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Abstract

In times of a disaster, the information available on social me-
dia can be useful for several humanitarian tasks as dissemi-
nating messages on social media is quick and easily acces-
sible. Disaster damage assessment is inherently multi-modal,
yet most existing work on damage identification has focused
solely on building generic classification models that rely ex-
clusively on text or image analysis of online social media
sessions (e.g., posts). Despite their empirical success, these
efforts ignore the multi-modal information manifested in so-
cial media data. Conventionally, when information from var-
ious modalities is presented together, it often exhibits com-
plementary insights about the application domain and facil-
itates better learning performance. In this work, we present
Crisis-DIAS, a multi-modal sequential damage identification,
and severity detection system. We aim to support disaster
management and aid in planning by analyzing and exploiting
the impact of linguistic cues on a unimodal visual system.
Through extensive qualitative, quantitative and theoretical
analysis on a real-world multi-modal social media dataset, we
show that the Crisis-DIAS framework is superior to the state-
of-the-art damage assessment models in terms of bias, re-
sponsiveness, computational efficiency, and assessment per-
formance.

1 Introduction

Context & Scope. Social media’s rapidly increasing ubiq-
uity (Global-Digital-Report 2019) has made it one of the pri-
mary sources for a large multitude of users to engage in mass
discussions about disasters and the damage caused by crises
(Ahmad et al. 2019). A large number of domains, including
public health, economy, and politics (Chew and Eysenbach
2010) (Llorente et al. 2015) (Conover et al. 2013), utilize
this gold-mine of data to foster social media research. This
helps in analyzing the user’s perspective and understanding
how user-generated content enhances the user-authority re-
lationship (Reuter and Kaufhold 2018). In times of crisis,
users upload a large amount of data in the form of text, im-
ages, video, audio, etc. which indicate the severity of the im-
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pact of the disaster. This data is voluminous, and therefore,
there is a need of systems which can automatically identify
and highlight a social media post if it indicates severe dam-
age, by analyzing the information present in different media
forms.
Challenges. One of the major challenges associated with
isolating the media content useful for crisis management
(Imran et al. 2015) is the sheer quantity of the social me-
dia posts which makes it difficult to identify useful and ac-
tionable content in real-time. Therefore, there is a need for
automatic systems to identify the presence of damage and
analyze it, which could benefit the emergency management
process.

While unimodal damage analysis frameworks are effi-
cient, they are not able to assess damage as effectively for
social media posts. Text and images are very likely inter-
related (Vempala and Preoţiuc-Pietro 2019). Therefore, to
develop an effective system we must employ an interdis-
ciplinary approach which can leverage data from different
media forms.

Another challenge to the design of emergency assessment
systems is how their complexity correlates with their ease
of deployment and scalability. A system should be able to
perform well in real-time and possess the responsiveness
needed to provide aid.
Contributions. Motivated by the cause of humanitarian aid
in times of disasters, we propose Crisis-DIAS, a novel end-
to-end gated multimodal framework that leverages textual
and visual cues from user-uploaded information on social
media. The system performs a twofold task of first identify-
ing whether a social media post indicates the presence of in-
frastructural damage, and further assesses the severity level.
It does so by extracting cues from text and image modali-
ties, and then intelligently merging them by using attention
mechanism along with a gated framework to stitch the indi-
vidual tasks together to serve as an end-to-end service.

Crisis-DIAS is responsive and simple, yet efficient and
performs well in real-time multi task damage assessment.
Furthermore, we report an extensive comparative quantita-
tive, quantitative and error analysis on a real-world dataset.
Our results show how Crisis-DIAS, by learning to combine
the best features of different modalities, improves over uni-
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modal frameworks.

