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Abstract

With the recent trend of applying machine learning in every
aspect of human life, it is important to incorporate fairness
into the core of the predictive algorithms. We address the
problem of predicting the quality of public speeches while
being fair with respect to sensitive attributes of the speakers,
e.g. gender and race. We use the TED talks as an input repos-
itory of public speeches because it consists of speakers from a
diverse community and has a wide outreach. Utilizing the the-
ories of Causal Models, Counterfactual Fairness and state-
of-the-art neural language models, we propose a mathemati-
cal framework for fair prediction of the public speaking qual-
ity. We employ grounded assumptions to construct a causal
model capturing how different attributes affect public speak-
ing quality. This causal model contributes in generating coun-
terfactual data to train a fair predictive model. Our framework
is general enough to utilize any assumption within the causal
model. Experimental results show that while prediction accu-
racy is comparable to recent work on this dataset, our predic-
tions are counterfactually fair with respect to a novel metric
when compared to true data labels. The FairyTED setup not
only allows organizers to make informed and diverse selec-
tion of speakers from the unobserved counterfactual possibil-
ities but it also ensures that viewers and new users are not
influenced by unfair and unbalanced ratings from arbitrary
visitors to the ted.com website when deciding to view a talk.

1 Introduction

In recent times, artificial intelligence is being used in con-
sequential decision making. Governments make use of it
in criminal justice system to predict recidivism (Brennan,
Dieterich, and Ehret 2009; Tollenaar and Van der Heij-
den 2013) which affects the decision about bail, sentenc-
ing and parole. Various firms are also using machine learn-
ing algorithms to examine and filter resumes of job appli-
cants (Nguyen and Gatica-Perez 2016; Chen et al. 2017a;
Naim et al. 2016) which is crucial for the growth of a com-
pany. Machine learning algorithms are also being used to
evaluate human’s social skills such as presentation perfor-
mance (Chen et al. 2017b; Tanveer, Liu, and Hoque 2015),
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essay grading (Alikaniotis, Yannakoudakis, and Rei 2016;
Taghipour and Ng 2016) etc.

To solve such decision making problems, machine learn-
ing algorithms are trained on massive datasets that are usu-
ally collected in the wild. Due to difficulties in the man-
ual curation or adjustment over large dataset, it is likely
that the data capture unwanted bias towards the underrepre-
sented group based on race, gender or ethnicity. Such bias
results in unfair decision making systems, leading to un-
wanted and often catastrophic consequences to human life
and society. For example, the recognition rates of pedestri-
ans in autonomous vehicles are reported to be not equally ac-
curate for all groups of people (Wilson, Hoffman, and Mor-
genstern 2019). Matthew et al. (Kay, Matuszek, and Mun-
son 2015) showed that societal bias gets reflected in the ma-
chine learning algorithms through biased dataset and causes
representational harm for occupations. Face recognition has
been found to be not as effective for people with different
skin tones. Dark-skinned females have 43 times higher de-
tection error than light-skinned males (Buolamwini and Ge-
bru 2018).

In this work, we propose a predictive framework that tack-
les the issue of designing a fair prediction system from bi-
ased data. As an application scenario, we choose the prob-
lem of fair rating prediction in the TED talks. TED talks
cover a wide variety of topics and influence audience by edu-
cating and inspiring them. In addition, it consists of speakers
from a diverse community with imbalances in the age, gen-
der and ethnic attributes. The ratings are provided by sponta-
neous visitors to the TED talk website. A machine learning
algorithm trained solely from the audience ratings will have
a possibility of the predicted rating being biased by sensitive
attributes of the speakers.

It is a challenging problem because human behavior is
driven by numerous factors and hence have huge variabil-
ity. It is difficult to know the way these factors interact
among each other. In addition, uncovering the true interac-
tion model may not be feasible and often expensive. Even
though the sharing platforms such as YouTube, Massive
Open Online Courses (MOOC), or ted.com make it possible
to collect a large amount of observational data, these plat-
forms do not correct for bias and unfair ratings.
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In this work, we utilize causal models (Pearl and others
2009) to define possible dependencies between attributes
of the data. We then address the issue of not knowing the
true interaction model by averaging outputs of predictors
across several possible causes. Further using these causal
models we generate counterfactual samples of the sensitive
attributes. These counterfactual samples are the key compo-
nents in our fair prediction framework (adapted from Kus-
ner et al. (2017)) and help reducing bias in the ratings with
respect to sensitive attributes. Finally, we introduce a novel
metric to quantify the degree of fairness employed by our
FairyTED pipeline. To the best of our knowledge, FairyTED
is the first fair prediction pipeline for public speaking dataset
and can be applied to any dataset of similar grounds. Apart
from the theoretical contribution, our work also has practical
implications in helping both the viewers and the organizers
make informed and unbiased choices for selection of talks
and speakers.

