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Abstract

The US weather radar archive holds detailed information
about biological phenomena in the atmosphere over the last
20 years. Communally roosting birds congregate in large
numbers at nighttime roosting locations, and their morning
exodus from the roost is often visible as a distinctive pattern
in radar images. This paper describes a machine learning sys-
tem to detect and track roost signatures in weather radar data.
A significant challenge is that labels were collected oppor-
tunistically from previous research studies and there are sys-
tematic differences in labeling style. We contribute a latent-
variable model and EM algorithm to learn a detection model
together with models of labeling styles for individual anno-
tators. By properly accounting for these variations we learn
a significantly more accurate detector. The resulting system
detects previously unknown roosting locations and provides
comprehensive spatio-temporal data about roosts across the
US. This data will provide biologists important information
about the poorly understood phenomena of broad-scale habi-
tat use and movements of communally roosting birds during
the non-breeding season.

1 Introduction

The US weather radar network offers an unprecedented op-
portunity to study dynamic, continent-scale movements of
animals over a long time period. The National Weather Ser-
vice operates a network of 143 radars in the contiguous US.
These radars were designed to study weather phenomena
such as precipitation and severe storms. However, they are
very sensitive and also detect flying animals, including birds,
bats, and insects (Kunz et al. 2008). The data are archived
and available from the early 1990s to present, and provide
comprehensive views of a number of significant biologi-
cal phenomena. These include broad-scale patterns of bird
migration, such as the density and velocity of all noctur-
nally migrating birds flying over the US in the spring and
fall (Farnsworth et al. 2016; Shamoun-Baranes et al. 2016),
and the number of migrants leaving different stopover habi-
tats (Buler and Diehl 2009; Buler and Dawson 2014). Radars
can also detect phenomena that can be matched to individual
species, such as insect hatches and departures of large flocks
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of birds or bats from roosting locations (Winkler 2006;
Horn and Kunz 2008; Buler et al. 2012).

This paper is about the development of an AI system to
track the roosting and migration behavior of communally
roosting songbirds. Such birds congregate in large roosts at
night during portions of the year. Roosts may contain thou-
sands to millions of birds and are packed so densely that
when birds depart in the morning they are visible on radar.
Roosts occur all over the US, but few are documented, and
many or most are never witnessed by humans, since birds
enter and leave the roosts during twilight. Those who do wit-
ness the swarming behavior of huge flocks at roosts report
an awe-inspiring spectacle1.

We are particularly interested in swallow species, which,
due to their unique behavior, create a distinctive expand-
ing ring pattern in radar (see Fig. 1). During fall and win-
ter, the Tree Swallow (Tachycineta bicolor) is the only
swallow species present in North America, so roost signa-
tures provide nearly unambiguous information about this
single species, which is highly significant from an eco-
logical perspective. Swallows are aerial insectivores, which
are rapidly declining in North America (Fraser et al. 2012;
Nebel et al. 2010). Information about the full life cycles
of these birds is urgently needed to understand and reverse
the causes of their declines (NABCI 2012). Radar data rep-
resents an unparalleled opportunity to gather this informa-
tion, but it is too difficult to access manually, which has
greatly limited the scope (in terms of spatial/temporal ex-
tent or detail) of past research studies (Laughlin et al. 2016;
Bridge et al. 2016).

We seek an AI system to fill this gap. An AI system
has the potential to collect fine-grained measurements of
swallows—across the continent, at a daily time scale—from
the entire 20-year radar archive. This would allow scientists
to study trends in population size and migration behavior in
relation to changes in climate and habitat availability, and
may provide some of the first insights into where and when
birds die during their annual life cycle, which is critical in-
formation to guide conservation efforts.

The dramatic successes of deep learning for recognition
tasks make it an excellent candidate for detecting and track-

1See: https://people.cs.umass.edu/∼zezhoucheng/roosts

378



Figure 1: (a) Illustration of roost exodus. (b) A radar traces out cone-shaped slices of the atmosphere (left), which are rendered
as top-down images (center). This image from the Dover, DE radar station at 6:52 am on Oct 2, 2010 shows at least 8 roosts.
Several are shown in more detail to the right, together with crops of one roost from five consecutive reflectivity and radial
velocity images over a period of 39 minutes. These show the distinctive expanding ring and “red-white-green” diverging velocity
patterns.

ing roosts in radar. We develop a processing pipeline to ex-
tract useful biological information by solving several chal-
lenging sub-tasks. First, we develop a single-frame roost de-
tector system based on Faster R-CNN, an established object
detection framework for natural images (Ren et al. 2015).
Then, we develop a tracking system based on the “detect-
then-track” paradigm (Ren 2008) to assemble roosts into
sequences to compute meaningful biological measures and
improve detector performance. Finally, we use auxiliary in-
formation about precipitation and wind farms to reduce cer-
tain sources of false positives that are poorly represented in
our training data. In the final system, 93.5% of the top 521
tracks on fresh test data are correctly identified and tracked
bird roosts.