2 Related Work

To develop an effective social media damage assessment
tool, we must employ an interdisciplinary approach to as-
sess possible solutions.
Unimodal Disaster Analysis from Text. (Sreenivasulu and
Sridevi 2019) analyzed the messages from micro blogs for
detecting the informative ones, which could be further uti-
lized for other related disaster assessment tasks. They em-
ployed a Convolutional Neural Network (CNN) for mod-
eling the text classification problem, using the dataset cu-
rated by (Alam, Ofli, and Imran 2018a). On a broader scale,
(Alam, Ofli, and Imran 2019) developed an automatic data
processing service which analyzed the disaster-related social
media text to identify (i) the type of disaster depicted in the
message, (ii) whether it was informative and (iii) the type of
humanitarian information it contained. They used classical
machine learning and deep learning techniques to model text
on a dataset formed from several benchmark crisis datasets
(Alam, Ofli, and Imran 2018a) (Imran et al. 2014) (Olteanu
et al. 2014).
Unimodal Disaster Analysis from Image. (Chaudhuri and
Bose 2019) analyzed the images from earthquake-hit smart
urban environments to detect human and life damage, us-
ing a CNN architecture. (Alam, Ofli, and Imran 2018b) pro-
posed a vision-based damage assessment pipeline designed
to (i) filter relevant social media images for further assess-
ment and (ii) analyzing the damage severity. However, anal-
ysis of disaster content based on unimodal cues may some-
times lead to incorrect predictions.
Multimodal Disaster Analysis. The existing work on com-
bining features from different media sources focuses primar-
ily on categorizing the type of humanitarian damage, with-
out the identification or further assessment of such posts in-
dicating damage. (Rizk et al. 2019) used traditional hand-
crafted features for text and images from a home-grown
dataset and combined them using Support Vector Machine
to determine the type of damage indicated in a Twitter post.
In another work, (Pouyanfar et al. 2019) used Multiple Cor-
respondence Analysis to fuse audio and visual features to
classify what concept (humanitarian category) the posts in-
dicate. (Mouzannar, Rizk, and Awad 2018) used textual and
visual cues to categorize the type of damage indicated in a
post, using decision and feature fusion.

We compare this existing use of decision and feature with
another advanced fusion technique using attention mecha-
nism. Attention fusion not only performs better than the for-
mer two approaches but also learns which features are the
most important ones and accordingly attends them. Further,
we use state-of-the-art computer vision techniques such as
deep CNNs to extract spatial information from the images,
alongside recurrent networks and advanced embeddings to
model the text.

3 Problem Definition and Dataset

Recently, several datasets on crisis damage analysis have
been released to foster research in the area (Said et al. 2019).

In this work, we have used the first multimodal, labeled, pub-
licly available damage related Twitter dataset, CrisisMMD,
created by (Alam, Ofli, and Imran 2018a). The dataset was
collected by crawling the blogs posted by users during seven
natural disasters, including floods, wildfires, hurricanes and
earthquakes. It is hierarchical, i.e., the class labels at each
stage depend on the annotation of the previous stage.

The proposed system in Figure 1 aims to solve the three
humanitarian tasks formulated below using this dataset.

• Task 1- Informativeness.
(Alam, Ofli, and Imran 2018a) defines a tweet as infor-
mative if it serves to be useful in identifying areas where
damage has occurred due to disaster and provides separate
labels for text and images.
Let Finfo be the binary valued function, which takes in a
multimodal tweet and maps to either 1 or 0, depending on
whether the tweet is informative or not. More precisely,
let Mx be a multimodal tweet in the CrisisMMD dataset
(D), having text tx and image ix. Then, ∀Mx ∈ D,
Finfo(tx, ix) = 1 if Mx is informative, and 0 otherwise.
As both text and images have separate annotations,
we begin by estimating separate functions for the two
modalities and then combine them. We modify the
existing three class labels (belonging to the domain
{informative, non-informative, none}) by combining
non-informative and none classes into one class- calling
it non-informative, as neither helps in further damage
assessment.
Class Distribution:
Text- Informative (12877) : Non-Informative (5249)
Image- Informative (9375) : Non-Informative (8751)