2 Related Works
There has been a rising interest in developing fair algo-
rithms focused to mitigate the bias arising from discrimina-
tory preferences of attributes such as gender, ethnicity, race,
etc. These can cause bias across various domain, from col-
lege admissions process to criminal justice (Bickel, Ham-
mel, and O’Connell 1975; Brennan, Dieterich, and Ehret
2009). Training a machine learning algorithm with an ob-
jective of getting higher prediction accuracy can be some-
times unfair towards underrepresented groups in the dataset.
For example, it has been shown in (Bolukbasi et al. 2016)
that the geometry of word embedding trained with tradi-
tional machine learning algorithms reflect gender stereo-
types present in our society. Since machine learning models
are used to take important and sensitive decisions including
credit score prediction, loan applications assessment or pre-
dicting crime scenes, a careful approach should be designed
to make traditional predictive model fair. Baeza-Yates em-
phasized the importance of increasing awareness about fair-
ness in web based system. Calders and Verwer (2010) pro-
posed methods for designing discrimination-free bayesian
classifier. Dwork et al. (2012) formulated fairness as an op-
timization problem and made use of a task specific similar-
ity metric which describes the similarity of two individu-
als for the classification task. Grgic-Hlaca et al. (2016) de-
fined the notion of process fairness by focusing on the pro-
cess of decision making rather than outcome of the clas-
sifier. Schumann et al. (2019) proposed a framework with
theoretical gurantees to transfer fairness in machine learn-
ing across various domains. Other related research has been
done where the main focus is to quantify the unfairness in a
machine learning algorithms and create a model for a certain
dataset. Readers are referred to (Kamiran and Calders 2009;
Kamishima, Akaho, and Sakuma 2011; Joseph et al. 2016;
Garg et al. 2019). For a recent complete survey see (Mehrabi
et al. 2019). The notion of fairness in a prediction algorithm
has been defined in various ways based on researcher’s as-
sumption of fairness (Zliobaite 2015; Zafar et al. 2017) .
We follow the causal approach first introduced by Kusner
et al. (2017) to address the notion of fairness in a machine

learning model. For the causal framework, we have adopted
the definition of (Pearl and others 2009).

3 Preliminaries

3.1 Causal Model Definition

Following general convention we define causal model as a
Directed Acyclic Graph (DAG) with a set of nodes (N ) and
edges (E ⊆ N ×N). Let Pai = {nj |(nj , ni) ∈ E} denote
the set of parents of node ni. Adapting the conventions used
in Pearl and others (2009), Kusner et al. (2017), we then de-
fine the main characteristics of the causal DAGs. Each causal
DAG consists of the triple (U , V,F) where,

• U denotes the set of unobserved variables in the outside
world that influence observed variables of the causal mod-
els.

• V denotes the set of observed variables consisting of three
mutually exclusive sets, 1) set of sensitive attributes S, 2)
set of data attributes X and 3) label Y ; i.e, V = S∪X∪Y .

• F = {F1, F2, . . . Fn} is a set of functions that define the
relationship between vi ∈ V and Pai for all i. In other
words, vi = Fi(Pai) + ηi, where ηi is a random variable
drawn from a distribution and Pai ⊆ V ∪ U .

Defining the set of functions F is crucial for generating
counterfactual samples of S and performing related com-
putations (for details see Kusner et al. (2017) and Pearl and
others (2009)). For intuitive examples explaining the vari-
ables (U ,V,F) in relation to causal models, see Section 6
and Fig. 3.

3.2 Counterfactual sample generation

To create an augmented dataset including actual observa-
tions and counterfactual samples of S we take the following
steps (see chapter 4 of Pearl and others):

• We assume a prior distribution over U and infer its poste-
rior distribution given V .

