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Abstract

With the proliferation of mobile device users, the Device-to-
Device (D2D) communication has ascended to the spotlight
in social network for users to share and exchange enormous
data. Different from classic online social network (OSN) like
Twitter and Facebook, each single data file to be shared in
the D2D social network is often very large in data size, e.g.,
video, image or document. Sometimes, a small number of in-
teresting data files may dominate the network traffic, and lead
to heavy network congestion. To reduce the traffic congestion
and design effective caching strategy, it is highly desirable to
investigate how the data files are propagated in offline D2D
social network and derive the diffusion model that fits to the
new form of social network. However, existing works mainly
concern about link prediction, which cannot predict the over-
all diffusion path when network topology is unknown. In this
article, we propose D2D-LSTM based on Long Short-Term
Memory (LSTM), which aims to predict complete content
propagation paths in D2D social network. Taking the current
user’s time, geography and category preference into account,
historical features of the previous path can be captured as
well. It utilizes prototype users for prediction so as to achieve
a better generalization ability. To the best of our knowledge, it
is the first attempt to use real world large-scale dataset of mo-
bile social network (MSN) to predict propagation path trees
in a top-down order. Experimental results corroborate that the
proposed algorithm can achieve superior prediction perfor-
mance than state-of-the-art approaches. Furthermore, D2D-
LSTM can achieve 95% average precision for terminal class
and 17% accuracy for tree path hit.

Introduction

With the increasing popularity of smart devices, people
prefer to download various files from network, and dupli-
cated resource downloading leads to the explosion of cellu-
lar network traffic and huge waste of resources. Cha (Cha

∗This work is partially supported by the National Key R&D
Program of China (2018YFC0809803, 2019YFB2101901), China
NSFC (Youth) through grant 61702364, China NSFC GD Joint
fund U1701263, ARC Linkage Project LP180100750.

†Xiaofei Wang is corresponding author.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

et al. 2007; Cha et al. 2009) confirmed that 10% of pop-
ular videos account for 80% of views in YouTube, and
caching a small number of contents can effectively solve
the problem of repeated resources downloading. Device-
to-Device(D2D) technology can effectively cache these re-
sources. As for caching, Hao(Hao, Zhang, and Tao 2018),
Gregori(Gregori et al. 2016) and Ramy(Amer et al. 2018)
proposed some strategies on content caching, but their math-
ematical hypotheses show much deviation in real applica-
tion. Furthermore, Anderson (Anderson 1998) confirmed
that customer satisfaction is related to word of mouth, while
Chevalier(Chevalier and Mayzlin 2006) proved that a book’s
good reviews can lead to a increase in relative sales at that
Amazon due to word-of-mouth effect. These two facts prove
the great influence of people meeting and sharing like D2D
communication on content diffusion. The principle of D2D
communication is shown in Fig1.

Figure 1: Working principle of D2D sharing

In this paper, we concentrate on how representative APPs1

are propagated in offline D2D social network. Specifically,
every APP belongs to one category, while one’s preference
for APPs reflects his interest, personality, social habit and so
on. We can learn that a file’s spread potential is not only lim-
ited to the content type itself but the file’s owner’s preference
for time, geographical location and so on. Therefore, we de-
signed our D2D-LSTM to capture the current user’s proper-
ties with the history of users who previously shared the APP
to predict this file’s future propagation path. To further adapt

1APP refers to application software designed to run on smart-
phones and other mobile devices.
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D2D-LSTM to new users, individual users are clustered into
a series of prototype users in terms of their feature vectors.
Each prototype user can represent a group of similar users.
In general, the prototype user is used for training and making
prediction, while we use the real D2D content propagation
trace to train and evaluate the optimization model. The main
contributions of this paper can be summarized as follows:

• Our work is the first to model D2D content propagation
with multivariate features, e.g., content, time, geograph-
ical location, transmission preference and so on. Also,
we’re the first to learn the tree path with a Long Short-
Term Memory (LSTM) neural network.

• Our work is the first to propose a Tree-to-Sequence algo-
rithm to give D2D-LSTM the ability for learning and pre-
dicting a complete tree path in D2D social network. Ex-
perimental results on the real-world dataset demonstrate
that D2D-LSTM can significantly improve the effective-
ness of at most 39.2% mAP increase and at most 88% tree
hit rate increase.

• D2D-LSTM is more generalizable and robust in tree gen-
eration for a given root node. It only relies on prototype
users which are more available, reliable and robust than
precise users widely-used by state-of-the-art approaches
in the propagation predicting process.