• Task 2- Infrastructural Damage.
Crisis-DIAS aims to identify and assess the damage in the
tweets for severity. The damage in the informative tweets
from Task 1 may be of many different kinds (Alam, Ofli,
and Imran 2018a; Alam et al. 2018). However, for the res-
cue operation groups to provide aid, it makes sense to fo-
cus on only those tweets which signify physical damage,
or where people might be stuck (Alam, Ofli, and Imran
2018a).
The CrisisMMD dataset identifies several humanitarian
categories for damage, namely- Infrastructure and util-
ity damage, Vehicle damage, Affected individuals, Miss-
ing or found people, Other relevant information, None.
Out of these categories, the tweets belonging to infras-
tructure and utility damage suffer from physical damage,
such as broken structures, etc. Although other categories,
such as missing or found people are also informative for
assessment, but not for analyzing the severity.
Therefore, Task 2 for Crisis-DIAS involves analyzing the
tweets for infrastructural and utility damage in them. This
task forms a bridge between the other two, which sepa-
rately aim to identify and assess the damage, respectively.
Given a multimodal tweet Mx ∈ D, with text tx and im-
age ix, the objective for Task 2 is to identify whether it
suffers from infrastructural damage or not.

347



Specifically, function Finfra must be such that,
Finfra(tx, ix) = 1, if the tweet Mx is informative
and has infrastructural damage, and 0 otherwise.
That is, Task 2 must ideally be only for the informative
tweets from Task 1. However, as we propose an end to
end system i.e., given a tweet, it will analyze the tweet for
both damage identification, and severity. Hence, we must
be able to discard the non-informative posts which do not
need any further analysis. Moreover, there may always be
a chance that a non-informative tweet is misclassified as
informative. Since such data points do not have any la-
bel for Task 2, therefore, to allow the system to handle
all the cases we slightly modify and augment the existing
label set in CrisisMMD. As per the binary problem for-
mulation, we take the class label as non-infrastructural
damage for all samples not in the infrastructural and util-
ity damage class. This also includes the non-informative
samples from Task 1, which originally had no label for
Task 2.
As in Task 1, we have separate labels for text and image
modalities, which we take leverage of by first, estimating
separate functions for each and then, combining them.
Class Distribution:
Text- Infrastructural damage (1428) : Non-Infrastructural
damage (16698)
Image- Infrastructural damage (3624) : Non-
Infrastructural damage (14502)

• Task 3- Severity Assessment.
Given a multimodal tweet Mx(tx, ix) suffering from
infrastructural damage (i.e., Finfra(tx, ix) = 1), Task
3 aims to analyze the severity level of damage in three
broad categories namely- no, mild and high damage.
However, as reasoned for Task 2, we perform the task
on all the tweets, even the samples classified as non-
infrastructural damage in Task 2 by labelling them as
having no damage, to support the end-to-end framework.
(Alam, Ofli, and Imran 2018a) provides only one tweet
level label for severity analysis, which we learn by
leveraging from the multimodal cues.
Class Distribution:
No (15068) : Mild (842) : Severe (2216)

4 Crisis-DIAS

Figure 1 illustrates the system-level diagram for Crisis-
DIAS. This section describes in depth the various techniques
used in modeling each task, and the way these tasks are
stitched together to form an end-to-end multimodal service.

4.1 Pre-Processing

Image Pre-Processing. The images were resized to
299x299 for the transfer learning (Yosinski et al. 2014)
model and then normalized in the range [0,1].
Text Pre-Processing. All http URLs, retweet headers of the
form RT, punctuation marks, and twitter user handles speci-
fied as @username were removed and further lemmatized.

4.2 Vision Pipeline

For the proposed Crisis-DIAS framework, we used the
Inception-v3 model (Szegedy et al. 2016), pre-trained on the
ImageNet Dataset (Deng et al. 2009). The same architecture
has been used for modeling the three tasks, where only the
softmax layer changes as per the number of labels.