• Intervene on sensitive attributes S ⊆ V to generate coun-
terfactual samples of S. The counterfactual samples of
S are then augmented with actual observations to create
augmented dataset (See Section 6 for details).

3.3 Counterfactual fairness

We adapt the definition of counterfactual fairness (Russell et
al. 2017) and use YS→s′ to denote the label of the coun-
terfactual sample of S. A predictor Ŷ of Y is said to be
counterfactually fair given the observed data attributes X

and sensitive attributes S if P (ŶS←s = y|X = x, S = s) =

P (ŶS←s′ = y|X = x, S = s) for all s′ �= s and all y. Intu-
itively, this equation ensures that the prediction probability
remains unaffected by interventions on sensitive attributes
S when all other attributes are same. For example, if we ob-
serve that talks given by white male speakers are rated to be
fascinating with a probability of 0.6 then counterfactually
assigning the same talk content and other attributes to white
females, say, should not change the probability from 0.6.
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Table 1: TED talk Dataset Properties: Information about the
TED talk videos that are used in the causal DAGs

Property Quantity

Total number of talks 2,383
Total number of views 4206,164,936
Total length of all talks 564.63 Hours
Total number of ratings 5,954,233

4 Data
The data analyzed in our study was collected from TED talk
website (ted.com). We crawled the website to obtain data
from 2400 videos published between 2006 and 2017, cover-
ing a wide range of topics such as cultural, social and sci-
entific issues. This not only highlights the vast appeal and
diversity of TED talks but also exhibits the importance of
fair rating predictions. We have removed 17 talks from our
dataset as those were not held at a public speaking set up.
The preliminary data contains details about the total number
of views (V ), the transcripts (T ) used by the speaker, ratings
(Y ) of the videos given by the viewers, etc. The rating Y for
each video consists of 14 labels such as beautiful, ingenious
and confusing. Summary of the dataset is given in Table 1.

4.1 Data Annotations

We use Amazon mechanical turk to collect data on the pro-
tected attributes S (race and gender). Each video was an-
notated by 3 turkers and we verified the inter-rater reliability
using Krippendorff’s alpha (Krippendorff 2011) which gives
an average agreement of 93%. The remaining data was man-
ually investigated and annotated.

4.2 Data Preprocessing

• We obtain embedded transcript (T ∈ R
d) using the

doc2vec implementation of Gensim package (Le and
Mikolov 2014) and use d = 200 for all reported results.

• The original view count (Vold ∈ Z) in the data ranges over
large values compared to other attributes. We use the min-
max technique to normalize V(old) and obtain V ∈ R.

V =
V(old) −min{V(old)}talks

max{V(old)}talks −min{V(old)}talks
We assume that, how long a video has been online gets
inherently captured by the total views and does not need
to be explicitly modeled.

• We denote each original rating as Y(old) = (y1(old), · · · ,
y14(old)) ∈ Z

14, where yi(old) is the count of ith label
from viewers. Y(old) is scaled w.r.t corresponding total rat-
ings to acquire Y ∈ R

14 as,

yi =
yi(old)∑14
j=1 yj(old)

• We binarize each rating label yj by thresholding w.r.t me-
dian mj (median{yj}talks). For each j the label yj then
becomes 0 or 1, where 1 indicates the yj > mj . We train
our classifier to predict these 14 binarized rating labels.
The attributes of our final dataset are shown in Table 2.

Table 2: Pre-processed Dataset Attributes: Final attributes
from the TED talk dataset that are used to train the FairyTED
classifier

Sensitive attributes S, race and gender
Data attributes X , transcript and view count

Label Y , rating

5 Observation in Data

We used an open source tool-kit AIF360 (Bellamy et al.
2018) to examine existing bias or unfairness in our prepro-
cessed dataset w.r.t. S (race and gender of the speaker). We
calculated the statistical parity difference (SPD) and dis-
parate impact (DI) (Biddle 2006) for each of the 14 bina-
rized rating labels as,

SPD = P(yi = 1|S ∈ Grp 1)− P(yi = 1|S ∈ Grp 2)
DI = P(yi = 1|S ∈ Grp 1)/P(yi = 1|S ∈ Grp 2)

