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Abstract

Credit card fraud is an important issue and incurs a con-
siderable cost for both cardholders and issuing institutions.
Contemporary methods apply machine learning-based ap-
proaches to detect fraudulent behavior from transaction
records. But manually generating features needs domain
knowledge and may lay behind the modus operandi of fraud,
which means we need to automatically focus on the most rel-
evant patterns in fraudulent behavior. Therefore, in this work,
we propose a spatial-temporal attention-based neural network
(STAN) for fraud detection. In particular, transaction records
are modeled by attention and 3D convolution mechanisms
by integrating the corresponding information, including spa-
tial and temporal behaviors. Attentional weights are jointly
learned in an end-to-end manner with 3D convolution and
detection networks. Afterward, we conduct extensive experi-
ments on real-word fraud transaction dataset, the result shows
that STAN performs better than other state-of-the-art base-
lines in both AUC and precision-recall curves. Moreover, we
conduct empirical studies with domain experts on the pro-
posed method for fraud post-analysis; the result demonstrates
the effectiveness of our proposed method in both detecting
suspicious transactions and mining fraud patterns.

Introduction

Credit card fraud is a general term for the unauthorized use
of funds in a transaction typically through a credit or a debit
card (Bhattacharyya et al. 2011). Global card fraud losses
amounted to over 25 billion US dollars in 2018 and is fore-
cast to continue to increase (Wang, Chen, and Chen 2019).
This huge amount of losses has increased the importance
of fraud-fighting. Figure 1 shows a typical fraud detection
framework deployed in a commercial system. The card al-
liance or banks, such as VISA, MasterCard or Citibank, as-
sess each transaction with an online predictive model once
it has passed card checking. Unlike a simple card checking
system, which focuses on card blacklists, budget checking,
etc., the predictive model is designed to detect fraud patterns
automatically and produces a fraud risk score. Investigators
can thereby focus on the high-risk transactions effectively
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Figure 1: The framework of credit card fraud detection.

and feedback the analysis results to the predictive model for
model updating.

As attacking strategies from potential fraudsters change,
it is essential that a well-behaved system can adapt to the
evolving strategies (Randhawa et al. 2018; Jiang et al. 2018).
We summarize the following two major observations from
real-world fraud transactions: 1). Temporal aggregation.
Fraudsters are subject to the limited time of the activities. As
the cardholder will freeze the card as soon as possible once
suspicious transactions have been detected, fraudsters are re-
quired to reach the credit limit in a short time. That means
the behaviors of the fraud transaction would be exposed in
a limited time. 2). Spatial aggregation. Fraudsters are sub-
jected to cost on the devices and merchants of transactions.
That is, due to the economic constraints, fraudsters will use
the card frequently with only a small number of merchants,
which are spatially different from normal transactions.

Many existing models to deal with fraud transactions have
been extensively studied (Patidar, Sharma, and others 2011;
Bahnsen et al. 2016; Carneiro, Figueira, and Costa 2017).
They mainly split into one of two directions: 1). Rule-based
methods directly generate sophisticated rules by domain ex-
perts for identification; for example, (Seeja and Zareapoor
2014) proposed an association rules method for mining fre-
quent fraud rules. 2). Machine learning-based methods learn
static models by exploring large amounts of historical data.
For example, (Fiore et al. 2017) extracted features based on
neural networks and built supervised classifiers for detecting
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fraudulent transactions. (Fu et al. 2016) advanced the usage
of automatic feature engineering in a convolutional neural
network (CNN). (Randhawa et al. 2018) applied AdaBoost
and majority voting on fraud records. (Jurgovsky et al. 2018)
researched on this task by a sequence LSTM model. How-
ever, all these methods require manually constructing fea-
tures before feeding into a classification model, which fails
to automatically learn the joint impact on spatial and tem-
poral patterns, as the spatio-temporal patterns have been ob-
served as the main weaknesses of fraudsters, also reported
by (Gómez et al. 2018).

