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Abstract

In human multi-modality perception systems, the benefits of
integrating auditory and visual information are extensive as
they provide plenty supplementary cues for understanding the
events. Despite some recent methods proposed for such appli-
cation, they cannot deal with practical conditions with tempo-
ral inconsistency. Inspired by human system which puts dif-
ferent focuses at specific locations, time segments and me-
dia while performing multi-modality perception, we provide
an attention-based method to simulate such process. Simi-
lar to human mechanism, our network can adaptively select
“where” to attend, “when” to attend and “which” to at-
tend for audio-visual event localization. In this way, even
with large temporal inconsistent between vision and audio,
our network is able to adaptively trade information between
different modalities and successfully achieve event localiza-
tion. Our method achieves state-of-the-art performance on
AVE (Audio-Visual Event) dataset collected in the real life. In
addition, we also systemically investigate audio-visual event
localization tasks. The visualization results also help us better
understand how our model works.

Introduction

As a proxy to the broader audio-visual scene understand-
ing problem for real-life videos, audio-visual event localiza-
tion task aims to match both audio and video components
for identifying the simultaneous event of interest. Similar to
the human’s Multi-modality Perception (Smith and Gasser
2005) process, the benefits of integrating auditory and visual
information are extensive as they provide plenty supplemen-
tary cues for better perception.

Generally, auditory and visual events tend to occur to-
gether as they have consistency on time axis, not always but
often: lips moving when talking, the running cars accom-
pany with engine noise and so on. In such cases, these events
are concurrent and interactive because there is a common
origin. Such temporal consistency between audition and vi-
sion allows us to perceive better. As a result, many works are
motivated to make machine obtain similar multi-modality
ability on perception, e.g., Lip Reading (Chung et al. 2017),
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Figure 1: The diagram of audio-visual sequence of temporal
inconsistency. At the last time segment, the event only oc-
curs in audio but does not occur in the video. Our network
can cope with such challenge by automatically learning to
pay higher attention on specific visual regions, specific time
segments and specific modality where the event occurs.

Sound Synthesis (Owens et al. 2016a) and so on. The consis-
tency assumption behind these works relies on the specific
audio-visual scene where sound-maker should exist in the
captured visual appearance simultaneously.

To this end, some works try to broaden the field of
application to real-life videos. For example, (Owens and
Efros 2018; Parekh et al. 2018) attempted to learn joint
cross-modal representations considering sound and corre-
sponding visual images as supervisory signal. Neverthe-
less, these works strongly depend on temporal consistency
of visual/audio information, thus may suffer degradation in
practical condition where such assumption cannot be satis-
fied. For audio-visual event localization, (Tian et al. 2018;
Lin, Li, and Wang 2019) attempted to locate the events
by multi-modal fusion. Since the simple fusion strategy as-
sumes the features or prediction scores of a modality are ex-
plicitly complementary to one another, temporal inconsis-
tency may mislead the results of event localization.

The temporal inconsistency is ubiquitous in the real-
life videos. On the one hand, audio and video signals are
managed by independent workflow in a typical multimedia
presentation (Khosravan, Ardeshir, and Puri 2018), which
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Figure 2: The diagram of the proposed cross-modal network for audio-visual event localization. The two modality-specific
CNNs first process the corresponding audio and video into respective feature maps, then these feature maps are fed into three
modules that automatically learn “where” (Spatial Attention Module), “when” (Global Context-aware self-Attention Module)
and “which” (Cross-Modal Adaptive co-Attention Module) to attend for event localization.

opens up the issue of inconsistency. The sound-maker may
be even out of the screen so that we cannot see it in the video,
e.g., the voiceover of photographer. On the other hand, the
visual scene may contain multiple objects which could be
sound-makers or not, and the corresponding audio is a kind
of multi-source mixture. Simply performing the global cor-
responding verification without having an insight into the
complex scene components could result semantic irrelevant
matching.