4.3 Linguistic Pipeline

For the proposed framework, we use Recurrent Convolu-
tional Neural Network (RCNN) (Lai et al. 2015) as the text
classification model. It adds a recurrent structure to the con-
volutional block, therefore capturing contextual information
with long term dependencies, and the phrases which play a
key role at the same time.

4.4 Multimodal Fusion

The availability of data from different media sources has
encouraged researchers to explore and leverage the poten-
tial boost in performance by combining unimodal classifiers
trained on individual modalities (Asvadi et al. 2017) (Wang,
Gong, and Li 2017). We experiment with three different fu-
sion techniques to unify text and image unimodal classifiers
for Task 3, namely Decision Fusion, Feature Fusion, and At-
tention Fusion. The classifiers for Tasks 1 and 2 have been
merged with a slight difference.

• Decision Fusion. In Decision Fusion, the softmax out-
puts of the linguistic and vision pipelines are combined
in a weighted fashion. The final prediction is given by the
class with the maximum weighted score. As a baseline,
we use equal weights for both the modalities. To improve
this baseline, we use the F1 scores of the two unimodal
models to scale their outputs.

• Feature Fusion. In case of Feature Fusion, we take the
outputs from the last layer before the softmax layer of the
two pipelines as inputs to a meta-classifier. We propagate
the concatenated tensor of features to a dense and a soft-
max layer, which gives us the class probability distribu-
tion. The optimal weights for these layers were found by
training with the weights of all the other layers held con-
stant.

• Attention Fusion. The idea of attention fusion is to at-
tend particular input features as compared to others while
predicting the output class. Figure 2 illustrates the imple-
mentation of this attention mechanism (Hua and Zhang
2004) (Vaswani et al. 2017). The features from the lin-
guistic and vision pipelines are concatenated in the same
way as in feature fusion. This is followed by a softmax
layer to learn the attention weights for each feature di-
mension, i.e., the attention weight αi for a feature xi is
given by:

αi = softmax(

p∑
j=1

Wji ∗ xj) (1)

=
exp(

∑p
j=1 Wji ∗ xj)∑p

i=1 exp(
∑p

j=1 Wji ∗ xj)
(2)
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Figure 1: Crisis-DIAS Architecture.

Figure 2: Attention mechanism for multimodal fusion.

Therefore, the input feature after applying the attention
weights is,

βi = αi ∗ xi (3)
where, i, j ∈ 1, 2, .., p and p is the total number of dimen-
sions in the multimodal concatenated feature vector. W is
the weight matrix learned by the model.
This vector of attended features is then used to classify the
given multimodal input. With this type of fusion, we can
also analyze how the different modalities are interacting
with each other employing their attention weights.

4.5 Gated Multimodal Architecture

We propose a gated multimodal framework to combine the
models for the three tasks together, as shown in Figure 1.
Given the hierarchical nature of the dataset, the output for
one task regulates the output for the next task, in a sequential
fashion. We achieve this by treating the outputs of the tasks
as binary gates.

For Task 1, the output from the linguistic and vision
pipelines is 1 for Informative samples, and 0 otherwise. We
combine the two outputs by performing a logical OR oper-
ation (⊕), i.e., the sample is Informative if either the text or

the image modality is predicted as being Informative by the
respective models, i.e., the combined label (τ1) is,

τ1 = L1 ⊕ I1 (4)

where L1 and I1 are the outputs of the linguistic and vision
pipelines of Task 1, respectively.