A significant challenge in our application is the presence
of systematic differences in labeling style. Our training data
was annotated by different researchers and naturalists using
a public tool developed for prior research studies (Laugh-
lin et al. 2016). They had different backgrounds and goals,
and roost appearance in radar is poorly understood, leading
to considerable variability, much of which is specific to indi-
vidual users. This variation makes evaluation using held out
data very difficult and inhibits learning due to inconsistent
supervision.

We contribute a novel approach to jointly learn a detec-
tor together with user-specific models of labeling style. We
model the true label y as a latent variable, and introduce
a probabilistic user model for the observed label ŷ condi-
tioned on the image, true label, and user. We present a varia-
tional EM learning algorithm that permits learning with only
black-box access to an existing object detection model, such
as Faster R-CNN. We show that accounting for user-specific
labeling bias significantly improves evaluation and learning.

Finally, we conduct a case study by applying our models
to detect roosts across the entire eastern US on a daily basis
for fall and winter of 2013-2014 and cross-referencing roost
locations with habitat maps. The detector has excellent pre-
cision, detects previously unknown roosts, and demonstrates
the ability to generate urgently needed continent-scale infor-
mation about the non-breeding season movements and habi-
tat use of an aerial insectivore. Our data points to the im-
portance of the eastern seaboard and Mississippi valley as

migration corridors, and suggests that birds rely heavily on
croplands (e.g., corn and sugar cane) earlier in the fall prior
to harvest.

2 A System to Detect and Track Roosts

Radar Data We use radar data from the US NEXRAD
network of over 140 radars operated by the National Weather
Service (Crum and Alberty 1993). They have ranges of sev-
eral hundred kilometers and cover nearly the entire US. Data
is available from the 1990s to present in the form of raster
data products summarizing the results of radar volume scans,
during which a radar scans the surrounding airspace by rotat-
ing the antenna 360◦ at different elevation angles (e.g., 0.5◦,
1.5◦) to sample a cone-shaped “slice” of airspace (Fig. 1b).
Radar scans are available every 4–10 minutes at each sta-
tion. Conventional radar images are top-down views of these
sweeps; we will also render data this way for processing.

Standard radar scans collect 3 data products at 5 elevation
angles, for 15 total channels. We focus on data products that
are most relevant for detecting roosts. Reflectivity is the base
measurement of the density of objects in the atmosphere.
Radial velocity uses the Doppler shift of the returned signal
to measure the speed at which objects are approaching or
departing the radar. Copolar cross-correlation coefficient is
a newer data product, available since 2013, that is useful for
discriminating rain from biology (Stepanian et al. 2016). We
use it for post-processing, but not training, since most of our
labels are from before 2013.

Roosts A roost exodus (Fig. 1a) is the mass departure of
a large flock of birds from a nighttime roosting location.
They occur 15–30 minutes before sunrise and are very rarely
witnessed by humans. However, roost signatures are visible
on radar as birds fly upward and outward into the radar do-
main. Fig. 1b, center, shows a radar reflectivity image with at
least 8 roost signatures in a 300 km× 300 km area. Swallow
roosts, in particular, have a characteristic signature shown
in Fig. 1b, right. The center row shows reflectivity images
of one roost expanding over time. The bottom row shows
the characteristic radial velocity pattern of birds dispers-
ing away from the center of the roost. Birds moving toward
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Figure 2: Detection and tracking pipeline. A final step (not
shown) uses auxiliary data to filter rain and wind-farms.

the radar station (bottom left) have negative radial velocity
(green) and birds moving away from the radar station (top
right) have positive radial velocity (red).

Annotations We obtained a data set of manually anno-
tated roosts collected for prior ecological research (Laugh-
lin et al. 2016). They are believed to be nearly 100% Tree
Swallow roosts. Each label records the position and radius
of a circle within a radar image that best approximates the
roost. We restricted to seven stations in the eastern US and
to month-long periods that were exhaustively labeled, so we
could infer the absence of roosts in scans with no labels.
We restricted to scans from 30 minutes before to 90 min-
utes after sunrise, leading to a data set of 63691 labeled
roosts in 88972 radar scans. A significant issue with this
data set is systematic differences in labeling style by dif-
ferent researchers. This poses serious challenges to building
and evaluating a detection model. We discuss this further
and present a methodological solution in Sec. 3.