Method

Problem Statement

We formulate tree propagation path prediction as a decision-
making process. There is an agent perceiving the envi-
ronment through sensors of the neutral network and per-
forming a series of actions in the environment through ac-
tuators, then a series of actions in the environment are
performed through actuators, so as to optimize a goal.
Let A = {a1, a2, ..., a|A|} represent a series of APPs,
and let U = {u1, u2, ..., u|U |} represent a set of proto-
type users. In tree propagation path prediction, the goal
is to generate a sequence of diffusion path P (ai) =
{(ω1, 1), (ω2, 2), ..., (ωt, t), ...} for a given an APP file ai,in
which tuple (ωt, t) indicate that a given APP is delivered
to prototype user ωt at time step t. Without loss of gener-
ality, we set the time of an APP firstly being propagated to
0. The purpose of this paper is to use the propagation paths
before time t to predict the prototype users involved during
time t. We use APterminal(Average Precision for the ter-
minal users), mAPreal(mean Average Precision for all real
prototype users), mAPall(mean Average Precision for all
prototype users), Kappa coefficient(used for the consistency
test) and macro-F1(used to measure the classification effect
in the case of multi-labels) to measure the effectiveness of
D2D-LSTM.

Trace Data Analysis

We set up our experiments with large-scale real-world
datasets from a worldwide D2D file sharing APP. This APP

Table 1: Trace Statistic
Statistic Item Value

Users 30485335
Records Count 4434440043

Files 16785175
Time Range From 2016.08.01 To 2016.10.30

Trace Total Size 90GB

provides users the ability to share contents across platforms
(e.g Windows, Android, iOS), through WiFi-Direct, Blue-
tooth etc, without 3G/4G/LTE cellular network infrastruc-
ture. We build a Spark&Hadoop big data processing plat-
form to process the large-scale trace. Eventually, the data
columns after preprocessing are (File Type, MD5, Sender
ID, Receiver ID, Timestamp, Country, GPS, File size). De-
tailed statistic of the trace is shown in Table 1.

Figure 2: APP classification process

In order to get user’s preference for APPs, APPs’ name
and type from Apkpure are collected to classify the APPs
transmitted in the trace. Each APP corresponds to a spe-
cific category. Taking Blizzard Entertainment as an exam-
ple, Fig 2 shows the detailed classification process. APPs
are grouped into 48 types including Music & Audio, Edu-
cation, Social and so on. And the distrubution of these 48
categories is shown in Fig 3.

As can be seen from Fig 3, different categories of APP in
offline D2D social network has a different number of trans-
missions. Top 10 hot APP categories are shown in Table 2.
Video Players & Editors is the most popular type among
those APP categories, accounting for 17% or so. The Tools
category followed, with 11% of users choosing to share such
category of APPs. While Art & Design accounted for the
lowest percentage, only less than 1%.

Table 2: Top 10 hot APPs in the trace
Category Name Percent Category Name Percent
Video Players &

Editors 16.66% Action 5.61%

Tools 10.72% Business 5.41%
Communication 9.28% Racing 4.82%

Productivity 7.41% Board 4.23%
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Figure 3: 48 types of APP from our trace

User Prototype Modeling

A user’s history trace is used to generate his feature vector.
Every record in trace is mapped to a one-hot feature vec-
tor including 48-dimensional content category vector, 24-
dimensional time vector, T-dimensional geographical po-
sition vector (The value of T is discussed later) and 2-
dimensional sending times and receiving times vector. Gen-
erate user feature vector by superimposing and regularizing
one-hot vectors of the same user.

Figure 4: Example of Prototype User

All possible diffusion paths depend on the users in the
MSN as well as the social network structure itself (e.g., the
connections between users). Therefore, we need to general-
ize a set of similar users into prototype users to represent the
general shared features, and map each user to prototype user
based on his preference(such as the APP categories they like
to spread, propagation times and the area in which they are
often shared). This has been verified in previous work (Liu
et al. 2016) that size of the spread trees of some APPs are
limited, and the depth is about 4, so using prototype user

is necessary. In this way, we can ignore the nuances of real
users during training and testing, and regard predicting pro-
totype user as a training target. K-means is used to describe
the social characteristics of users.