Using these metrics we calculate the marginal probability of
yi for each i across various groups and observe many sig-
nificant differences. Fig. 1 shows some examples where we
compare male speakers with speakers of other genders. The
difference between blue and orange bars are noticeable for
rating labels marked with red blocks. We observe that talks
from male speakers are rated ingenious, fascinating and jaw
dropping with greater probability. This identifies some clas-
sic instances of bias in data arising from social norms and
structures. However, not all bias observed in data are against
the presumed unprivileged community, for example, speak-
ers from other genders get higher probability for courageous
label as compared to male speakers. Our goal is to remove
all types of bias from data, both expected and unexpected.
The counterfactual fairness is agnostic to the type of bias
and aims to remove all possible unfairness in rating across
all possible combinations of sensitive attributes. Moreover
it can be shown that under suitable assumptions, counter-
factual fairness implies group fairness (see arxiv version for
details).

6 FairyTED Pipeline

To achieve the goal of building a fair predictor of TED talk
ratings Y , we execute the following steps:

1. Show bias in real data: We show that the viewer ratings
in the TED talks is actually biased by using SPD and DI.
This justifies the need to build a fair classification model
for TED talk ratings.

2. Preprocess data and define causal model: We then de-
fine a causal model, C-DAG of the TED talk ratings,
which consist of three major components: the unobserved
variables U , the sensitive attributes S and the TED talk
video attributes X = {T, V, Y } obtained by preprocess-
ing the data (see Section 4.2). For a specific model shown
in Fig. 3, U is the skill set and background of the speaker
and S is gender and race. U and S causally influence T ,
V and Y . The skill set, background, gender and race of
the speakers strongly influence their life experiences and
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Figure 1: Existence of bias in data: Here we show an exam-
ple of biased rating in data using disparate SPD and DI met-
rics (see Observation in Data). In this example we compare
male speakers with others and find male speakers are rated
to give fascinating, ingenious and jaw dropping talks with
higher probability. However contrary to expectation, other
speakers had higher probability of being courageous.

hence govern the content of their talks. These also deter-
mine whether viewers choose to view their talk or not and
what type of rating they get if viewed. Since other simi-
lar models can also be justified for the dataset, we ensure
that our system is robust to any kind of causal model with
similar setup (see Fig. 3).

3. Model average: We consider variants of C-DAG with
two intuitively possible manipulations, 1) C-DAG1: un-
observed causes affecting T and V are independent,
meaning U decomposes into U1 and U2 such that U1 af-
fects T and U2 affects V (e.g, skill set only influences
how likely a talk will be viewed and background of the
speaker influences the content of the talk, shown in Fig.
3(b)). 2) C-DAG2: the affect of sensitive attributes is ma-
nipulated, we consider the case where gender does not
influence T (Fig. 3(c)).

4. Fit model parameters: We fit the parameters of each
causal model, C-DAG, C-DAG1, C-DAG2.

5. Create augmented data with counterfactual samples:
Next from each of these fitted models, we generate coun-
terfactual samples of S (such as replacing male speaker
with female speaker for a particular talk with fixed skill
set and background, also see Preliminaries) and create
augmented datasets (Daug, D1aug, D2aug) to be used for
classification.

6. Train fair classifier: Finally for each model we use
corresponding augmented dataset to train a neural net-
work for binary classification of each of the 14 rating la-
bels. The loss function used to train the network has two
parts: 1) the first part minimizes prediction error when
compared to true data labels and 2) the second part re-
duces disparity between the labels of observed values of
S and their corresponding counterfactuals. This ensures
that simply changing a male speaker to female with fixed
skill set and background does not influence the rating.

The prediction accuracy of the fair classifier is obtained
by averaging performance across all three models.

7. Fairness validation: We finally validate that our classi-
fier is counterfactually fair as compared to actual ratings
provided by viewers. For this we introduce a novel metric
coefficient of probability variance, CVprob that compares
variability of ratings across possible instances of S before
and after introduction of fairness measure (e.g. hypothet-
ically if male and female speakers were rated funny with
probability 0.75 and 0.45 just due to difference in S and
after fairness was introduced in prediction this variability
dropped, becoming 0.75 and 0.70 solely based on same
content, skill set and background).

This pipeline brings together fairness measuring metrics and
counterfactual fairness incorporation techniques to build a
complete setup for TED talk dataset (Fig. 2). Our setup
can be applied to any language or video dataset whose fea-
ture embedding can be obtained using any state-of-the-art
method. In addition, this setup can accommodate multiple
causal models to ensure fairness in classifier across all possi-
ble models. Besides this, our setup also allows having nodes
that cater to unobserved causes in the world.