Related Work on Roost Detection and Tracking There
is a long history to the study of roosting behavior with the
radar data, almost entirely based on human interpretation
of images (Winkler 2006; Laughlin et al. 2016; Bridge et
al. 2016). That work is therefore restricted to analyze only
limited regions, short-time periods or coarse-grained infor-
mation about the roosts. Chilson et al. [2019] developed a
deep-learning image classifier to identify radar images that
contain roosts. While useful, this provides only limited bi-
ological information. Our method locates roosts within im-
ages and tracks them across frames, which is a substantially
harder problem, and important biologically. For example, to
create population estimates or locate roost locations on the
ground, one needs to know where roosts occur within the
radar image; to study bird behavior, one needs to measure
how roosts move and expand from frame to frame. Our work
is the first machine-learning method able to extract the type
of higher-level biological information presented in our case
study (Sec. 5). Our case study illustrates, to the best of our
knowledge, the first continent-scale remotely sensed obser-
vations of the migration of a single bird species.

Methodology

Our overall approach consists of four steps (see Fig. 2): we
render radar scans as multi-channel images, run a single-
frame detector, assemble and rescore tracks, and then post-
process detections using other geospatial data to filter spe-
cific sources of false positives.

Detection Architecture Our single-frame detector is
based on Faster R-CNNs (Ren et al. 2015). Region-based
CNN detectors such as Faster R-CNNs are state-of-the-art
on several object detection benchmarks.

A significant advantage of these architectures comes from
pretraining parts of the network on large labeled image
datasets such as ImageNet (Deng et al. 2009). To make radar
data compatible with these networks, we must select only
3 of the 15 available channels to feed into the RGB-based
models. We select the radar products that are most discrim-
inative for humans: reflectivity at 0.5◦, radial velocity at
0.5◦ degrees, and reflectivity at 1.5◦. Roosts appear pre-
dominantly in the lowest elevations and are distinguished by
the ring pattern in reflectivity images and distinctive veloc-
ity pattern. These three data products are then rendered as a
1200× 1200 image in the “top-down” Cartesian-coordinate
view (out to 150km from the radar station) resulting in a 3-
channel 1200 × 1200 image. The three channel images are
fed into Faster R-CNN initialized with a pretrained VGG-M
network (Chatfield et al. 2014). All detectors are trained for
the single “roost” object class, using bounding boxes derived
from the labeled dataset described above.

Although radar data is visually different from natural im-
ages, we found ImageNet pretraining to be quite useful;
without pretraining the networks took significantly longer to
converge and resulted in a 15% lower performance. We also
experimented with models that map 15 radar channels down
to 3 using a learned transformation. These networks were
not consistently better than ones using hand-selected chan-
nels. Models trained with shallower networks that mimic
handcrafted features, such as those based on gradient his-
tograms, performed 15-20% worse depending on the archi-
tecture. See the supplementary material on the project page
for details on these baseline detection models.

We defer training details to Sec. 3, where we discuss our
approach of jointly learning the Faster R-CNN detector to-
gether with user-models for labeling style.

Roost Tracking and Rescoring Associating and tracking
detections across frames is important for several reasons. It
helps rule out false detections due to rain and other phe-
nomenon that have different temporal properties than roosts
(see Sec. 5). Detection tracks are also what associate directly
to the biological entity—a single flock of birds—so they
are needed to estimate biological parameters such as roost
size, rate of expansion, location and habitat of first appear-
ance, etc. We employ a greedy heuristic to assemble detec-
tions from individual frames into tracks (Ren 2008), start-
ing with high scoring detections and incrementally adding
unmatched detections with high overlap in nearby frames.
Detections that match multiple tracks are assigned to the
longest one. After associating detections we apply a Kalman
smoother to each track using a linear dynamical system
model for the bounding box center and radius. This model
captures the dynamics of roost formation and growth with
parameters estimated from ground-truth annotations. We
then conduct a final rescoring step where track-level fea-
tures (e.g., number of frames, average detection score of
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Figure 3: Labeling style variation leads to inaccurate evalu-
ation and suboptimal detectors. All of these detections (pink
boxes) are misidentified as false positives because of insuf-
ficient overlap with annotations of one user (green boxes)
with a tight labeling style. Label variation also hurts training
and leads to suboptimal models.

all bounding boxes in track) are associated to individual de-
tections, which are then rescored using a linear SVM. This
step suppresses false positives that appear roost-like in sin-
gle frames but do not behave like roosts. Further details of
association, tracking and rescoring can be found in the sup-
plementary material.