Users are clustered into 80 prototypes (Cluster size’s in-
fluence on prediction performances will be discussed in later
chapters), Fig 4 describes the examples of the prototype
users. The ID of prototype user and his favorite three cate-
gories are shown in the left panel, and the right panel shows
six typical APPs belonging to the three categories. For ex-
ample, prototype user 43 prefers to share strategy games,
education and music APPs, and they often send games like
plants vs. zombies, temple escapes, etc.

Tree Path Building and Transformation

We separate the D2D communication activities trace by APP
name and generate the propagation path forest for every
APP. In the construction of tree path propagation, we take
propagations’ time sequence into consideration. Algorithm
1 shows the construction procedure of the tree propagation
path. To evaluate the complexity of the algorithm, we divide
the process into two steps. In the first step, every log entry in
the log set is traversed, and this step’s complexity is O(n).
We find the sender in vertex set and utilize Red Black Tree to
optimize the indexing speed in the second step, so this step’s
complexity is O(lg(n)). The whole algorithm’s complexity
is O(nlgn), where n is the length of the log set.

Algorithm 1: tree path construction
Input : LogSet = Set(Row(TimeStamp, Sender,

Receiver, OtherProps))
Output: Tree structure in memory
RootSet = ∅, V ertexSet = ∅
Sort(LogSet, Sorted in ascending order by TimeStamp)
foreach logi ∈ LogSet do

Vs = Find Sender(logi) in V ertex
if Vs = Not found then

Vs = Create node Sender(logi)
Add Vs to V ertexSet
Add Vs to RootSet

end
Vr = Find Receiver(logi) in V ertex
if Vr = Not found then

Vr = Create node Reciever(logi)
Add the Vr to set V ertexSet

end
Add Vr to Vs.Childs

end

LSTM is taken to learn and predict the propagation path,
so we convert tree paths into sequence paths so the trees can
adapt to LSTM’s input. Similar to Zhang (Zhang, Lu, and
Lapata 2015), we use traversal algorithm to make such con-
version, and the sequence paths serve as the input of D2D-
LSTM, thus we can solve the problem of horizontal expand-
ing during training and evaluation. To address the uncer-
tainty of the propagation trees’ breadth and depth, a virtual
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node is added to represent the ending of the current depth,
which can be used to learn the vertical propagation of the
tree.

The traversal order in the transformation procedure deter-
mines the learning order of LSTM. In this paper, Breadth-
First (BFS) traversal is adopted to traverse the propagation
tree. The BFS order reflects the hierarchical relationship of
nodes in the tree and takes the parent-child relationship in
the propagation process into account. In the transformation
process, the corresponding sibling node and parent node of
a node are recorded. Noting that the feature vector of the
virtual node is randomly generated.

Algorithm 2: propagation tree to sequence
Input : tree struture ForestArray
Output: Sequence node list ResultSet
initialization List Q = ∅, Sibling = ∅, ResultSet = ∅
foreach T∈ForestArray do

Add root node T to Q
repeat

node = first node in Q
foreach tnode∈ children list of node do

tnode is added to the end of the Q
Add tuple (node, Sibling, tnode)to
ResultSet

Sibling = tnode
end
Add tuple (node, V-NODE)

until Q is ∅;
end

The specific transformation process is described in algo-
rithm 2, where V-NODE means added virtual node. There
are three nested loops in the algorithm. For the first loop,
it traverses all root nodes in the forest, so its complexity is
O(m) where m is the number of root nodes in the forest. In
the second loop, all nodes in a tree will be traversed so its
complexity is O(p), where p is less than the max nodes count
n for trees. In the third loop, every child of the parent node
in Q will be traversed, so the complex is O(q) where q is less
than the maximum number of children for every node. Be-
cause there might be chain path in forest, so m < n, p < n,
q < n, so the algorithm’s complexity is O(n3). Fig 5 shows
an example of a tree path transformed into a sequence path.

For Everyone in Path:

Ex.

Figure 5: Example of Tree Path Transformation

LSTM Network Architecture

Apart from current properties, the historical diffusion path
plays a key role in deciding whether the APP will be further
propagated, and if so, to whom next. This is a recursive prob-
lem that is well suited for a recursive neural network (RNN)
to analyze the diffusion path. However, RNN suffers from
gradient explosion of weights and the disappearance of gra-
dients. To address these problems, we used LSTM to train
our model(Gers, Schmidhuber, and Cummins 1999; Sunder-
meyer, Schlüter, and Ney 2012) instead of the RNN(Graves,
Mohamed, and Hinton 2013).