Similarly, for Task 2, we combine the outputs of the two
pipelines (L2 and I2) to give τ2. However, the final output
for Task 2 is also dependent on the output of Task 1 (τ1) and
therefore, we use τ1 as a multiplicative gate for the inputs
to the linguistic and vision pipelines (image pixel arrays and
token-indexed tweets) of Task 2. More precisely, if τ1 is 1
(Informative), we multiply the model inputs by 1, and the
sample is considered for Task 2. If τ1 is 0 (Non-Informative),
the inputs are multiplied by 0 and the prediction by Task 2
is 0 (Non-Infrastructural Damage) always. Therefore,

τ2 =

{
L2 ⊕ I2, if τ1 = 1

0, otherwise
(5)

For Task 3, the final output from the fusion layer must also
be regulated by the output from Task 2; and therefore, τ2 is
used as a gate. If τ2 is 1 (Infrastructural Damage), the inputs
to the vision and linguistic pipelines are multiplied by 1, and
the sample is considered for severity assessment in Task 3.
But if τ2 is 0 (Non-Infrastructural Damage), the inputs for
the pipelines are multiplied by 0 and the output for Task 3 is
always 0 i.e. Little or No Damage. More precisely,

τ3 =

{
AttentionFusion(L3, I3), if τ2 = 1

0, otherwise
(6)

Since we have modified the annotations to have labels for
all samples on all the tasks, the proposed architecture can
catch the samples incorrectly classified in the previous tasks.
For example, if a sample is incorrectly classified as being
Informative in Task 1, it can still be classified as belonging to
Non-Infrastructural Damage class in Task 2, and therefore
Little or No Damage in Task 3.
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Task Technique Precision Recall F1-Score AUC

Task 1

Text RCNN 0.96 0.96 0.96 0.98
Image Inception-v3 0.82 0.82 0.82 0.87

Image ⊕ Text
(Crisis-DIAS-1)

0.99 0.99 0.99 1.00

Task 2

Text RCNN 0.96 0.97 096 0.98
Image Inception-v3 0.92 0.92 0.92 0.91

Image ⊕ Text
(Crisis-DIAS-2)

0.99 0.99 0.99 0.99

Task 3

Text RCNN 0.95 0.95 0.95 0.96
Image Inception-v3 0.95 0.94 0.94 0.95

Decision Fusion-Equal 0.73 0.73 0.73 0.76
Decision Fusion-F1 0.95 0.95 0.95 0.97

Feature Fusion 0.96 0.97 0.97 0.97
Attention Fusion
(Crisis-DIAS-3)

0.96 0.98 0.97 0.98

Table 1: Results and ablation study.

5 Results and Discussion

5.1 Experimental Setup

We use Stratified 5 fold cross-validation to establish our re-
sults. We also use SMOTE (Chawla et al. 2002) on the word
embeddings to handle the class imbalance in the training
folds for linguistic baselines. For the RCNN, we use LSTM
layer with hidden dimension 64 to capture the contextual
dependencies. The final feature vector dimension (before the
softmax layer) is 128 in case of text models and 1024 for im-
age models. We train the models using early stopping with
a batch size of 64. We use Adam optimizer with an initial
learning rate of 0.001, and the values of β1 and β2 as 0.9
and 0.999, respectively. All the experiments were run on a
GeForce GTX 1080 Ti GPU with memory speed of 11 Gbps.

5.2 Results

To demonstrate the effectiveness of Crisis-DIAS for multi-
modal damage assessment on social media, we perform the
following independent studies:
Ablation Study. Table 1 highlights the results of an ablation
study over the best linguistic and vision models along with
Crisis-DIAS for the three tasks to demonstrate the effective-
ness of multimodal damage assessment models. For each
task, the fusion model forms a constituent of Crisis-DIAS
(named as Crisis-DIAS-X); these are then combined, utiliz-
ing gates to form the final Crisis-DIAS framework, shown
in Figure 1.
Design Choices. We tried different architectures for mod-
elling text- CNN (Kim 2014), hierarchical attention model,
bidirectional LSTM and RCNN (Lai et al. 2015). How-
ever, in the interest of brevity, we discuss the results for the
RCNN model, which performed the best on all the three
tasks. The architecture considerably reduces the effect of
noise in social media posts (Lai et al. 2015). As input to the
model, we use 100-dimensional Fasttext word embeddings
(Bojanowski et al. 2016) trained on the dataset. By operat-
ing at character n-gram level, Fasttext tends to capture the
morphological structure well, which helps the otherwise out
of vocabulary words (such as hash-tags) to share semanti-
cally similar embeddings with its component words. For im-
ages, InceptionV3 performed the best which employs multi-
ple sized filters to get a thick rather than a deep architecture,
as very deep networks are prone to overfitting. Such a design