Recently developed attention mechanisms have shown
the benefit on automatic feature learning (Vaswani et al.
2017; Cheng et al. 2019b). The superior performance of
3-dimensional (3D) convolution on spatio-temporal feature
learning is also demonstrated in a wide range of prediction
tasks (Allamanis, Peng, and Sutton 2016). In credit card
fraud detection task, it is important to jointly consider the
“temporal aggregation” and “spatial aggregation” together
and then drive them into a representative and deep classifier
which well-suited for spatio-temporal feature learning.

Therefore, in this paper, we present the STAN model
for credit card fraud detection, a novel deep learning-based
method, which jointly considers “temporal aggregation” and
“spatial aggregation” in an attention network. Our proposed
approach first construct raw transaction recodes into spatio-
temporal based feature slices, then we use an attention
mechanism to adaptively learn the importance of different
slices. To uncover the hidden fraud patterns, we introduce
a 3D convolution layer to capture intrinsic relationships
among spatio-temporal patterns. During experiments, we
show that the results of the proposed method significantly
outperform the results from other state-of-the-art baselines.

In brief, the main contributions of this paper include:

• We present a novel attention-based 3D convolution neural
network for credit card fraud detection by jointly captur-
ing two weaknesses displayed by fraudsters, summarized
as “temporal aggregation” and “spatial aggregation”. To
the best of our knowledge, this is the first time that a fraud
detection problem has been addressed by spatio-temporal
attention neural network approaches with a 3D convolu-
tional mechanism.

• Our approach is extensively evaluated in a real-world
credit card fraud post analysis system, hosted by a ma-
jor financial institution. The experimental results demon-
strate the superiority of our proposed methods, which
could detect more fraud transactions with relatively high
precision compared with state-of-the-art baselines.

Preliminaries

In this section, we first briefly present some data analysis to
support our intuitions and then present the problem defini-
tion of our work.

Spatio-temporal Analysis

Figure 2 visualizes the scaled spatio-temporal feature slices,
where the left part shows fraud transactions and the right
part shows legitimate ones. We will describe the detailed

Figure 2: Heat maps of spatio-temporal feature slices from
both fraudulent and legitimate transactions.

feature extraction steps in the next section. It can be seen
that in temporal analysis, fraud features (shown in Figure
2a) change abruptly across different slices, while legitimate
ones are much more slight (shown in Figure 2b). It confirms
our original assumption of “temporal aggregation”.

In spatial analysis, we encode transaction merchants into
their location codes and aggregate features according to the
codes within a fixed time window (we set it to days here).
Figures 2c to Figure 2d show the heat map of features in
spatial slices. As we can see, fraud transactions are obvi-
ously located in only a small number of zones, which means
fraudsters would use the card frequently under the constraint
of locations or devices, while for the normal transactions,
there are no noteworthy patterns for user consuming behav-
ior in given time windows. As a result, this set of data anal-
ysis validates our original assumption.

Problem Definition

Transaction A transaction means the use of a credit card
by a consumer u to purchase commodities or services. The
purchase price is sent through a processor for authorization;
if the amount a is approved it is automatically submitted to
the merchant m in location l.

Transaction Record A transaction record r can be de-
fined as a tuple of attributes in a transaction payment pro-
cess r = {u, t, l, a}, where u denotes the user, t and l is the
time stamp and location of the transaction, and m means the
amount of this payment.

Fraud Event A fraud event d in this paper refers to a
transaction which is not authorized by its cardholder. A
fraud event is a special type of transaction, which means it
also preserves {u, t, l, a} attributes.

The complete real-world fraud event data provided by our
collaborating institution offers us the unique opportunity to
tackle the problem of fraud detection. In conclusion, we now
formalize our credit card fraud detection problem as follows:

Given a set of transaction records R = {U , T ,L,A}, a
set of fraud events D, which are a subset of the transaction
collection {D|D ⊂ R}, and time period ti & ti+1, for each

363



Figure 3: The illustration of the proposed spatio-temporal attention-based neural network (STAN) model. Raw transaction
records are processed by feature engineering, spatio-temporal attention, and multiple 3D ConvNet to learn high-level represen-
tations. Afterward, the learned representations are reshaped to vectors and fed into a detection network for fraud estimation.
Attentional weights are jointly optimized in an end-to-end mechanism with 3D convolution and detection networks.

transaction, we want to infer the possibility of whether it is
a fraud event, based on the transaction records and fraud
events from t1 to ti. The objective is to achieve a high ac-
curacy of fraud prediction, as well as to explore the fraud
patterns of credit card transactions.