In our work, all transmission histories of an APP are
memorized due to the memory nature of LSTM. The archi-
tecture of D2D-LSTM is illustrated as Fig 6. The memorized
histories are used to predict the future propagation path of
the file. Previous memorized cell state and hidden state in
time step t − 1 are passed to LSTM Cell in time step t. At
time step t, the parent node’s feature vector and the left sib-
ling node’s feature vector are concatenated to one vector, and
this vector is put in the LSTM Cell, so do the hidden state
and cell state at time t−1. The output h and c are propagated
to the next LSTM Cell, and an FC layer with a sigmoid layer
follow the output y to map the hidden vector to specific pro-
totype user. The output from each sub moment makes up a
Prototype sequence and the sequence can be recovered to the
tree path with virtual child nodes. The D2D-LSTM equation
is expressed as follows:

it = σ(W (i)xt + U (i)ht−1 + b(i))

ft = σ(W (f)xt + U (f)ht−1 + b(f))

ot = σ(W (o)xt + U (o)ht−1 + b(o))

ut = σ(W (u)xt + U (u)ht−1 + b(u))

ct = it � ut + ft � ct−1

ht = ot � tanh(ct)

, (1)

where ft is the input social feature of the user at the current
step, W , U and b are the weight matrices and bias vectors to
be optimized, and � denotes element-wise multiplication.
ft represents the forget gate vector, the input gate vector is
signed by it , ot denotes an output gate vector, the memory
cell can be written as ct, and the hidden state is denoted as
ht.

Figure 6: The architecture of D2D-LSTM model
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Loss Function

The tree prediction problem can be treated as BFS-order
nodes generation and the generation of each node can be re-
garded as a classification problem. So we model the process
of generating a new node as a multi-binary classification and
we can calculate confidence for every class and select the
prototype user which has the maximum confidence. Then
we optimize our model via multi-class binary cross-entropy
loss:

Llog(W ) = − 1

N

N−1∑

i=0

K−1∑

k=0

y i,k logp i,k (2)

where W is a set of weight matrices and N represents the
number of training samples and K is the number of label.
The probability of the currently predicted node belonging to
prototype user k is pi,k ,and yi,k is the label of prototype
user k.

Experiments

We perform substantial experiments to evaluate D2D-LSTM
and compare it with other baselines. The baselines involved
in this experiment include FC with all four features, D2D-
LSTM with random weights, D2D-LSTM without the fea-
ture of content category, time feature, geographical position,
and time preference respectively, so as to verify the predic-
tive accuracy performance of D2D-LSTM. In addition, this
paper demonstrates the effect of features mentioned above
by comparison.

Implementation Details

In this paper, PyTorch is used to construct and implement a
specific neural network. In deep learning, gradient descent is
adopted to update network weights. We use the initial learn-
ing rate of 0.008. When loss increases compared with the
previous step, the learning rate decreases by half. Adam was
taken in the optimization model, with the first-order moment
estimated attenuation rate of 0.9 and the second-order mo-
ment estimated attenuation rate of 0.999. In LSTM train-
ing, mini-batch gradient descent was carried out, and the
mini-batch size was 64. As the length of ground-truth tree
varies, the padding method is employed for alignment, and
the completed elements are ignored in the calculation pro-
cess. For all training models, the maximum number of itera-
tions epoch is set to 300.

Baselines

We compare our D2D-LSTM model with the following
baselines:

RNN with all four features: It has the same architecture
as that of D2D-LSTM, but uses general RNN to learn and
predict. The purpose of this model is to verify the impor-
tance of memory during the path prediction process.

D2D-LSTM with random weights: It has the same archi-
tecture as our D2D-LSTM model but with random weights.

This is to test the random performance ability of D2D-
LSTM, so as to compare with the performance of D2D-
LSTM after training.

FC Model with all four features: Same to D2D-LSTM,
this baseline has all four features. FC Model contains only
one hidden layer and one Softmax layer to convert the output
hidden layer vector into the probability of being propagated
this time. The purpose of this model is to verify the impor-
tance of memory in the transmission process.

D2D-LSTM Model lack of one feature: It has the same
architecture as that of D2D-LSTM, but only lack of one
feature respectively. To ensure dimensional consistency, the
missing feature is filled with 0. These baselines are used to
test the importance of missing dimension in communication.

Table 3 shows the configuration of baselines, where
�means use this feature and × means not.