makes the network computationally less expensive, which is
a prime concern for Crisis-DIAS as we want to minimize
latency to give quick service to the disaster relief groups.
Fusion Results. For Tasks 1 and 2, the linguistic and vi-
sion pipelines are combined using the logical OR operation
(⊕). The evaluation in Table 1 clearly shows the consider-
able enhancement in results attained by combining the two
modalities.

For Task 3, we experimented with three fusion techniques,
namely- Decision fusion, Feature fusion, and Attention fu-
sion. Although combining different modalities for improv-
ing the performance appears to be intuitively appealing,
in practice can be challenging (Wang et al. 2007) due to
the varying levels of noise and conflicts between different
modalities (Atrey et al. 2010). The results of Task 3 in Ta-
ble 1 summarize the impact of the augmentation made to the
image classifier. Weighted maximum decision fusion does
not lead to a substantial improvement in the performance of
the unimodal system due to the presence of conflicting noise
in the two modalities. Both Feature and Attention fusion re-
sults in a boost in the evaluation metrics by combining the
latent representations of both the modalities. Attention fu-
sion further learns which features are more important than
the others and has higher recall than the former, which is
why we choose Attention fusion for the final framework of
Crisis-DIAS.
System Level Analysis. Although, a hierarchical system
like Crisis-DIAS is capable of handling the incorrect predic-
tions of a task in the later stages, yet in some cases, these
errors may propagate the chain till the end and never be
caught. This is one limitation of pipeline structures where
the performance of a task depends on all the ones before it.

Therefore, in order to evaluate the whole system, we de-
fine the system level F1-score, Fs, as the product of the F1-
scores for all the individual tasks involved in the pipeline,

Fs = F1 ∗ F2 ∗ F3 (7)

where F1, F2 and F3 are the F1-scores of the three tasks,
respectively as in Table 1. The formula is justified as it dis-
counts the performance of the current task by the error rate
of the entire pipeline before it. Fs for Crisis-DIAS is 0.95.

For a system designed to provide aid in crucial times, the
latency for the complete end-to-end prediction must be very
less. To analyze Crisis-DIAS in this respect, we find the time
taken by each task in predicting a random sample of 1000
tweets. Table 2 shows the average time per task and the to-
tal average time for 10 iterations. Evidently, on an average,
Crisis-DIAS can identify and assess damage in nearly 100
tweets in 1 minute, which is double the speed of the uni-

Task Average Time (seconds)

Task 1 216
Task 2 158
Task 3 275
Average total time: 649 seconds

Table 2: Crisis-DIAS time analysis
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Model Precision Recall F1-Score

Unimodal Text CNN
(Sreenivasulu and Sridevi 2019)

0.76 0.76 0.76

Proposed Unimodal Text RCNN 0.96 0.96 0.96
Proposed Multimodal Crisis-DIAS-1 0.99 0.99 0.99

Table 3: Comparison with previous work on Task 1.

modal vision framework proposed by (Alam, Ofli, and Im-
ran 2018b).
Comparison and Evaluation. The objective of this work
is to identify and provide emergency response services to
where damage is severe, and therefore, even the slightest er-
ror can make the entire task even more disastrous for the
support teams. Consequently, the objective is to have a small
false negative rate. The increase in the values for recall ob-
tained by combining the two pipelines helps in reducing this
rate for the three tasks.