Different from these methods, we fully model the corre-
lations and relationships between audio and video signals
in order to weaken the interference of temporal inconsis-
tency (see Fig.1) and improve understanding in audio-visual
scene. For this purpose, we may refer to some studies in
psychophysical and physiological, e.g, Ventriloquism Effect
(Pick, Howard, and Templeton 1967) and SIFI (Sound In-
duced Flash Illusion) (Shams, Kamitani, and Shimojo 2000),
where our brain tends to give different attention to different
visual regions, time segments and sensory channels rather
than focusing on all. That is to say, the human system is able
to selectively capture valuable information of events from
multi-media information.

Inspired by such mechanism, we propose a novel cross-
modal attention framework to fully explore potential hid-
den correlations of same-modal and cross-modal signals.
Our network takes both audio and visual sequence at each
time segment as inputs and exploits global and local multi-
modal correlations in the manner of Seq2Seq. We design
three different attention modules to dig out “where”, “when”
and in “which” sensor the most event-related information
should be. As a result, our method automatically learns to
pay higher attention on specific visual areas, specific time
segments and specific modality where the event occurs. In
such way, our method can filter out the event-unrelated infor-
mation and utilize event-valuable information to perform lo-
calization. In addition, we also systemically investigate three
audio-visual event localization tasks: supervised, weakly-
supervised and unsupervised cross-modal localization. And
the visualization results also help us better understand how
our model works. In summary, our contributions can be
highlighted as follows:

• A novel and interpretable framework is proposed to detect
where, when and on which media the event occurs and
perform high-quality event localization;

• A novel spatial, sequential and cross-modal adaptive at-
tention module is designed to capture most event-related
information;

• State-of-the-art performance on widely-used dataset of
audio-visual event localization is achieved.

Related Works

Audio/Video Event Localization aims to detect and tempo-
rally locate audio/video events in an acoustic/visual scene.
For audio event localization, Hidden markov models (Heit-
tola et al. 2013), gaussian mixture models (Mesaros, Heit-
tola, and Virtanen 2016) and RNN (Parascandolo, Huttunen,
and Virtanen 2016) are widely used. For video event lo-
calization, most works use a temporal sliding window ap-
proach, where each window is considered as an action candi-
date subject to classification, e.g., deep action proposal net-
work (Escorcia et al. 2016), temporal convolutional network
(Lea et al. 2017) and so on. These methods focus on audio
or visual signals, we simultaneously consider two types of
heterogeneous data from different modalities.
Audio-Visual Representations Learning aims to learn
joint multi-modal representations using audio and video.
Some works (Owens et al. 2016a; 2016b) attempt to learn
enhanced visual representations considering sound as super-
visory signal by virtue of its natural temporal correspon-
dence. Some works (Aytar, Vondrick, and Torralba 2016;
Gao, Feris, and Grauman 2018) attempt to learn power-
ful sound representations considering correspondent visual
frames as supervision. Some works (Owens and Efros 2018;
Parekh et al. 2018) attempt to learn joint cross-modal repre-
sentations considering sound and corresponding visual im-
age as supervisory signal in an unsupervised manner. Al-
though the above works have shown promised cross-modal
learning capacity, they often are troubled by temporal in-
consistent audio-video pairs. Unlike these works, we have
no any prior assumption about temporal inconsistency of
audio-video pairs.
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Audio-Visual Event Localization aims to match both au-
dio and visual components for identifying the simultaneous
event of interest. (Tian et al. 2018) use dual multi-modal
residual network to fuse audio-visual features. (Lin, Li, and
Wang 2019) directly concatenate audio and visual features
as the input of LSTM. These methods only consider tem-
poral relationship with audio or visual signals while ignor-
ing potential hidden correlations between same-modal and
cross-modal signals. In this paper, we use attention mecha-
nism to model same-modal and cross-modal correlations.

Method

Problem Formulation

We define an audio-visual event as an event that is both audi-
ble and visible in the video. Concretely, we split a video se-
quence into T non-overlapping segments {vt, at}Tt=1, where
each segment is 1s long (since the event boundary is labeled
at second-level), vt = [v1t , . . . , vkt ] ∈ R

dv×k and at ∈ R
da

respectively denote the visual content and its corresponding
audio counterpart in the video segment, t is the time segment
of one video.

