss L(y, ŷ) is cho-
sen by the score function f so that we can only take log-loss
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as a training loss function L. But for the unsure loss, we can
take an appropriate one based on the feature of the unsure
responses in the dataset. The classifier is trained with both
labeled instances and unsure instances with the help of un-
sure loss. Therefore, the unsure loss can also help to avoid
underfitting and overfitting if the labeled instances have a
small number.

3.3 Learning from Crowds with Unsure Response

LEUR can also be used in the problem of learning from
crowds. LEUR can extend the conventional methods and im-
prove the predictive performance by adding the unsure loss
when learning the personal classifiers corresponding to an-
notators.

We propose two methods of extension for learning from
crowds with unsure responses: LEUR-naı̈ve and LEUR-PC.
LEUR-naı̈ve is a simple approach that using LEUR method
for learning from crowds straightforwardly. LEUR-PC ex-
tends the personal classifier model in (Kajino, Tsuboi, and
Kashima 2012) with LEUR method.

LEUR-naı̈ve For the LEUR-naı̈ve method, we formalize
the Problem 2 as the following Equation (7). According to
the Equation (7), we can minimize each loss and find the
optimal parameter of the personal classifiers Θ = {θj}, by
using not only labeled dataset Dj but also the instances cor-
responding to unsure responses Uj . We add a new loss func-
tion H(Uj , θj) for utilizing the unsure responses.

min
Θ

∑

j∈J
L(Dj , θj) + γH(Uj , θj) + λR(θj) (7)

Each loss function of an annotator consists of three com-
ponents: training loss L(Dj , θj), regularization term R(θj)
and unsure loss H(Uj , θj). Let use a SVM (support verctor
machine) as an example, we can take SVM as the personal
classifiers and extend the loss of SVM by using the unsure
loss. The original loss of SVM L(Dj , θj) is in Equation (8).
The unsure loss of SVM H(Uj , θj) is Equation (2). Besides
SVM, we can also use unsure loss in other classifiers.

L(Dj , θj) =
∑

(xi,y
j
i )∈Dj

max(0, 1− yji · f(xi; θj))(8)

R(θj) = ||θj ||2 (9)

LEUR-PC LEUR-PC is an extension of the PC (personal
classifier) method in (Kajino, Tsuboi, and Kashima 2012)
with our unsure loss. The PC method trains a personal clas-
sifier for the responses from each annotator, and use these
classifiers to build a global classifier model for classification.
We formalize the approach by using the following Equation
(10). L is the loss function of a personal classifier θj for
labeled dataset Dj . H is the unsure loss function for the un-
sure responses Uj . The original PC method has a regular-
ization term R for the parameters of global classifier θ0 and
personal classifiers θj .

min
Θ

∑

j∈J
L(Dj , θj) + ηR(θj , θ0) + γH(Uj , θj) (10)

Since the original PC model estimates the parameters of all
personal classifier then builds a global classifier, it needs
sufficient numbers of labeled responses from each annota-
tor. The proposed LEUR-PC extends the PC model with our
unsure loss so that the unsure responses can also be used
to train personal classifiers. Therefore, when the labeled re-
sponses are insufficient, LEUR-PC can still use the unsure
responses to infer a good decision boundary for a global
classifier.

Estimating Importance of Annotators with Unsure Re-
sponses We also assume that the unsure responses also re-
act to the importance of the annotators. As annotators may
have different numbers of their unsure responses, it is nat-
ural to think that an annotator with less unsure responses
is an expert. On the other hand, for the same instance set,
more unsure responses lead to less performance of learning
a personal classifier. Therefore, we consider the number of
unsure responses as the weight of the importance of an an-
notator. We can use these weighted personal classifiers to
improve the performance of the global classifier as follows:

min
Θ

∑

j∈J
L(Dj , θj) + ηjR(θj , θ0) + γH(Uj , θj) (11)

where ηj is a hyper-parameter to adjust the number of unsure
responses. For example, we can set the the hyper-parameter
ηj =

|Dj |+|Uj |
|Uj |+1 .