The Proposed Approaches

In this section, we first introduce the framework of a
spatio-temporal attention-based neural model. After that,
we present the process of feature engineering, the spatio-
temporal attention layer, the 3D convolution network (3D
ConNet) and the detection layer. Lastly, we introduce the
optimization strategy of the proposed methods.

Model Architecture

Figure 3 shows the general network architecture of STAN.
The model takes users’ transaction records as input and
transfers them into high-order tensor spaces in spatial, tem-
poral and feature orders. Then, we apply spatio-temporal
attention and the 3D convolution layer to obtain a transac-
tion representation vector. Spatio-temporal attention helps to
draw information from tensor features by different weights
and the 3D convolution layer helps to model hidden patterns
of transactions. Finally, we reshape the learned feature rep-
resentation from tenors to vectors for the fraud detection task
by a detection network. We will first introduce each compo-
nent of the model, then discuss the settings of detection layer
and optimization in the following sections.

Feature Extraction

For given transaction records r = (r1, r2, · · · , rn), each
record ri = {u, t, l, a}, contains: user ID, timestamp, lo-
cation code and transaction amount. In preprocessing, we
combine users who maintain multiple credit cards into a user
ID and filter out inactive users that have less than 10 records

within one month. As the number of users who have never
been charged with unauthorized transactions, is much larger
than the number of users who are affected, we adopt user-
level downsampling of normal users instead of transaction-
level sampling, to maintain the fraud patterns during prepro-
cessing.

Afterward, we construct the feature representation of each
record into tensor format X ∈ RN1×N2×N3 , where N1, N2,
N3 denote the dimensions of temporal, spatial and feature
slices.
Temporal Slices X (t, :, :). Each temporal feature represents
a vector generated in a given time window. The number and
diversity in temporal slices reflect its activeness and hence
are related to the consuming behavior of the user. We thus
extract features in temporal slices including (1) features in
the latest 1 second, minute, hour, day, week, month and quar-
ter; (2) features in the last 1, 10, 100, 1000 transactions.
Spatial Slices X (:, l, :). Based on the observation that fraud-
sters are affected by the constraints of location, we collect
zip codes, the business center from the State Postal Bureau
and AliTrip, and divide the features into four levels manually
according to the location. They are a one-hot representation
of the location ID in the nation, state, city and business cen-
ter levels and we concatenate them in the spatial slice.
Features X (:, :, f). Inspired by Fu’s work (Fu et al. 2016)
that the transaction entropy is one of the important patterns
in fraud detection, we identify the extracted features includ-
ing current amount, average amount, total amount, transac-
tion times and the most recent location.

Spatio-temporal Attention Net

The attention network aims to perform proper credit assign-
ment to the spatial and temporal slices according to their
importance in the current transaction. It contains two self-
attention layers targeting temporal and spatial slices respec-
tively.
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Figure 4: Illustration of spatio-temporal attention neural net-
works.

Temporal Attention Layer Formally, given the extracted
feature tensor X as described above, the temporal attention
layer represents the transaction by a weighted sum of the
matrix representation of all the temporal slices. Mathemati-
cally, it takes the form as follows:

rept =

N1∑
t=1

a1,tX (t, :, :) (1)

a1,t =
exp ((1− λ1) · gt(Wt,X (t, :, :)))∑N1

t=1 exp ((1− λ1) · gt(Wt,X (t, :, :)))
(2)

where: a1,t is the weight for each temporal slice, and gt(·)
is a fully connected layer with ReLU activation and param-
eters Wt; λ1 ∈ [0, 1] is the temporal penalty factor to con-
trol the importance of temporal attention; rept is the output
of the temporal attention layer. It should be noted that we
unfold matrices X (t, :, :) to row vectors for computational
convenience and reshape the output rept into tensor format
rept ∈ R

N1×N2×N3 .