Supervised event localization. In supervised settings, the
second-level event labels are given as yt = {ymt |ymt ∈
{0, 1},∑C

m=1 ymt = 1}, where C is the total number
of event categories plus one background class. The non-
background categories are determined only when audio and
visual events are jointly observed.

Weakly-supervised event localization. In weakly-
supervised settings, we can only access to video-level event
labels, given by averaging the second-level event labels
Y = 1

T

∑T
t=1 yt. The weakly-supervised setting can not

only weaken the dependency on the well-annotated labels,
but also evaluate the robustness of our framework.

Unsupervised cross-modal event localization aims to
locate events of interest in the visual scene with correspond-
ing audio signals. It can locate which regions of visual
frames the events of interest occur in. Different from classic
localization setting, the location labels are not given during
the train phase.

The diagram of our method is shown in Fig2. The two
modality-specific CNNs first process the video and corre-
sponding audio sequences into respective feature maps and
then these features are fed into three modules. First of all,
Spatial Attention Module utilizes audio signals as a guid-
ance to locate “where” the regions of visual frames that the
events of interest occur in. What’s more, Global Context-
aware Self-Attention Module explores same-modal hidden
correlations to adaptively learns “when” to attend among
series of video segments through introducing global con-
text representation of entire input sequence. At last, Cross-
Modal Adaptive co-Attention Module explores cross-modal
hidden correlations to determine “which” the modality at-
tend to through “modality sentinel” vector. These modules
will be introduced respectively below.

Spatial Attention Module

As sound implies plentiful information about its source but
also its location, it can be used to locate the source in videos

with audio-visual contingency. Some methods inspire us to
utilize audio signals as a means of guidance when searching
the event location. Similar to (Tian et al. 2018), we use an
attentional module to combine visual feature and its supple-
mentary audio information for learning “where” to attend.

We define the spatial attention module for computing the
visual spatial feature vector vattt ∈ R

dv which is defined as
vattt =

∑k
i=1 wi

tvit, where wt ∈ R
k is a weight vector corre-

sponding to the probability distribution over k visual regions
that are attended by its audio counterpart. In order to get the
spatial attention weight wt, we firstly use MLP with nonlin-
earity to project at and vt to the same dimension. Different
from (Tian et al. 2018), we use the simple normalized inner
product operation rather than other MLP layer to get final
wt. Such operation does not contain any additional learning
parameters, and is intuitive that the inner product measures
the cosine similarity between audio and visual features.

This weight vector wt reflects in which regions of video
frames the events of interest occurred in the form of a
probability distribution. As a result, we can achieve cross-
modal event localization through up-sampling wt to the im-
age size using bilinear interpolation. Compared to the cross-
modal localization method (Owens and Efros 2018) using
global average pooling(GAP) and strongest class activation
map(CAM) response (Zhou et al. 2016), our module not only
locate the spatial regions of the event of interest (see Fig.5),
but also improve audio-visual event temporal localization
accuracy through adaptively selecting which visual features
are more useful in a weighted-average manner rather than
global averaging (see Tab.2).

Global Context-aware self-Attention Module

For real-life videos, the most events of interest often oc-
cur at certain segments rather than entire audio/video se-
quence. Such hidden correlations between each segment of
same-modal sequence are critical for temporal event local-
ization. Self-attention mechanism is often used for model-
ing such hidden correlations. However, classic self-attention
method treats the input sequence as the bag-of-word tokens
and each token individually performs attention over the bag-
of-word tokens (Yang et al. 2019). In other word, classic
self-attention methods only capture local direct correlations
between segments. In order to adaptively learn “when” to
attend, global rather than local correlations need be cap-
tured. For this purpose, we design a global context-aware
self-attention method.