Postprocessing with Auxiliary Information In prelimi-
nary experiments, the majority of high-scoring tracks were
roosts, but there were also a significant number of high-
scoring false positives caused by specific phenomena, espe-
cially wind farms and precipitation (see Sec. 5). We found
it was possible to reliably reject these false positives using
auxiliary information. To eliminate rain in modern data, we
use the radar measurement of copolar cross-correlation co-
efficient, ρHV , which is available since 2013 (Stepanian et
al. 2016). Biological targets have much lower ρHV values
than precipitation due to their high variance in orientation,
position and shape over time. A common rule is to classify
pixels as rain if ρHV > 0.95 (Dokter et al. 2018). We clas-
sify a roost detection as precipitation if a majority of pix-
els inside its bounding box have ρHV > 0.95. For historic
data one may use automatic methods for segmenting precip-
itation in radar images such as (Lin et al. 2019). For wind
farms, we can use recorded turbine locations from the U.S.
Wind Turbine Database (Hoen et al. 2019). A detection is
identified as a wind farm if any turbine from the database is
located inside its bounding box.

3 Modeling Labeling Styles

Preliminary experiments revealed that systematic variations
in labeling style were a significant barrier to training and
evaluating a detector. Fig. 3 shows example detections that
correctly locate and circumscribe roosts, but are classified
as false positives because the annotator used labels (orig-
inally circles) to “trace” roosts instead of circumscribing
them. Although it is clear upon inspection that these detec-
tions are “correct”, with 63691 labels and a range of labeling
styles, there is no simple adjustment to accurately judge per-
formance of a system. Furthermore, labeling variation also
inhibits learning and leads to suboptimal models. This mo-
tivates our approach to jointly learn a detector along with
user-specific models of labeling style. Our goal is a generic
and principled approach that can leverage existing detection
frameworks with little or no modification.

Latent Variable Model and Variational EM Algorithm
To model variability due to annotation styles we use the fol-
lowing graphical model:

xx yy uuŷ̂y

where x is the image, y represents the unobserved “true” or
gold-standard label, u is the user (or features thereof), and ŷ
is the observed label in user u’s labeling style. In this model
• pθ(y|x) is the detection model, with parameters θ. We

generally assume the negative log-likelihood of the de-
tection model is equal to the loss function of the base de-
tector. For example, in our application, − log pθ(y|x) =
Lcnn(θ|y), the loss function of Faster R-CNN.2

• pβ(ŷ | x, y, u) is the forward user model for the label-
ing style of user u, with parameters β. In our application,
much of the variability can be captured by user-specific
scaling of the bounding boxes, so we adopt the follow-
ing user model: for each bounding-box we model the ob-
served radius as pβ(r̂ | r, u) = N (r̂;βur, σ

2) where r
is the unobserved true radius and βu is the user-specific
scaling factor. In this model, the bounding-box centers are
unmodified and the user model does not depend on the
image x, even though our more general framework allows
both.

• pθ,β(y | x, ŷ, u) is the reverse user model. It is determined
by the previous two models, and is needed to reason about
the true labels given the noisy ones during training. Since
this distribution is generally intractable, we use instead a
variational reverse user model qφ(y | x, ŷ, u), with param-
eters φ. In our application, qφ(r | r̂, u) = N (r;φur̂, σ

2),
which is another user-specific rescaling of the radius.
We train the user models jointly with Faster R-CNN using

variational EM. We initialize the Faster R-CNN parameters
θ by training for 50K iterations starting from the ImageNet
pretrained VGG-M model using the original uncorrected
labels. We then initialize the forward user model parame-
ters β using the Faster R-CNN predictions: if a predicted
roost with radius ri overlaps sufficiently with a labeled roost
(intersection-over-union > 0.2) and has high enough detec-
tion score (> 0.9), we generate a training pair (ri, r̂i) where
r̂i is the labeled radius. We then estimate the forward regres-
sion model parameters as a standard linear regression with
these pairs.