Spatial Attention Layer Given the output from the tem-
poral net rept, we then apply a spatial attention mechanism
on the top of the temporal net. It is formulated as follows:

Ha =

N2∑
s=1

a2,srept(:, s, :) (3)

a2,s =
exp ((1− λ2) · gs(Ws, rept(:, s, :)))∑N2

s=1 exp ((1− λ2) · gs(Ws, rept(:, s, :)))
(4)

where Ws is the weight of spatial network gs; Ha is the
output of attention layer, we reshape it into tensor format
with the same order as X ; a2,s is the weight for each spatial
slices; λ2 ∈ [0, 1] is the spatial penalty factor to control the
importance of spatial attention.

3D Convolutional Layers

For our mission, CNN is an attractive option for three main
reasons. First, they can clearly exploit the spatial features of

our problem. In particular, they can learn local spatial filters
that are useful for classification tasks. Second, by stacking
multiple layers, the network can learn more complex fea-
tures from input spatial spaces. Finally, the optimization of
CNN could be learned by SGD based methods, which can be
performed efficiently with commercial graphics hardware.

Compared to 2D convolution networks, 3D ConvNet is
ideal for spatio-temporal learning of features. Due to 3D
convolution and 3D pool operations, 3D ConvNet works
temporally and spatially, whereas in 2D ConvNet it is only
spatially executed. In general, the following equation repre-
sents a 3D convolution operation:

repcci (t, l, f) =
∑
m,n,o

Hc−1(t−m, l−n, f−o)Wc
i (m,n, o)

(5)
in which Wc

i is the 3D kernel in the c − th layer and
i − th kernel which convolves over the feature Hc−1, and
Wc

i (m,n, o) is the element-wise weight in the 3D convolu-
tion kernel. Thus, the feature Hc is obtained by different 3D
convolution kernels:

Hc = σ

(∑
i

repcci + bc

)
(6)

where σ denotes the sigmoid function.
Then we hierarchically build a deep 3D ConvNet model

by stacking convolutional layers (represented as C) and
pooling layers (represented as P). In particular, multiple 3D
feature volumes are generated in the C layer. In the P layer,
the maximum pool operation is also performed in 3D, that is,
the feature volume is subsampled based on the cube neigh-
borhood. In the fully connected layer, the 3D feature volume
is flattened into a vector as input.

Detection Layer and Optimization

The fraud detection task takes the transaction representation
rep, which is the tensor flatted vector learned by attention
and convolution networks, and aims to learn the probability
of whether it’s a fraudulent trade. The loss function is the
likelihood defined as follows:

L(θ) = − 1

N

N∑
i=1

[yi log(detect(repi : θ))

+λ3(1− yi) log(1− detect(repi : θ))]

(7)

where: repi denotes the representation of the i − th trans-
action record, which is the output of 3D ConvNet, and λ3

indicates the sample weight according to the biased distri-
bution of fraud and legitimate records; yi denotes the label
of i − th records, which is set to 1 if the record is fraud
and 0 other wise; detect(repi) is the detection function that
maps repi to a real valued score, indicating the probability
of whether the current transaction is fraudulent. We imple-
ment detect(repi : θ) with two-layer ReLu and one-layer
sigmoid network.

The proposed STAN can be optimized through the stan-
dard SGD-based algorithms. In this paper, we used the
Adam Optimizer to learn the parameters. We set the initial
learning rate to 0.001, and the batch size to 256 by default.
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Experiments

Experiment Settings

Datasets We collected fraud transactions from a major
commercial bank, which comprises real-word credit card
transaction records spanning twelve months, from Jan 1 to
Dec 31, 2016. The ground truth labels are reported by con-
sumers and confirmed by domain experts in the financial
institution. We first filtered suspicious records by domain
experts and user reports. Based on this process, the large
amount of user records with both legitimate and inactive
transactions were excluded. If a trade is reported by a card-
holder or identified by financial experts as fraudulent, we
label it as 1; otherwise, it is labeled as 0. Finally, the dataset
includes 236,706 transaction records, by 1021 users, across
1160 location codes, which were affected by fraud.