We introduce a global context vector C, used mean op-
eration to summarize the representation of input sequence,
to represent global meaning of entire sequence. Consider-
ing the convenience of describing our method, we use the
token X = [x1, . . . , xT ] ∈ R

dx×T to indicate the input
audio/video sequence, where T is the length of sequence,
xt ∈ {vattt , at} is the features of sequence segment at t time,
dx ∈ {dv, da} is the feature dimension. C can be expressed
as C = [c, . . . , c] ∈ R

dx×T , where c = 1
T

∑T
t=1 xt.

Formally, given an input sequence X, the hidden states in
the output are constructed by attending to the states of input.
Specifically, the X is first transformed into candidate query
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Figure 3: A illustration of LSTM extension with sentinel
vector svt . svt is an additional latent representation of the
LSTM’s memory.

states QX , candidate key states KX and value states VX .
Similarly, the context vector C is transformed into candidate
query states QC and candidate key states KC . Through two
candidate query states QX /QC and two candidate key states
KX /KC , we can get the query states Q and key states K that
are ultimately used to calculate the self-attention weights:[

Q
K

]
= (1−

[
λQ

λK

]
)

[
QX
KX

]
+

[
λQ

λK

] [
QC
KC

]
, (1)

where λQ,λK ∈ R
T are weight matrices used to explic-

itly quantify how much each segment and the context vec-
tor contribute to the prediction of self-attention weight. The
λQ,λK can be calculated as:[

λQ

λK

]
= σ(

[
QX
KX

] [
VX

Q

VX
K

]
+

[
QC
KC

] [
VC

Q

VC
K

]
), (2)

where VX
Q ,VX

K ,VC
Q,VC

K ∈ R
dx are associated trainable pa-

rameters, σ() is the logistic sigmoid function.
The final output of our global context-aware self-attention

model X̂ is constructed by X̂ = wcVX . wc is the weights of
our self-attention method, and can be expressed as wc =

softmax(QKT

√
d
), where

√
d is the scaling factor.

On the one hand, the global context-aware self-attention
weights can be viewed as a probability distribution that re-
flects the contribution of each individual segment for event
localization (see Fig.1). And introduction of the global rep-
resentation also can improve event localization performance
(see Tab.2). On the other hand, compared to the classic self-
attention method (Lin et al. 2017), a large magnitude of QX
and KX may push the softmax function into regions where it
has extremely small gradients. λQ,λK can also be treated
as factors to regulate the magnitude of Q and K.

Cross-Modal Adaptive co-Attention Module

For sequence data such as audio and video, how to better
model the dependencies between segments of sequence is
crucial, as the event itself is temporally related and con-
sistent in a audio/video counterpart. Normal convolutional

a1 a2 aT

t t tT

Figure 4: A illustration of cross-modal adaptive co-attention
module generating visual modality sentinel βv

t and the new
context vector ĉvt .

layer is suitable to learning spatial information, but has lim-
itation on learning temporal features. Further, as the event
location may move and change sharply, the spatially long-
range dependency is also crucial for localizing. As a result,
we choose to use LSTM for modeling the temporal depen-
dencies.

While modeling the temporal dependencies, some works
(Lu et al. 2017; 2018) attempt to use “visual sentinel” to
determine whether the generated words depend on visual
signals or language models for image captioning. Motivated
from them, we introduce a new LSTM extension, which pro-
duces an additional “modality sentinel” vector instead of
a single hidden state. Our module can explore cross-modal
hidden correlations to determine when to rely on visual sig-
nals and when to rely on the audio signals.