After initialization, we repeat the following steps (in
which i is an index for annotations):
1. Update parameters φ of the reverse user model by mini-

mizing the combined loss Eri∼qφ(ri|r̂i,ui)

[
Lcnn(θ|{ri})−∑

i log pβ(r̂i|ri, ui)
]
. The optimization is performed

separately to determine the reverse scaling factor φu for
each user using Brent’s method with search boundary
[0.1, 2] and black-box access to Lcnn.
2Faster R-CNN includes a region proposal network to detect

and localize candidate objects and a classification network to assign
class labels. The networks share parameters and are trained jointly
to minimize a sum of several loss functions; we take the set of all
parameters as θ and the sum of loss functions as Lcnn(θ|y).
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2. Resample annotations on the training set by sampling
ri ∼ qφ(·|r̂i, ui) for all i, then update θ by training Faster
R-CNN for 50K iterations using the resampled annota-
tions.

3. Update β by training the forward user models using pairs
(ri, r̂i), where ri is the radius of the imputed label.

Formally, each step can be justified as maximiz-
ing the evidence lower bound (ELBO) (Blei, Kucukel-
bir, and McAuliffe 2017) of the log marginal likelihood
log pθ,β(ŷ|x, u) = log

∫
pθ,β(ŷ, y|x, u)dy with respect to

the variational distribution qφ. Steps 1, 2, and 3 maximize
the ELBO with respect to φ, θ, and β, respectively. Steps 1
and 2 require samples from the reverse user model; we found
that using the maximum a posteriori y instead of sampling is
simple and performs well in practice, so we used this in our
application.

The derivation is presented in the supplementary material.
It assumes that y is a structured label that includes all bound-
ing boxes for an image. This justifies equating − log pθ(y|x)
with the loss function L(θ) of an existing detection frame-
work that predicts bounding boxes simultaneously for an en-
tire image (e.g., using heuristics like non-maximum suppres-
sion). This is important because it is modular. We can use
any detection framework that provides a loss function, with
no other changes. A typical user model will then act on y (a
set of bounding boxes) by acting independently on each of
its components, as in our application.

We anticipate this framework can be applied to a range
of applications. More sophisticated user models may also
depend on the image x to capture different labeling biases,
such as different thresholds for labeling objects, or tenden-
cies to mislabel objects of a certain class or appearance.
However, it is an open question how to design more com-
plex user models and we caution about the possibility of
very complex user models “explaining away” true patterns
in the data.

Related Work on Labeling Style and Noise Jiang and
Learned-Miller [2017] discuss how systematic differences
in labeling style across face-detection benchmarks signifi-
cantly complicate evaluation, and propose fine-tuning tech-
niques for style adaptation. Our EM approach is a good
candidate to unify training and evaluation across these dif-
ferent benchmarks. Prior research on label noise (Frénay
and Verleysen 2014) has observed that noisy labels de-
grade classifier performance (Nettleton, Orriols-Puig, and
Fornells 2010) and proposed various methods to deal with
noisy labels (Van Rooyen, Menon, and Williamson 2015;
Ghosh, Kumar, and Sastry 2017; Brodley and Friedl 1999;
Xiao et al. 2015; Tanaka et al. 2018), including EM (Mnih
and Hinton 2012). While some considerations are similar
(degradation of training performance, latent variable mod-
els), labeling style is qualitatively different in that an ex-
planatory variable (the user) is available to help model sys-
tematic label variation, as opposed to pure “noise”. Also,
the prior work in this literature is for classification. Our
approach is the first noise-correction method for bounding
boxes in object detection.

4 Experiments

Dataset We divided the 88972 radar scans from the man-
ually labeled dataset (Sec. 2) into training, validation, and
test sets. Tab. 1 gives details of training and test data by sta-
tion. The validation set (not shown) is roughly half the size
of the test set and was used to set the hyper-parameters of
the detector and the tracker.

Evaluation Metric To evaluate the detector we use es-
tablished evaluation metrics for object detection employed
in common computer vision benchmarks. A detection is a
true positive if its overlap with an annotated bounding-box,
measured using the intersection-over-union (IoU) metric, is
greater than 0.5. The mean average precision (MAP) is com-
puted as the area under the precision-recall curve. For the
purposes of evaluating the detector we mark roosts smaller
than 30× 30 in a 1200× 1200 radar image as difficult and
ignore them during evaluation. Humans typically detect such
roosts by looking at adjacent frames. As discussed previ-
ously (Fig. 3), evaluation is unreliable when user labels have
different labeling styles. To address this we propose an eval-
uation metric (“+User”) that rescales predictions on a per-
user basis prior to computing MAP. Scaling factors are esti-
mated following the same procedure used to initialize varia-
tional EM. This assumes that the user information is known
for the test set, where it is only used for rescaling predictions,
and not by the detector.