3.4 Extension to Complicated Problems

Besides binary classification, it is worthy to note that our un-
sure loss can also apply in multi-label and multi-class classi-
fication problems. Specifically, we can transfer a multi-label
problem to multiple binary classification problems by binary
relevance, and the unsure loss can be applied to these binary
classification problems. We can also transform a multi-class
problem to binary class problems by one-vs.-one reduction.

4 Experiments

To evaluate the effectiveness of our proposed methods, we
conduct experiments on both a synthetic dataset and a real
dataset. We answer the following questions in our experi-
ments:

• Can unsure responses help to increase the predictive per-
formance of classifiers by using our proposed unsure loss?

• In what kind of situation that the unsure loss has a strong
effect on predictive performance?

4.1 Datasets and Setting

Synthetically Labeled Data For synthetically labeled
data, we picked up 700 images as training data and 7000
images as testing data, which representing “0” or “6” from
the MNIST (LeCun et al. 1998) image dataset. The fea-
tures are extracted by PCA that converting data into a lower-
dimensional space. The synthetic labels are generated based
on the ground truth labels by a labeling process. We used
two different labeling process: DS labeling process (Dawid
and Skene 1979) and PC labeling process (Kajino, Tsuboi,
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and Kashima 2012). These processes are used to simu-
late the behavior of noisy annotators (Raykar et al. 2010;
Kajino, Tsuboi, and Kashima 2012; 2013; Atarashi, Oyama,
and Kurihara 2018; Zhang, Wu, and Sheng 2019). We ad-
just these two processes and make them can generate unsure
responses.

• DS labeling process. Every synthetic annotator has two
parameters α ∈ [0, 1] and β ∈ [0, 1] that represent the
expertise to either of the class. A class label to an instance
is generated by flipping a coin with the probability that
equals to the expertise of the annotators. We used the most
common parameters: α = β = 0.8. On the other hand, an
unsure label to an instance is generated by according their
distance and a parameter ρ to the decision boundary. We
take the top-ρ instances and label them as unsure.

• PC labeling process. Different from the DS labeling pro-
cess that all synthetic annotators share a common deci-
sion boundary, PC labeling process creates classifiers with
different decision boundaries for all synthetic annotators.
Labels are generated based on the annotators’ classifiers.
For each annotator, we take top-ρ instances that are close
to the decision boundary and label them as unsure.

Human Labeled Data We collected a real dataset named
“DOG-WOLF” with 1500 responses from five human anno-
tators. We picked up 200 dog images and 200 wolf images
from the ImageNet Dataset (Deng et al. 2009) and asked an-
notators to determine whether an image is a dog or a wolf.
Annotators can select a label for the image from “dog”,
“wolf” and “unsure” as shown in Figure 2. We used pre-
trained AlexNet to extract the features. In the annotation,
the five annotators have 98%, 96%, 88%, 86%, 60% accura-
cies, and have 92% of average accuracy, with rho = 0.156.
The inter-annotator agreement value is 0.7453 by the Fleiss’
kappa method (Fleiss 1971), and it indicates a good agree-
ment.

To evaluate the effectiveness of unsure loss, we conducted
the following two tasks in our experiments.

Learning from Noisy Labels with Unsure Responses
Given a collection of noisy and unsure instances of synthetic
labels, we trained the following binary classifiers and com-
pared the performance:

• LR: Logistic regression that discards the unsure re-
sponses.

• SVM: Support vector machine that discards the unsure
responses.

• LEUR: The proposed method in Section 3.2, which uses
unsure responses as a regularizer.

Learning from Crowds with Unsure Responses Given
a collection of noisy and unsure instances generated from a
crowd of above synthetic annotators, we trained the follow-
ing binary classifiers and compared the performance:

• Raykar: A popular learning from crowds method, which
applies DS model to determine the classifier (Raykar et
al. 2010).

Table 3: Comparison results of baselines and our proposed
methods on synthetic data with a single synthetic annotator
(unsure ratio ρ = 20%).