We compare our results with those obtained by past re-
search on the dataset. (Sreenivasulu and Sridevi 2019) used
the dataset for identifying the informative posts by utiliz-
ing only the text (Task 1). They employ CNN and ANN to
achieve the best F1 score of 0.76. Both the linguistic pipeline
(0.96) and the multimodal technique (0.99) proposed in this
work outperform their results (refer Table 3).

6 Discussion

Here we discuss some of the practical aspects related to the
deployment of Crisis-DIAS and the limitations that they in-
duce.
Responsiveness. Systems like Crisis-DIAS must not only
be effective in correctly identifying and analyzing the dam-
age in social media posts, they must also do it efficiently.
From the system-level analysis conducted in the previous
section, we observed how our proposed multimodal frame-
work takes considerably less time in comparison to an exist-
ing unimodal system, and therefore, is fairly responsive.
Demographic Bias. One of the primary inadequacies of the
system, is that it only analyzes the posts suffering from in-
frastructural and utility damage for the severity of impact,
whereas other humanitarian categories such as affected indi-
viduals and vehicle damage could also reflect the presence of
severe damage but have not been considered. The imbalance
of social media information about disasters is highly skewed
and biased based on geographical and socio-economic fac-
tors. A more generic identification pipeline based on GANs
for adding new classes and data augmentation paves our fu-
ture work.
Computational Efficiency. The models for Tasks 1 and 2
classify a tweet as positive if there is the slightest indication
for the presence of damage. Although we could have directly
analyzed all the samples for damage severity (Task 3), the
amount of data generated on social media platforms is huge.
Therefore, it would have been computationally very expen-
sive to use an attention network for all the samples, further
delaying the process of resource allocation. To maintain a
trade-off between efficiency and effectiveness, we use a sim-
ple logical OR (⊕) operation to integrate the two modalities.
Doing so, we not only can discard several tweets with no

characteristic damage present but also ensure that it is done
only when both the linguistic and vision classifiers are con-
fident about the prediction. For Task 3, we use attention fu-
sion, slightly more convoluted but efficacious at the same
time, to identify the severity of damage with high precision.

Credibility. A damage assessment system that relies on
social media content is heavily dependent on the fact that
the content is true. This consideration applies to all other
systems build to utilize social media data. No user can be
held responsible in case the information posted by them is
false, which can often be the case. Identifying the truthful-
ness of the content, however, is another non-trivial task.
Access & Remote Deployment. Lastly, such a system fails
to cater to disaster situations which occur in remote areas
that are sparsely populated, or where people do not have ac-
cess to social media.
Generalization for unimodal tweets. The pipeline, as it
stands, can also identify the presence of damage if either
of the modality is missing i.e., Task 1 and 2 will work
seamlessly for unimodal tweets. Since Crisis-DIAS has in-
herently been trained only on multimodal tweets from the
Crisis-MMD dataset, using attention and feature fusion at
the Task 3 level for unimodal tweets may output undesirable
garbage values. Therefore, Task 3 for such unimodal tweets
can be done using Decision Fusion with a weight of 0 as-
signed to the missing modality.

7 Qualitative Analysis

To further our analysis, we discuss the following examples
which help in justifying the design choices made for each of
the three tasks involved in the Crisis-DIAS framework. The
correctly predicted labels are followed by a check-mark (�)
and the incorrect predictions are followed by a cross (�)
and the expected true label inside parentheses (actual).

• QA-1: In this example, both the linguistic and vision

Figure 3: QA-1: Text- ”Mora” Leaves A Trail of Destruc-
tion Across Teknaf 02-06-2017 https://t.co/1e3NnJqZnW

Crisis-DIAS Prediction: Informa-
tive� | Infrastructural damage�

Image Prediction: Informative� | Non-
infrastructural damage�(Infrastructural damage)

Text Prediction: Informative� | Infrastructural damage�

classifiers correctly predict it as informative for Task 1
and therefore, it is considered for damage analysis in Task
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2. The image classification model incorrectly classifies it
as not having infrastructural damage, as the image de-
picts a storm with no other damage indicating feature
(like debris, etc). The text, on the other hand, gives a
sense of damage by using words like ’destruction, and
is correctly classified to the infrastructural damage class.
Crisis-DIAS classifies the tweet as a whole as having in-
frastructural damage, as desired.