In preprocessing, each transaction includes four at-
tributes. We simplify them as: user ID, timestamp, location
code and transaction amount. We encode categorical data,
such as user ID and location code, into one-hot representa-
tions. We round the time record from the millisecond level
to a standard DataTime format (yyyy-MM-dd HH:mm:ss).
For the amount attribute, like many other financial signals,
it performs a distribution with a long tail. We first cut off
the outliers by the three-sigma rule (Friedrich Pukelsheim et
al. 1994) and then perform a log transform on the amount
value.

Compared Methods We employ the following state-of-
the-art methods on our benchmark dataset to highlight the
effectiveness of the proposed STAN. In these experiments,
the tasks are learned independently. These baseline includes:
LR (Logistic Regression) (McMahan 2011), GBDT (Ke et
al. 2017), MLP (Tang, Deng, and Huang 2015), Deep &
Wide (Cheng et al. 2016), CNN-max (Fu et al. 2016), Ad-
aBM (Randhawa et al. 2018), LSTM-seq (Jurgovsky et al.
2018). STAN-notemp/nospat/no3d denotes sub-models of
STAN, in which the temporal attention, spatial attention are
not used, utilizing the 2D convolution layer instead of this
paper’s proposed 3D ConvNet. STAN-all is the full pro-
posed spatial-temporal atention-based neural network model
in this paper.

Parameter Settings and Evaluation Metrics In this ex-
periment, we apply the preferred parameters for each of
the baseline methods as they were originally proposed. For
STAN, we employ 2 convolution layers, each of them is set
to 4× 4× 4 convolution kernel, followed by a max-pooling
layer. Two full connected layers are added on the top of 3D
ConvNet, each of them consisting of 32 neurons. We set the
temporal and spatial parameters (λ1 and λ2) by cross valida-
tion. The sample weight λ3 is set by the training distribution.

We evaluated the detected results by precision, recall, and
F-Score. In our implementation, we tried all possible thresh-
old probabilities in our KS-test from 0 to 1 with the step
size of 0.01. To determine the most effective threshold, we
tested the detection result with the ground truth labels. We
also report the AUC (area under the ROC curve) in our ex-
periments.

Table 1: Performance comparison with baselines.
AUC (Oct) AUC (Nov) AUC (Dec)

LR 0.7247 0.7163 0.7199
GBDT 0.7868 0.7949 0.7864
MLP 0.7803 0.8012 0.7891
Deep & Wide 0.8210 0.8197 0.8108
CNN-max 0.8352 0.8367 0.8267
AdaBM 0.8243 0.8249 0.8232
LSTM-seq 0.8368 0.8353 0.8290
STAN-notemp 0.8467 0.8395 0.8406
STAN-nospat 0.8602 0.8531 0.8583
STAN-no3d 0.8569 0.8562 0.8506
STAN-all 0.8832∗ 0.8789∗ 0.8865∗

Fraud Detection

We evaluated the performance of different models for the
fraud detection task. Records of the first nine months were
used as training data and then we predicted the fraud trans-
actions in the following three months (Oct, Nov and Dec).
We repeated the experiment 10 times and report the average
AUC in Table 1.

The first seven lines of Table 1 contain the results of
some of the latest baselines. In all baselines, CNN-max
and LSTM-seq proved to be competitive, demonstrating
the necessity of deep models for fraud detection. Lines 8-
11 show the results of STAN and some of its submod-
els. STAN-notemp’s performance is close to CNN-max, the
spatial-attention layer prove to be effective. STAN-nospat
and STAN-no3d perform much better than the baselines and
STAN-notemp and we validated the essentials of each sub-
module. STAN-all outperforms all the other models.

Precision-recall Curves

In Figure 5 we present the precision-recall curves for the
lastest baselines. As shown, our proposed STAN performs
better than baselines with respect to the area under the
precision-recall curves. The results of AdaBM and Deep &
Wide are quite similar, both of them are much better than
LR. Essentially, this might because that fraud patterns in
credit card transaction records are too complex for a sim-
ple liner model like LR to address. With the help of deep
structures, LSTM-seq perform a slightly promotion com-
pared with AdaBM. In all baselines, LSTM-seq and CNN-
max are shown to be the most competitive. The reason might
be that they preserve deep representation of raw features and
explicitly makes use of the spatial features of our problem,
while Deep & Wide and AdaBM are not optimized for local
spatial patterns.