Table 3: Baseline Configuration
ID Model Content Time Loc Trans

#1 FC � � � �
#2 Random Weight � � � �
#3 D2D-LSTM � � � �
#4 D2D-LSTM × � � �
#5 D2D-LSTM � × � �
#6 D2D-LSTM � � × �
#7 D2D-LSTM � � � ×
#8 RNN � � � �

D2D-LSTM is a top-down tree path prediction and gen-
eration, but the Tree-LSTM (Zhang, Lu, and Lapata 2015)
aims to perform a bottom-up tree data classification. So we
cannot compare it to Tree-LSTM.

Node-wise Prediction Accuracy
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Figure 7: The variation trend of measurement in different T

Due to the limitation that only one node can be output
at a time in the LSTM, D2D-LSTM can just be predicted
node by node. Therefore, prototype user predicted by D2D-
LSTM and real prototype user will be used to make a node
by node comparison. Then, we calculated the average preci-
sion of the predictions for each prototype, and used macro
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evaluation F1-Score and Kappa coefficient to measure the
confidence coefficient and consistency of the overall predic-
tion category. Limited to node-by-node prediction, we did
not generate tree paths at this stage. To further simplify the
model and improve the generalization of D2D-LSTM, this
paper proposes to divide users into T prototypes according
to their social characteristics. Fig 7 shows the variation trend
of measurement index in different T. mAPall is the mean
average precision (AP) for overall prototype user classes, in-
cluding terminal class, while mAPreal is the mean average
precision for all real prototype user classes, Which does not
contain terminal class. From this figure, it can be concluded
that D2D-LSTM performs best when T = 80. So we choose
T = 80 to train our model. When T = 80, the accuracy of pre-
diction, macro-F1, Kappa coefficient, mAPreal and mAPall

are 39.17% 26.19%, 17.14%, 23.00% and 23.88%, respec-
tively.

Fig 8 shows the performance evaluation of D2D-LSTM,
and compares it to other baselines. The accuracy of RW is 0,
and its loss is very large, so it is not shown in the figure. mAP
is the mean AP computed over all 81 classes. APterminal is
the average precision for terminal class. And APreal repre-
sents the mean AP for all prototype users.

First, we can see that all baseline models but RW and
RNN outperform D2D-LSTM with random weights base-
line, which produces a very low mAPreal showing the dif-
ficulty of the task. The fact that the LSTM model is higher
than the mAP of the RNN model indicates that adding the
forgotten gate and memory mechanism will improve the ac-
curacy of the prediction, thus verifying the effectiveness of
using LSTM as a basis in this paper. And APterminal of
all models is higher than mAP of them. Reason for this phe-
nomenon is that the terminal class has a 1 : 2 ratio of non-leaf
vs. leaf (total of 65172, 22351 non-leaf and 42821 leaf). The
large difference in target ratios make the prediction task for
the prototype classes much more difficult than the terminal
class.

Second, we conclude the social characteristics of users
playing an essential role in D2D transmission path predic-
tion. Comparing D2D-LSTM Model lack of different fea-
ture, it can be found that geographical location plays an im-
portant role in D2D communication, because D2D transmis-
sion is mainly constrained by geographical location accord-
ing to its characters.

Third, our D2D-LSTM performs much better than the FC
model. The accuracy and mean average precision of D2D-
LSTM with all features increase 8.0% and 39.2% at most
respectively. This phenomenon indicates the significance of
memorizing APP transfer histories in D2D-LSTM cell for
predicting the next forward user.

Finally, as can be seen from the result, D2D-LSTM con-
verges faster, LOSS decreases faster and our loss (0.83)
is the minimum among other baselines. Meanwhile, this
model has a maximum Macro-F1 value(0.288) and accu-
racy(0.403). That means, compared with baselines, D2D-
LSTM’s prediction has the smallest difference from the real
data.

Tree Generation Accuracy

The task of tree generation for D2D-LSTM is to generate the
whole tree path with a given root node. We use tree edit dis-
tance (Paaßen 2018) to measure the difference between the
ground-truth tree and the generated tree. On account of the
direct proportion relationship of edit distance and the num-
ber of nodes predicted, we utilize edit distance dividing the
number of nodes to balance this error.

In addition, Depth MAE is used to measure predicting
the accuracy of the terminal node, and Predicting prototype
Coverage for Level i (PCLi) is used to measure predicting
performance. Suppose the i-th level nodes set is D, PCLi is
defined as equation 3.