• QA-2:

Figure 4: QA-2: Text- RT @Rincon Music:
Radio Reports On California Wildfires -

https://t.co/JKlnvNczM8 https://t.co/yIRhhwft6z
Crisis-DIAS Prediction:

Informative�(Non-informative) | Infrastructural
damage�(Non-infrastructural damage) | No damage�

Image Prediction: Informative�(Non-informative) |
Infrastructural damage�(Non-infrastructural damage)

| Mild damage�(No damage)
Text Prediction: Informative�(Non-informative) | In-
frastructural damage�(Non-infrastructural damage)

| Mild damage�(No damage)

In this tweet, both the text and image classifiers of
Tasks 1 and 2 fail to correctly classify the tweet as non-
informative and having no infrastructural damage, respec-
tively. Despite that, the sample is correctly classified as
having no damage by the attention fusion model of Task
3 due to the hierarchical framework of Crisis-DIAS.

8 Error Analysis

In this section, we continue our analysis by discussing some
cases where the proposed Crisis-DIAS architecture is not
able to model the desired intricacies and gives inaccurate re-
sults in comparison to other unimodal and multimodal tech-
niques, elaborating the plausible reason for the same.

• EA-1:

Due to the incorrect prediction by the image classifier in
Task 2, the sample is a false negative for Crisis-DIAS as
the image model confuses the example with those origi-
nally belonging to the vehicle damage class, now labeled
as non-infrastructural damage.

• EA-2:

The fusion model in Crisis-DIAS Task 3 emphasizes on
damage presence-based features in a tweet. Words like

Figure 5: EA-1: Text- President Xi sends condo-
lences over earthquake along Iran-Iraq earthquake

https://t.co/alJ1zagxJQ #XiJinping https://t.co/v1L8yt29uF
Crisis-DIAS Prediction: Informative� | Non-

infrastructural damage�(Infrastructural damage)
Image Prediction: Informative� | Non-

infrastructural damage�(Infrastructural damage)
Text Prediction: Informative�(Non-informative)

| Non-infrastructural damage�

Figure 6: EA-2: Text- Death toll from #Irma is 34; but still
counting. https://t.co/q76ayumni6 https://t.co/0zquN1hr6T

Crisis-DIAS Prediction: Informative�| Infrastruc-
tural damage�| Severe damage�(Mild damage)

Image Prediction: Informative�| In-
frastructural damage�| Mild damage�

Text Prediction: Informative�| In-
frastructural damage�| Mild damage�

death and broken walls, are examples of such features
which might be the cause of Crisis-DIAS overestimating
the severity of the damage.

9 Conclusion

In this work, we propose a gated multimodal deep learning
framework, Crisis-DIAS, for identifying and analyzing the
level of damage severity in social media posts with the scope
for betterment in disaster management and planning. We
characterize Crisis-DIAS along the following dimensions:
Multimodal System- The proposed system leverages from
both textual and visual cues to automate the process of dam-
age identification and assessment from social media data.
Efficient and Effective- We perform an extensive analysis
of the proposed system over the CrisisMMD dataset (Alam,
Ofli, and Imran 2018a) by showing how fusing the features
from different media sources helps the proposed multimodal
framework to correctly identify the samples which were
otherwise missed by the unimodal classifiers. Responsive
and Real-time- Based on the system analysis, the proposed
framework is not only better in terms of its performance, but
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is also faster and can, therefore, be deployed for real-time as-
sessment. Generic- The system is generic and can be used
for multiple disaster scenarios.
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