Our method, STAN, consistently outperforms other state-
of-the-art baselines. The reason is twofold: (1) STAN deals
with both spatial and temporal features and integrates them
into an attention network, contrasted with CNN-max which
only deals with spatial ones that cannot address temporal
patterns of transaction records; (2) STAN uses a 3D convolu-
tional network for tensor features instead of 2D convolution
so that it can better model spatio-temporal feature learning.
Specifically, our methods work as well as, or even better, at
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Figure 5: Precision recall curve of STAN compared with baseline methods.

Figure 6: Parameter sensitivity experiment on temporal, spa-
tial penalty parameters and the depth of convolution layers.

the very beginning of the curve compared to the compared
methods. More importantly, our methods can accurately de-
tect many more fraud transactions (high recall) with a rela-
tively high precision, which is quite promising.

Parameter Sensitivity

In this section, we study the model generalization which in-
cludes penalty parameters, the depth of hidden convolution
layers and their impact on our task.

We vary the temporal and spatial penalty parameters (λ1

and λ2) from 0 to 1 with a step of 0.02. As shown in Fig-
ure 6a, it can be easily found that the parameters, λ, has a
great influence to the model performance. Our model per-
forms better by increasing λ from 0 to 0.1, and the AUC
reaches the peak when λ1 = 0.1 and λ2 = 0.15. The per-
formance is degradaded if we keep on increasing the value
of λ. The reason might be that varying λ could balance the
model consider a proper spatio-temporal window. When we
increase λ from 0 to 1, our proposed model could consider
features in a different spatio-temporal range and reach a per-
formance peak around λ1 = 0.1 and λ2 = 0.15.

Figure 6b shows the influence of the depth of hidden con-
volution layers on the AUC. With the deeper hidden con-
volution layers, the model tends to aggregate the temporal
and spatial information from a neighborhood into a wider
range. As we have seen, the AUC with a depth of 1 hidden
layer does not work well because the information we have is
mixed. Our model needs to ”swap” information in terms of
temporal, spatial and feature aspects, which requires a con-

Table 2: The value of attention coefficients.
Temporal Coefficients Spatial Coefficients

Seconds 0.2625 #13 0.1468
Minutes 0.0509 #21 0.1092
Hours 0.2053 #36 0.0371
Days 0.0969 #39 0.0308
Weeks 0.2971 #42 0.0227
Months 0.0161 #47 0.0214
Quarters 0.0003 #48 0.0148

volution of at least two hops to display.

Case Studies

Table 2 shows the learned coefficients of spatial and tem-
poral attention layers, in which “Weeks”, “Seconds” and
“Hours” weights are noticeable. This is because user behav-
ior normally shows a periodic distribution on a weekly ba-
sis, but the fraudulent trades are concentrated in an instant
until exceeding the user’s credit limit (there could be more
than 100 transactions in one second). This phenomenon is
also reported by (Lepoivre et al. 2016). In spatial studies,
we present the top seven attention weights in Table 2.

In order to uncover the fraud patterns from learned at-
tention weights, we adopted an empirical study on infected
accounts with our collaborating domain experts. We firstly
randomly selected 1000 fraud transactions and then back-
tracked other records within one week before the fraud event
in the infected account. Finally, we collected the records
from infected users into hours and aggregated them by sum-
marizing the spending amount and times of trade location
ID, as shown in Figure 7. We get the following observations:
Temporally: on average, fraud transactions account for over
70% of a user’s credit limit, illustrated in hour 166 of the
x-axis (fraud event time) of Figure 7a, which means an aver-
age of 70% loss for each fraud event. We notice that a small
equal number of trades are usually issued in 1-3 hours (be-
tween hour 162-165 on the x-axis) before the event. Domain
experts have demonstrated they are trade attempts by fraud-
sters, after analysis of the records. This small number of at-
tempts is important for fraudsters: 1) if successful, the card
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Figure 7: Case studies of attention weights. We randomly
extract 1000 fraud transactions and backtracking records
in one week before the fraud occurrence. (a) shows the
hourly aggregated trading amount. (b) displays the heatmap
of transaction locations in an hourly summary.