PCLi =
| {x ∈ X | X = Dground−truth

i ∩Dpredicted
i } |

| {x ∈ X | X = Dground−truth
i } |

(3)
In order to measure the tree generation accuracy, we re-
move trees that only have two nodes in this section. The
root node and its feature vector are given. We set a queue
to help tree generation, and for every step, we take a node
from the queue and generate its child node. Every gener-
ated child node is put in the queue. We recursively make
80 classes prediction. If a node is predicted as a terminal
class, we stop child node generation for this node and take
another node from the queue to continue the node genera-
tion until the queue is empty. Moreover, the child generation
process will be truncated if its childnodecount > 20 and
if its childnodecount > 100 to avoid an infinite error for
every node’s generation. Results are shown in Table 4. Our

Table 4: Tree Generation Accuracy
Model MWED MAE MPCL

FC@#1 9.96 3.14 0.16
D2D-LSTM@#4 5.87 2.62 0.16
D2D-LSTM@#5 14.96 3.04 0.13
D2D-LSTM@#6 30.17 3.56 0.014
D2D-LSTM@#7 10.82 2.72 0.11

RNN@#8 18.07 2.98 0.04
D2D-LSTM@#3 3.37 2.60 0.17

generated trees are more similar to ground truth trees than
FC since we have the smallest edit distance. D2D-LSTM
which is lack of location feature (D2D-LSTM@#6) has the
largest MWED, which shows the importance of location fea-
ture in D2D social network. As we can see from the result,
content type is not so important, because D2D transmission
happens when people meet and share, which is not same as
Online Social Network. Fig 9 shows a tree generated by our
D2D-LSTM. Prototype 38 and prototype 37 have the same
content preference and location preference, which shows the
homophily of D2D transmission participants. Even though
prototype 38 and prototype 26 have different content prefer-
ence, prototype 38 still transfer the APP file to prototype 26.
This is because of their common location preferences. So it
turns out that location plays a decisive role in D2D commu-
nication.
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Figure 8: Performance evaluation of D2D-LSTM.

Figure 9: Tree Diffusion Path Generated By D2D-LSTM

Related Work

A large number of efforts have explored content propa-
gation in MSN. Some previous works concentrate on in-
fluence maximization, such as (Li et al. 2017b; 2017a;
2016). Some previous works such as (Parisa et al. 2015;
Li et al. 2013; Sun et al. 2014) only concentrate on single
feature of the propagation process, but we aim to predict the
entire content diffusion path with multi-features to increase
accuracy and hit rate. (Hu et al. 2018) is mainly interested
in OSN with Pinterest, but our approach is based on offline
MSN. Additionally, researchers (Liben-Nowell and Klein-
berg 2007; Huo, Huang, and Hu 2018; Trouillon et al. 2016;
Wang et al. 2015) have made great efforts in link predic-
tion in social network. For example, in (Liu et al. 2016),
a random walk principle is put forward to calculate the
possibility of one node propagating information to another
node. However, link prediction has a serious drawback that
it can only predict the possibility of two nodes establish-
ing a link in a known social network topology. D2D-LSTM

recursively predicts the entire diffusion paths of a content
(an APP) using multi-featrues rather than predicting future
edges for an existing graph. D2D-LSTM is similar to the
Tree-LSTM (Chen et al. 2016b; 2016a; Tai, Socher, and
Manning 2015) in natural language processing (NLP). How-
ever, Tree-LSTM in NLP is bottom-up structure, while con-
tent transmission path prediction in D2D networks must start
from the root user, which makes Tree-LSTM not suitable
for predicting content diffusion path in mobile social net-
work (MSN). Zhang(Zhang, Lu, and Lapata 2015) proposed
a top-down Tree-LSTM, but it requires dependency trees,
trees converting from sentences in a specific order with some
restrictions. Our trees are built according to users’ interac-
tions, so our trees don’t meet these restrictions, causing this
top-down Tree-LSTM can not be used for D2D content dif-
fusion path prediction.

Conclusion

In this work, we present a deep recurrent network named
D2D-LSTM for predicting content propagation in D2D so-
cial networks, and D2D-LSTM takes multiple dimensions
into account, including the time, geography, category and
transmission preferences. We derive tree propagation paths
from a real-world large-scale D2D trace and create a new
method converting tree path into sequence to satisfy D2D-
LSTM’s input format. We also utilize prototype users to in-
crease the generalizability of the D2D-LSTM. Theoretical
analysis shows that our algorithm has a low computing com-
plexity. Empirical evaluation on the real D2D data set shows
that D2D-LSTM can accurately predict the propagation path
of the offline content.
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