Method F1 AUC
LR 0.85±0.03 0.76±0.03
LEUR-LR-Log 0.87±0.02 0.79±0.02
LEUR-LR-Abs 0.88±0.01 0.80±0.01
LEUR-LR-Sq 0.84±0.04 0.79±0.01
SVM 0.85±0.06 0.75±0.05
LEUR-SVM-Log 0.84±0.07 0.75±0.05
LEUR-SVM-Abs 0.87±0.01 0.79±0.02
LEUR-SVM-Sq 0.86±0.01 0.76±0.03

• PC: A state-of-the-art learning from crowds method (Ka-
jino, Tsuboi, and Kashima 2012) where each worker (an-
notator) is modeled as a classifier.

• SSPC: A semi-supervised personal classifier. To make it
comparable, we made an extension to PC so that it consid-
ers unsure responses in its training in a semi-supervised
manner.

• LEUR-PC: The proposed method in Section 3.3, which
uses unsure responses with our unsure loss.

Detailed Setting The hyper-parameters are tuned with the
validation data. We used Adam (Adaptive moment estima-
tion) optimization algorithm in our experiment. Note that
LEUR-LR-Sq means a method of logistic regression model
that extended by our squared unsure loss with Equation (2).
In all experiments, the performance of the methods is mea-
sured by AUC (Area Under the Curve) and F1-score which
are known as appropriate measures in the binary classifica-
tion problems.

4.2 Experimental Results on Synthetic Data

Learning from Noisy and Unsure Responses We first
tested the effectiveness of the unsure loss on a synthetic
dataset with a single annotator. In this experiment, the syn-
thetic dataset is generated by the DS model from the MNIST
dataset with ρ = 0.2 rate of unsure labels. We used 100 in-
stances as the training data, and test the performance with
other data.

According the results in Table 3, the unsure loss did help
the classifier to increase the predictive performance. We
found that the Square unsure loss works best, this is because
Square is neither too sensitive nor too insensitive for the un-
sure responses compared to Log and Abs. We also found that
the hyper-parameter γ is also important. if we set γ too large
(i.e., 100), original loss function will be ignored and the clas-
sifier becomes hard to train. On the contrary, if we set γ too
small (i.e., 1e−7), the unsure loss will be ignored and there is
no benefit from the unsure loss (i.e., the same performance
to the original model). Therefore, we found that the perfor-
mance seems appropriate to set the γ in the value range of
1
|U | < γ ≤ 1.

Learning from Crowds with Unsure Responses (DS).
We also tested the effectiveness of the unsure loss on multi-
ple annotators of learning from crowds. We set the number
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Figure 4: Comparison results on MNIST data with 10 syn-
thetic DS annotators, varying total results number with ρ =
20% unsure responses from annotators.

of annotator as 10, and generate the synthetic dataset with
DS annotators from MNIST dataset with ρ = 0.2 rate of
unsure labels.

Figure 4 shows the comparison result of predictive per-
formance with Raykar, PC, SSPC and proposed LEUR-PC
methods. Note that the horizontal axis is the total num-
ber of responses from 10 annotators. The proposed LEUR-
PC methods extremely outperformed than baseline methods
when the responses set is small (100 - 300). This is strong
proof of our assumption and the effectiveness of our pro-
posed methods. With the response number increasing, the
PC method catches up with our method with similar per-
formance. This is because the number of high-quality la-
bels also increased and make PC performed better. How-
ever, SSPC degrades its performance when the number of
responses exceeds 500. SSPC may treat more unsure labels
as unlabeled instances, then the learned decision boundary
biases to either of the class, leading to incorrect results. Back
to the proposed method with another view, a smaller num-
ber of responses make less cost and less time on collecting
training data, which is also a strong point of our proposed
methods.

In Figure 5, we observed the effect of the different num-
ber of unsure responses. The total response is a fixed number
of 500 and the ρ is from 0 to 0.4. We found that our pro-
posed methods keep superiority against the other baselines.
According to Figures 4 and 5, we found that both the total
sample size and rho are crucial factors, this is because they
can affect the effective sample size. When the effective sam-
ple size is insufficient, our proposed method with unsure loss
can have an extremely better performance than baselines.