will be transferred for a large number of fraud transactions;
2) if failed, the cardholder might not notice the tiny amount
of failed trade attempts. We also observe that the number of
trades in hours 140-160 is low compared with hours 0-140,
which means the card user may have missed the card one
whole day before the fraud event.
Spatially: users obviously have a location propensity as
shown in Figure 7b, where the brighter color (red) means
a higher frequency. We observe the two most popular trade
merchants are located in ID #42 and #43, which are two pop-
ular online payment systems. It should be noted that fraud
transactions are concentrated in limited locations, such as
#13, #21, etc., which are generally different from user’s his-
torically frequent trading locations. This study confirms our
intuition of spatial aggregation and learned spatial attention
coefficients.

Related work

We summarize the related work in two main areas: 1) atten-
tional convolutional neural networks and 2) credit card fraud
detection.

Attentional Convolution Neural Network Many recent
works have shown the benefit of combining an attention
mechanism in convolutional neural networks for a wide
range of prediction tasks (Allamanis, Peng, and Sutton 2016;
Vaswani et al. 2017), such as depth estimation (Xu et al.
2018), default prediction (Cheng et al. 2019a) or language
understanding (Shen et al. 2018). For instance, pervasive at-
tention are employed on 2D convolutional neural networks
for sequence-to-sequence prediction (Elbayad, Besacier, and
Verbeek 2018). Attention-gated networks have been con-
sidered for integrating multi-scale information in (Xu et al.
2017). In (Chen et al. 2016) an attention model is employed
for combining multi-scale features in the context of seman-
tic segmentation and object contour detection. Our approach

develops from a similar intuition but further integrates an
attention model in both spatial and temporal aspects which
significantly improves the accuracy of the detection. To our
knowledge this is the first paper exploiting joint learning at-
tention mechanisms with 3D convolutional networks in the
context of credit card fraud detection.

Credit Card Fraud Detection Several machine learning
techniques have been used in the literature to approach the
credit card fraud detection problem. (Maes et al. 2002) tried
Bayesian Belief Networks (BBN) and Artificial Neural Net-
works (ANN) on a real dataset obtained from Europay Inter-
national. In (Zaki, Meira Jr, and Meira 2014) neural network
based models and decision tree models are compared, and
the authors found that neural networks outperforms decision
trees. The authors in (Fu et al. 2016) prove that using a con-
volution model to extract spatial patterns can achieve higher
accuracy compared with neural networks, SVMs and deci-
sion trees. (Randhawa et al. 2018) applied AdaBoost and
majority voting on fraud records. (Jurgovsky et al. 2018)
researched on this task from sequence classify perspective
by improved LSTM model. These methods, however, feed
manually generated features into a classification model di-
rectly, which ignores the joint feature learning on spatial and
temporal patterns. As a result, they may not be appropri-
ate for real-world large scale fraud detection systems with
complex and unpredictable fraud patterns. The approach we
present in this paper is radically different, as we employ a
structured attention model which is jointly learned within a
3D CNN framework.

Conclusion

In this paper, we present a novel attentional 3D convolution
neural network for credit card fraud detection. In particu-
lar, we uncover the weakness of fraudsters, called “temporal
aggregation” and “spatial aggregation”, and propose a 3D
convolutional neural network approach based on a spatio-
temporal attention mechanism. This is the first work in
which attentional 3D ConNet has ever been employed to the
credit card fraud detection problem. Our methods achieve
promising AUC and precision-recall curves compared with
other state-of-the-art baseline methods. Furthermore, we ex-
plore to uncover fraud patterns by the observation of learned
attention weights in case studies. The proposed method is
extensively evaluated in an online transaction post-analysis
system. The result demonstrates that our methods can effec-
tively detect fraudulent transactions. In the future, we are
interested in building a real-time in-process fraud detection
system based on an online learning mechanism instead of
the offline training approach.
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