6.1 Causal Model

We consider three relevant variants of causal models for
TED talk data using the general definitions mentioned in
preliminaries.

• C-DAG as in Fig. 3(a),

T ∼ N (
wU

T U + wS
TS, σ

2
T1

)
V ∼ N [0,1]

(
σ
(
wU

V U + wS
V S + wT

V T
)
, σ2

V 1
)

Y ∼ Bern
(
σ
(
wU

Y U + wS
Y S + wT

Y T + wV
Y V

))
where N [0,1] denotes the truncated Gaus-
sian in the domain [0, 1]. We gener-
ate U from N (0,1) and fit ΘC-DAG =
{wU

T , w
S
T , σT , w

U
V , w

S
V , w

T
V , σV , w

U
Y , w

S
Y , w

T
Y , w

V
Y , σY }

using variational inference algorithm in PyMC3 (Sal-
vatier, Wiecki, and Fonnesbeck 2016).

• We modify C-DAG such that U decomposes into mutually
exclusive sets U1 and U2 to influence T and V indepen-
dently (Fig. 3(b)) giving C-DAG1,

T ∼ N
(
wU1

T U1 + wS
TS, σ

2
T1

)
V ∼ N [0,1]

(
σ(wU2

V U2 + wS
V S + wT

V T ), σ
2
V 1

)
Y ∼ Bern

(
σ
(
wU1

Y U1 + wS
Y S + wT

Y T + wV
Y V

))

Both U1 and U2 are drawn from N (0,1) and we fit
ΘC-DAG1 = {wU1

T , wS
T , σT , w

U2

V , wS
V , w

T
V , σV , w

U1

Y , wS
Y ,

wT
Y , w

V
Y , σY } to obtain posterior distributions over U1

and U2.

• In C-DAG2 S from C-DAG decomposes into S1 and S2

to influence T and V as in Fig. 3(c). S1 ⊂ S consists of

341



Preprocessing

Model Fitting and Causal Inference

Causal 
Model

Checking existence of 
bias in data 

Feedforward classifier network

Counterfactual Dataset

True Loss:


reduce difference between 

prediction label and true data 

label Unfairn
ess Loss: 

reduce difference between tru
e 

label and counterfactual data 

label

Transcript

Views

Gender
Race

User Ratings

Sensitive

Predictor

Data info.

Validation: Fairness improvement in prediction

TED Talk Data

Generate counterfactual 
samples of sensitive 

attributes for each causal 
model and create 

augmented datasets :


C
au

sa
l M

od
el

 1
C

au
sa

l M
od

el
 2

C
au

sa
l M

od
el

 3

Fi
t m

od
el

 
pa

ra
m

et
er

s

In
fe

r p
os

te
rio

r o
ve

r 
un

ob
se

rv
ed

 v
ar

ia
bl

es

Intervene 
on 

sensitive 
attributes

Figure 2: FairyTED pipeline: The setup to build a fair classifier for TED talk dataset (see Section 6). First step is to confirm
presence of bias in data. Next we preprocess the data to obtain relevant attributes (details in Section 4). Following that we build
possible causal models for the preprocessed data and generate augmented datasets with counterfctual samples (see Section 6.1).
We then train a classifier on the augmented datasets with a loss function incorporating a fairness measure (see Section 6.2). As
a final step we validate that our system learns to generate fair prediction of ratings for the TED talk dataset (see Results).

race only, whereas, S2 = S which includes both race and
gender,

T ∼ N
(
wU

T U + wS1

T S1, σ
2
T1

)
V ∼ N [0,1]

(
σ(wU

V U + wS2

V S2 + wT
V T ), σ

2
V 1

)
Y ∼ Bern

(
σ
(
wU

Y U + wS
Y S + wT

Y T + wV
Y V

))
Here, U ∼ N (0,1) and we fit ΘC-DAG2 =

{wU
T , w

S1

T , σT , w
U
V , w

S2

V , wT
V , σV , w

U
Y , w

S
Y , w

T
Y , w

V
Y , σY }

to obtain posterior distribution over U .

From each of the three models we generate counterfactual
samples of S.