Learning from Crowds with Unsure Responses (DS vs
PC) We also compared the F1 score and AUC with the
synthetic data with 10 annotators based on DS and PC label-
ing process. According to the results in Table 4, in DS label-
ing process, the proposed LEUR-PC methods have at least
0.08 more F1 score and 0.01 more AUC than the baseline
methods; and in PC labeling process, the proposed LEUR-

Figure 5: Comparison results on MNIST data with 10 syn-
thetic DS annotators, varying unsure responses number with
500 total responses.

Table 4: Comparison results on MNIST data with 10 syn-
thetic DS and PC annotators. We set the number of responses
from each annotator as 30, and the number of unsure re-
sponses as 12 (20% of responses).

DS PC
Method F1 AUC F1 AUC
Raykar 0.69 ± 0.03 0.78 ± 0.04 0.77 ± 0.13 0.85 ±0.07
PC 0.82 ± 0.10 0.98 ± 0.01 0.78 ± 0.20 0.94 ±0.14
SSPC 0.63 ± 0.07 0.72 ± 0.08 0.61 ± 0.12 0.65 ±0.12
LEUR-PC-Log 0.90 ± 0.06 0.99 ± 0.01 0.83 ± 0.13 0.96±0.07
LEUR-PC-Abs 0.92 ± 0.03 0.97 ± 0.02 0.82 ± 0.11 0.94 ± 0.04
LEUR-PC-Sq 0.93 ± 0.03 0.98 ± 0.02 0.82 ± 0.03 0.95 ± 0.06

PC methods have at least 0.05 more F1 score and 0.02 more
AUC than the baseline methods. We found that there is no
big difference between DS and PC labeling process.

4.3 Results on Human-Labeled Real Data

Learning from Noisy and Unsure Responses For the real
dataset DOG-WOLF, we first evaluated the unsure loss. We
take 100 images, which is the 25% responses from an anno-
tator, as the training data, and use the remained 300 images
as the test data. Table 5 summarizes the comparison results
of the proposed LEUR methods with baseline LR and SVM
methods. These results proved that our proposed unsure loss
also works on the real dataset. We also found the proposed

Table 5: Comparison results on the real DOG-WOLF dataset
annotated by an single human annotator.

Method F1 AUC
LR 0.80±0.05 0.81±0.01
LEUR-LR-Log 0.84±0.04 0.81±0.01
LEUR-LR-Abs 0.85±0.04 0.84±0.04
LEUR-LR-Sq 0.84±0.04 0.84±0.04

SVM 0.74±0.06 0.74 ±0.05
LEUR-SVM-Log 0.74 ±0.06 0.74 ±0.05
LEUR-SVM-Abs 0.78 ± 0.06 0.78 ±0.05
LEUR-SVM-Sq 0.76 ±0.06 0.76 ±0.06
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Table 6: Comparison results on the real DOG-WOLF dataset
annotated by five human annotators.

Method F1 AUC
Raykar 0.51±0.07 0.49±0.06
PC 0.60±0.08 0.50±0.07
SSPC 0.51±0.03 0.53±0.03
LEUR-PC-Log 0.63±0.06 0.51±0.06
LEUR-PC-Abs 0.62±0.05 0.51±0.06
LEUR-PC-Sq 0.63±0.07 0.52±0.03

methods with the absolute unsure loss have the best perfor-
mance overall methods on both F1 score and AUC.

Learning from Crowds with Unsure Responses Sec-
ondly, we evaluated the unsure loss on the real DOG-WOLF
dataset in the learning from crowds setting. We took 100 im-
ages, which is the 25% responses from each annotator, as the
training data for the personal classifier, and use the remained
300 images as the test data. Table 6 summarizes the compari-
son results of the proposed LEUR-PC methods with baseline
Raykar, PC, and SSPC methods. The proposed LEUR-PC
methods outperformed other methods in F1 scores and com-
petitive in AUC scores. These results proved that our pro-
posed unsure loss also works well in learning from crowd
settings on the real data.