Firstly, we extend the LSTM to obtain a new compo-
nent – sentinel vector, an additional latent representation of
the decoder’s memory, provides a fallback option to the de-
coder through co-attention mechanism. As shown in Fig.3,
the mathematical definitions are as follows:

svt , hv
t = LSTM(vt, hv

t−1,mv
t−1), (3)

where vt ∈ R
dv is the visual features of current input at time

step t, hv
t and svt are hidden state and sentinel vector as an

output of the LSTM unit respectively. Notably, vt represents
vattt obtained by spatial attention module or vt dealt with
GAP operation. And the expression of svt is computed as:

svt = gv
t � tanh(mv

t ), (4)

where gvt = sigmiod(Wg[h
v
t−1; vt] + bg), � represents the

element-wise product.
Based on the sentinel vector svt , we propose an adaptive

co-attention module to compute the new context vector. As
shown in Fig.4, the new context vector is defined as ĉvt ,
which is modeled as a mixture of the sentinel vector and the
attended audio features. It trades off how much new auxil-
iary information from another modality(audio) is being con-
sidering. The mixture model is defined as follows:

ĉvt = βv
t svt + (1− βv

t )c
a
t , (5)
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where βv
t is the visual sentinel gate that produces a scalar in

the range [0,1] at time step t. A value of 1 implies that only
the sentinel information is used and 0 means only context
information from another modality is used to locate audio-
visual event. The context vector cat represents new supple-
mentary information from another modality, which is de-
fined as:

cat = g(A, hv
t ) =

T∑
i=1

αtiati, (6)

where g is the attention function, A = [a1, . . . , aT ], at ∈
R

da is the audio feature at time step t. We feed A and hv
t

through a single layer neural network followed by a softmax
function to generate the attention distribution over T audio
segments. Co-attention weight αt is equal to the result of
softmax zt, where the expression of zt as follows:

zt = WT
h tanh(WaA + Wght) (7)

where Wa,Wh ∈ R
da×T , Wg ∈ R

d×d are parameters to be
learnt.

To compute βv
t , we add an additional element zt to αt.

This element indicates how much “attention” the network
is placing on the sentinel (as opposed to the features from
another modality). The new weight can be formulated as:

α̂t = softmax[zt;WT
h tanh(Wsst + Wght)], (8)

where [ ; ] indicates concatenation. α̂t ∈ R
T+1 is the atten-

tion distribution over both another modality feature as well
as the sentinel vector. We interpret the last element of this
vector to be the visual sentinel gate value, βv

t = α̂t[T + 1].
Finally, we combine obtained adaptive context vector ĉvt
with the state vector of LSTM to obtain a cross-modal vi-
sual representation vector ĥ

v

t , i.e., ĥ
v

t = ĉvt + hv
t .

Similarly, we can get the audio sentinel gate value βa
t

and cross-modal audio representation ĥ
a

t . The concatenate
representation of ĥ

v

t and ĥ
a

t is used for final event localiza-
tion. Notably, in order to make our module adaptively select
“which to attend” with a certain probability, we normalize
βv
t and βa

t by softmax.
The modality sentinel encourages the network to adap-

tively select attending to the audio features vs. the video fea-
tures for event localization. Notably, as shown in Fig.4, the
generated context vector could be considered as the resid-
ual information of current hidden state, which diminishes
the uncertainty or complements the informativeness of cur-
rent hidden state.

Experiments

Dataset and Implementation Details

Dataset AVE Dataset (Tian et al. 2018), which is a subset
of AudioSet (Gemmeke et al. 2017), contains 4143 samples
covering 28 event categories, e.g., dog barking, man speak-
ing, chainsaw logging and airplane flying. The samples in
AVE Dataset are filled with temporal inconsistency, abrupt
view changes and different types of noise. These event cat-
egories cover a wide range of real-life scene, e.g., music
performances, main street, public speaking and so on. Each

Table 1: The event localization accuracy (%) on AVE dataset
in both supervised and weakly supervised settings, which are
separated by the symbol ‘/’. A and V denote these models
only use audio and visual features as inputs, respectively. V-
att, S-att, Co-att denote three modules which are elaborated
Method section.
Index A V V-att S-att Co-att Accuracy

1 � × × × × 59.5/56.5
2 × � × × × 55.3/53.7
3 � � × × × 71.4/69.0
4 � � � × × 72.8/70.9
5 � � × � × 72.4/71.2
6 � � × × � 73.2/72.1
7 � � � � × 73.5/71.8
8 � � × � � 74.8/73.4
9 � � � × � 75.6/73.9
10 � � � � � 77.1/75.7

event category contains a minimum of 60 samples and a
maximum of 188 samples. Each sample in the AVE is tem-
porally labeled with audio-visual event boundaries and con-
tains at least one 2s long audio-visual event.