6.2 Classifier Model

We train a neural network with one hidden layer of 400
nodes to predict ratings Y . Let {(si, xi)}Ni=1, {yi}Ni=1 rep-
resent the attributes and labels of the dataset where si repre-
sents an instance of S and xi represents instance of (T, V ).
We train a classification function g such that Ŷ = g(s, x) us-
ing a loss function which is a combination of prediction loss
and unfairness loss. We use binary cross entropy loss (BCE)
to calculate the prediction error and an unfairness function u
to estimate the unfairness of the classifier as,

L(g) = 1

N

N∑
i=1

(
BCE

(
g(si, xi), y

i
)

︸ ︷︷ ︸
prediction loss

+ γ
∑
s′ �=si

u(g, s′, si, xi)

︸ ︷︷ ︸
unfairness loss

) (1)

u(g, s′, si, xi) =
1

C

C∑
c=1

max{0, |g(si, xc
i )− g(s′i, x

c
i )| − ε}

(2)
where C represents the number of counterfactual samples
for each observed data instance and ε is a hyperparameter
which makes sure that our predictor maintains a (ε, δ)- ap-
proximate counterfactual fairness (δ is a function of γ, for
more details about the choice of the unfairness function,
please refer to (Russell et al. 2017)). We tune γ and ε to
obtain best results in our causal models, see Table 3.

7 Results

7.1 Prediction Accuracy

After training the classifier with augmented datasets for the
three models, we obtain an average prediction accuracy of
69% across all rating labels (Table 3). This accuracy is ob-
tained by training the classifier without the unfairness mea-
sure in the loss function. The mean accuracy obtained from
an unfair classifier is comparable to accuracy reported in re-
cent studies on TED talk data (Cheng et al. 2014; Tanveer
et al. 2019). However, note that our language model (Le and
Mikolov 2014) is much simpler when compared to methods
used in the cited studies. With this simple choice we em-
phasize the general appeal of our approach whose goal is to
reduce unfair prediction in data irrespective of the embed-
ding technique. After addition of the unfairness measure u in
the loss function in equation (1), the average prediction ac-
curacy goes down as expected, to 67% but not significantly
(see section 6.2 for details). The hyperparameter γ in the loss
function plays a critical role in determining the trade-off be-
tween fairness in prediction and its accuracy, the smaller the
value of γ, the more unfair the prediction.
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Figure 3: Causal models: Here we show three causal models considered for our FairyTED setup. C-DAG consists of all relevant
dependencies between unobserved attributes U , sensitive attributes S, data attribute V (view) and rating prediction Y . In C-
DAG1 we manipulate the influence of U on V and in C-DAG2 we manipulate the influence of S on V . This setup allows
averaging across possible causal models when the true model is unknown.

7.2 Fairness Improvement

We first show that there is a decrease in the unfairness mea-
sure of the classifier with the increase in training iterations
(Fig 4(A)). We then verify the improvement of fairness in
prediction of all 14 rating labels across possible groups of
S. To do so we come up with a fairness comparison met-
ric CVprob and compare prediction fairness before and af-
ter addition of unfairness function u in the loss function in
equation (1).

Table 3: The accuracy of the classifier is reported for dif-
ferent set of hyperparameters (ε, γ). Note that the accuracy
increases if γ is reduced or ε is increased (increase unfair-
ness). When (ε, γ) = (∞, 0) (most unfair) it achieves the
highest accuracy.

(ε, γ) (0.1,0.2) (0.5,0.2) 0.1,0.4) (∞, 0)
beautiful 0.7 0.7 0.66 0.77
confusing 0.63 0.62 0.6 0.66

courageous 0.71 0.72 0.69 0.74
fascinating 0.68 0.62 0.64 0.7

funny 0.71 0.67 0.67 0.71
informative 0.71 0.66 0.65 0.7
ingenious 0.7 0.65 0.65 0.7
inspiring 0.66 0.68 0.61 0.72

jaw-dropping 0.64 0.61 0.58 0.66
longwinded 0.64 0.57 0.6 0.61
obnoxious 0.58 0.59 0.59 0.62