5 Related Work

Unsure Option in Annotation (Zhong, Tang, and Zhou
2015) proposed a method for filtering the instances which
have a high probability to be labeled as “unsure” by anno-
tators from the unlabeled dataset. Specifically, the method
estimates the parameters of a classifier and reliability mod-
els simultaneously along with the active learning procedure.
The reliability model is updated with the current unsure re-
sponses to avoid getting the unsure responses in the future
procedure. Different from our work, the method in (Zhong,
Tang, and Zhou 2015) tried to avoid the unsure responses.
This is because the unsure responses are received incremen-
tally in the active learning procedure, and it cannot help to
imply the decision boundary more accurately. While in our
work, we can get all unsure responses in advance and make
use of them to imply the decision boundary.

(Ding and Zhou 2018) focused on the problem of sav-
ing cost by selecting high-quality labeled instances with a
threshold value calculated by a confidence model. The un-
sure responses are used to build the confidence model to se-
lect high-quality label instances, while in our work, we used
the unsure responses as special labeled instances that imply
the decision boundary.

Learning from Crowds The works of learning from
crowds are about training a classifier model by using the la-
beled dataset collected from crowdsourcing services (Zhang,
Wu, and Sheng 2016). (Raykar et al. 2010) formalized the
problem of learning from crowds, and proposed a solution
based on the DS model (Dawid and Skene 1979) for work-
ers. They combined the logistic regression model and the
DS model to estimate the best parameters of the classifier

model from the features of instances and the noisy labeled
responses of annotators.

(Kajino, Tsuboi, and Kashima 2012; 2013) proposed a PC
(Personal Classifier) model. They assumed that each anno-
tator is modeled by a personal classifier and learned optimal
parameters with the responses from annotators.

(Atarashi, Oyama, and Kurihara 2018) proposed a semi-
supervised method for learning from crowds. The method
utilizes the unlabeled data to improve predictive perfor-
mance. They assumed that the unlabeled data are sampled
from the original distribution of the data. However, the un-
sure responses in our problem are not followed the data dis-
tribution.

Universum Universum is a set of classes which are not
originally considered in the classification. For example, in a
dog-wolf classification, “cat” can be a universum. (Weston
et al. 2006) found that those univesum sets sometimes help
to determine the ground truth decision boundary of the orig-
inal classes, and proposed a regularization with the univer-
sum set. Our problem of unsure responses, which consists
of hard-to-distinguish instances (e.g., wolf-looking dogs and
dog-looking wolves), is different from the problem of uni-
versum set. Even the universum regularization has a similar
form with our unsure loss, it can not deal with the personal
classifiers which consider the number of unsure responses as
a weight of importance (Section 3.3).

(Sinz et al. 2007) implied that the universum regular-
ization performs well if the universum instances are posi-
tioned “in-between” of the original classes. Since we as-
sumed the unsure responses to be placed ‘in-between‘ the
decision boundary in Section 2.1, this analysis supports why
our proposed unsure loss works well empirically.

Quality Control in Crowd-sourcing Quality control in
crowdsourcing (QCC) is a research field for inferring the
ground truth labels from the annotators’ response. (Welin-
der et al. 2010) proposed a method for QCC which focuses
on modeling the interaction between the difficulty of tasks
and the ability of annotators. (Jin et al. 2017) proposed a
method utilizing side information of instances and annota-
tors for the QCC problem. (Oyama et al. 2013) proposed
a QCC method that considers the confidence scores corre-
sponding to the annotators’ responses. (Dumitrache, Aroyo,
and Welty 2019) studied on recognizing different levels of
ambiguity in the labeled datasets.

6 Conclusion

We studied the problem of learning a classifier with the un-
sure responses. We designed an unsure loss function to use
these unsure responses to imply the decision boundary. We
extended the conventional methods for classification with
the unsure loss to improve the predictive performance. Ex-
tensive experiments on real and synthetic datasets showed
the superiority of our proposed methods over the baselines.
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