We use the same settings as Tian (Tian et al. 2018). We
divide the AVE dataset into three parts, i.e., 80% for training,
10% for validation and 10% for testing. To better verify the
effectiveness and robustness of our modules, we also extend
our model in a weakly-supervised manner.

Implementation Details For visual and audio representa-
tion, we respectively adopt ResNet-151 network pre-trained
on ImageNet and VGG-like network pre-trained on Au-
dioSet. Specifically, we extract pool5 feature maps from
sampled 16 RGB frames for each 1s video segment. Re-
spectively, we extract 512×7×7-D visual representation and
128-D audio representation for each 1s audio segment and 1s
visual segment.

Quantitative Analysis

Ablation Studies In this section, we first explore whether
multi-modal information can help us better perceive the en-
vironment. Then we discuss the impact of different modules
elaborated in the Method section. In addition, we show the
effect of combining two different modules on the results of
event localization.

In order to ensure the comparability of the experimental
results, all models have the same setting, e.g., the same num-
ber of fully connected layers. The attention modules are im-
plemented on the feature maps of the middle layer in our
framework. The addition or removal of each module means
that the corresponding attention is calculated or not. The
number of introduced parameters can be ignored. In other
words, it is the computational rather than complexity in-
creasing with three introduced modules.

Tab.1 shows the experimental result about ablation stud-
ies. As shown in the first-three rows, we can observe that
the performance of instantaneous usage of audio and video

283



Table 2: The event localization accuracy (%) comparison
with state-of-the-art methods in both supervised and weakly
supervised settings, which are separated by the symbol ‘/’.

Method Accuracy

AVEL(Tian et al. 2018) 74.7/73.1
AVSDN(Lin, Li, and Wang 2019) 75.4/74.2

CAM(Owens and Efros 2018) 72.3/68.8
our model - global context vector 75.7/74.3

our model - sentinel vector 76.1/74.9
our model 77.1/75.7

information as input is better than just using audio or visual
data. It also validates that combining audio and video modal-
ities is significantly beneficial for understanding the events.
As shown in the 4th to 6th rows, we only use one of the three
modules in order to explore the impact of the independent
module. We observer the cross-modal adaptive co-attention
module can improve accuracy significantly. Such results also
demonstrate the need for the model to adaptively determine
when to rely on visual signals and when to rely on audio sig-
nals for real-life event understanding. As shown in the 7th to
9th rows, we can observe that combining two different mod-
ules can improve performance to some extent. Such results
also further proves the validity of three modules.

Comparison Results To test the effectiveness and robust-
ness of our framework, we compare the accuracy of audio-
visual event localization with two state-of-the-art methods.
The results of comparison are shown in the first-two rows of
Tab.2. In addition, we compare two different strategies for
locating audio-visual event in video frames, i.e., strongest
CAM response used by (Owens and Efros 2018) and spatial
attention module used in our framework. In order to gener-
ate map of strongest CAM response, Owens and Efros use a
global manner to average image-level features and get an ac-
curacy of 72.3/68.8. Our spatial attention module, which use
a weighted manner rather than global manner, achieves an
accuracy of 77.1/75.7. The weighting manner can not only
adaptively capture the spatial visual location information of
the events of interest (see Fig.5), but also adaptively learn
which region in the video needs to be concerned.

Furthermore, as shown in the row 4 and 5 of Tab.2, the
introduction of global context vector can better explore the
hidden correlations between same-modal segments and the
sentinel vector of LSTM can better model the dependencies
between cross-modal segments.

In the Supplementary Material, we also compare the ac-
curacy of each event category with AVEL (Tian et al. 2018).
Our method significantly improves performance for most
categories of audio-visual events localization.