ok 0.62 0.59 0.57 0.66
persuasive 0.71 0.67 0.66 0.75

unconvincing 0.62 0.62 0.63 0.66

7.3 CVprob Metric

We have 3 types of gender (male, female and other) and
4 types of race (White, Asian, African American and
other) under S giving 12 possible groups denoted by
G = {G1, G2, · · · , G12} on whom counterfactual fair-
ness is tested. We then calculate with what probability each
of these 12 groups obtain a particular rating, i.e., for all
k ∈ {1, · · · , 14} and i ∈ {1, · · · , 12}, we compute pki =
P(yk = 1|S = Gi). We denote, P k = (pk1 , . . . p

k
12). Sim-

ilarly for the predicted label we compute p̂ki = P(ŷk =

1|S = Gi) and denote, P̂ k = (p̂k1 , . . . , p̂
k
12). Note that,

variability in the coordinates of P k is a measure of fairness
across the group for the rating yk. In particular, the more
variable these coordinates are, the more unfair the label is.
Also CV = std

mean is a common statistical metric used to
quantify variability/irregularity in a set of values. Hence we
define, CV k

prob as CV for the coordinates of P k. Similarly,

ĈV
k

prob is the CV for the coordinates of P̂ k. Hence, if a

predictor improves fairness in the prediction, then ĈV
k

prob

should be less than CV k
prob as in Fig. 4(B). We also com-

pared the SPD and DI for the true labels and predicted labels
of the test dataset (Fig. 4 (C,D)).

8 Conclusion

The FairyTED setup is applicable to any dataset with the fol-
lowing properties, 1) contains sensitive attributes which can
cause biased predictions, 2) it is possible to define a causal
model with relevant attributes of the dataset, 3) a counter-
factual fairness measure can be defined on the prediction
probability by using counterfactual samples of the sensitive
attributes.
We successfully identified the above properties in the TED
talk dataset and removed bias/unfairness in rating predic-
tion. The impact of this work is many-fold: 1) First, it iden-
tifies the necessity of applying counterfactual fairness on the
rich and influential database of TED talk videos. 2) Sec-
ond, it identifies that counterfactual fairness measure is the
most relevant for TED talk videos and like datasets. This is
because it allows identification of attributes in data which
play a critical role in causing biased predictions for exam-
ple male versus female speakers. In public speaking plat-
forms it is expensive and implausible to test the change
in rating of a talk when given by a female speaker in-
stead of a male speaker with the same content and same
skill set. Counterfactual fairness allows to hypothetically
test any such example and correct for the resulting bias.
3) In most real world situations it is hard to know the true
causal model for the observed dataset, and our setup can
deal with this issue as long as we have some idea of pos-
sible models. 4) In rich and complicated domain such as
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Figure 4: Increase in fairness of classifier: (A) The unfairness measure of the classifier decreases with the increase in training
iterations (B) CVprob values of true vs predicted labels. All points fall under the y = x diagonal line, implying CVprob is
reduced by the fair classifier. (C) SPD moves towards 0 and (D) DI moves towards 1 for most of all possible pairs of groups
across S after the prediction. The blue dots denote the fairness measures for the true labels and red dots denote the fairness
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TED talks, there can be a lot of unobserved attributes that
can affect the data and our setup can take care of it by infer-
ring a posterior distribution over the unobserved attributes.
5) Any dataset with a simple embedding scheme can use
this model. One straightforward extension of this frame-
work can be on job interview based datasets. We can in-
clude better encoding schemes such as (Devlin et al. 2018;
Yang et al. 2019) to obtain even better prediction accuracy
besides making it fair. We can also include multi-modal (e.g.
audio-visual) information from the dataset to obtain rich
representation and test how counterfactual fairness measure
generalizes across various modes. 6) We propose an intuitive
novel metric that quantifies degree of fairness employed by
our setup. Besides these, information from temporal evolu-
tion can also be used to improve our framework in future
work. Finally the FairyTED setup has three important social
impacts: 1) It ensures that speakers get fair feedback and can
improve only based on fair fallacies 2) Organizers can em-
ploy diverse speakers without worrying about degradation in
rating when skill, ability, influence and content are matched.
For example, suppose a talk on global warming was given
by a male speaker and obtained good rating. With our setup,
the organisers can choose a female speaker with comparable
qualities as the male to speak on the global warming without
worrying about deterioration in rating. 3) Finally, new view-
ers will not be biased by prevalent unwanted biased ratings
from previous users and prevents propagation of unfairness
over time.
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