Qualitative Analysis

Spatial Localization As shown in Fig.5, we compare the
results of cross-modal event localization generated by AVEL
and our model. AVEL seems to tend to focus on small re-
gion in the image, while our model can focus on the gen-

Figure 5: Spatial localization comparison with AVEL.

eral shape of the objects that trigger the event of interest.
The larger regions mean that our model can capture more
event-related information in the visual frames. Our model
only needs to find the event-related information in a limited
scope when focusing on specific time segments or modality
where the event occurs. In other words, the specific rather
than the entire scope makes spatial attention module much
easier to capture the event-related information. More results
are shown in the Supplementary Material.

Temporal Localization We visualise the results of cross-
modal attention network proposed by us with AVEL. As
shown in Fig.6, the green boxes indicate the ground truth
given in the AVE dataset. The blue boxes and orange boxes
respectively indicate localization result of AVEL and our
network. At the same time, we also count the weight of sen-
tinel gate βv

t and βa
t , which is used to adaptively trade infor-

mation between different modalities in a weighted manner,
as shown in the middle of the audio and video sequence.

Discussion

How does our model work? Since there are often multi-
ple objects in the real-life videos, these objects may cause
different degrees of interference when we locate the event
of interest. For example, the crowd beside the truck interfere
with the temporal localization of the truck event. The audio-
guide attention makes our network only focus on specific
regions where the event of interest (truck) occurs in, thus
avoiding the influence of the crowd. As shown in Fig.6(b),
AVEL gets error results of event localization due to focus on
error regions. In addition, as shown in the last two columns
of Fig.6(a), when our model focuses on error visual regions,
modality sentinel will act as a role in correcting errors of
spatial attention maps by assigning smaller weights to visual
signals.

For these events in the door (e.g., dog, man and woman
speaking, baby crying), there are several different sounds
may be mixed together. In this case, the audio signals may
have very low intensity. Comparatively speaking, visual in-
formation will give us more discriminative and accurate in-
formation to understand events this moment. Empirically,
we find our network seems to rely more on the video sig-
nals in some indoor scenes, as shown in Fig.6(a). For these
events (e.g., car, motocycle, train, bus), sounds will provide
clear cues. Our network seems to rely more on the audio
signals in some outdoor scenes, as shown in Fig.6(b). These
two rules seem to be universally applicable to most noisy
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Figure 6: Visualization analysis. The green boxes indicate the ground truth value given in the AVE dataset. The blue boxes and
orange boxes respectively indicate localization result of AVEL and our method. The numbers in the middle of the audio and
video sequence are statistical weights of sentinel gate βv

t and βa
t .

outdoor scenes. As mentioned in Ablation Studies, this em-
pirical finding may explain why the cross-modal adaptive
co-attention module can significantly improve accuracy rel-
ative to the other two modules.

How to cope with temporal inconsistency? As men-
tioned in Introduction section, the temporal inconsistency
is ubiquitous in the real-life videos. Simple fusion strategy,
assumed the features or prediction scores of a modality are
explicitly complementary to one another, will mislead the re-
sults of event temporal localization. In other word, the com-
plementarity between audio and video signals is an inter-
ference for the task of audio-visual event localization. As a
result, it is necessary to explore potential hidden correlations
between cross-modal signals, rather than simple feature fu-
sion. For this purpose, modality sentinel is introduced by our
network.

As shown in the last time segment of Fig.1, the event only

occurs in audio but does not occur in video. At this time, our
network is more inclined to learn visual and audio modal-
ity sentinel such that βv

t is greater than βa
t . Available from

Eq.5, the final concatenate representation will be more de-
pendent on the visual information that no event occur in.

Conclusion

Inspired by human multi-modal perception mechanism, in
this paper we propose a novel cross-modal attention frame-
work consisted of three attention modules to fully explore
same-modal and cross-modal potential hidden correlations.
In addition, we also systemically investigate audio-visual
event localization tasks: supervised, weakly-supervised and
cross-modal localization. Our model also achieves competi-
tive results on AVE Dataset. The results of the visualization
can help us better understand how our model works.
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