Results: Roost Detector and User Model Tab. 1 shows
the performance of various detectors across radar stations.
We trained two detector variants, one a standard Faster R-
CNN, and another trained with the variational EM algo-
rithm. We evaluated the detectors based on whether annota-
tion bias was accounted for during testing (Tab. 1, “+User”).

The noisy annotations cause inaccurate evaluation. A
large number of the detections on KDOX are misidentified as
negatives because of the low overlap with the annotations,
which are illustrated in Fig. 3, leading to a low MAP score
of 9.1%. This improves to 44.8% when the annotation bi-
ases are accounted for during testing. As a sanity check we
trained and evaluated a detector on annotations of a single
user on KDOX and found its performance to be in the mid
fifties. However, the score was low when this model was
evaluated on annotations from other users or stations.

The detector trained jointly with user-models using vari-
ational EM further improves performance across all sta-
tions (Tab. 1, “+EM+User”), with larger improvements for
stations with less training data. Overall MAP improves from
44.2% to 45.5%. To verify the statistical significance of this
result, we drew 20 sets of bootstrap resamples from the en-
tire test set (contains 23.7k images), computed the MAP of
the model trained with EM and without EM on each set. The
mean and standard error of MAPs for the model trained with
EM are 45.5% and 0.12% respectively, while they are 44.4%
and 0.11% for the model trained without EM.

Results: Tracking and Rescoring After obtaining the
roost detections from our single-frame detector, we can ap-
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Station Test Train R-CNN +User +EM+User

KMLB 9133 19998 47.5 47.8 49.2
KTBW 7195 16382 47.3 50.0 50.8
KLIX 4077 10192 32.4 35.1 35.7
KOKX 1404 2994 23.2 27.3 29.9
KAMX 860 1898 29.9 30.8 31.6
KDOX 639 902 9.1 44.8 50.2
KLCH 112 441 32.1 39.8 43.1

entire 23.7k 53.6k 41.0 44.2 45.5

Table 1: Roost detection MAP for detector variants.

ply our roost tracking model to establish roost tracks over
time. Fig. 4 shows an example radar sequence where roost
detections have been successfully tracked over time and
some false positives removed. We also systematically eval-
uated the tracking and rescoring model on scans from the
KOKX station. For this study we performed a manual evalua-
tion of the top 800 detections before and after the contextual
rescoring. Manual evaluation was necessary due to human
labeling biases, especially the omission of labels at the be-
ginning or end of a roost sequence when roost signatures are
not as obvious. Fig. 4, middle panel, shows that the tracking
and rescoring improves the precision across the entire range
of k. Our tracking model also enables us to study the roost
dynamics over time (see Sec. 5 and Fig. 4 right panel).

5 Case study

We conducted a case study to use our detector and tracker to
synthesize knowledge about continent-scale movement pat-
terns of swallows. We applied our pipeline to 419k radar
scans collected from 86 radar stations in the Eastern US (see
Figure 5) from October 2013 through March 2014. During
these months, Tree Swallows are the only (fall/winter) or
predominant (early spring) swallow species in the US and
responsible for the vast majority of radar roost signatures.
This case study is therefore the first system to obtain com-
prehensive measurements of a single species of bird across
its range on a daily basis. We ran our detector and tracking
pipeline on all radar scans from 30 minutes before sunrise
to 90 minutes after sunrise. We kept tracks having at least
two detections with a detector score of 0.7 or more, and then
ranked tracks by the sum of the detector score for each de-
tection in the track.

Error Analysis There were several specific phenomena
that were frequently detected as false positives prior to post-
processing. We reviewed and classified all tracks with a to-
tal detection score of 5 or more prior to postprocessing (678
tracks total) to evaluate detector performance “in the wild”
and the effectiveness of post-processing. This also served
to vet the final data used in the biological analysis. Tab. 2
shows the number of detections by category before and af-
ter post-processing. Roughly two-thirds of initial high scor-
ing detections were swallow roosts, with another 5.6% being
communal roosts of some bird species.

The most false positives were due to precipitation, which
appears as highly complex and variable patterns in radar

Pre Post Pre Post
Swallow roost 454 449 Other roost 38 38
Precipitation 109 5 Clutter 22 21
Wind farm 47 0 Unknown 8 8

Table 2: Detections by type pre- and post-filtering with aux-
iliary data. Post-processing effectively removes false posi-
tives due to precipitation and wind farms.

images, so it is common to find small image patches
that share the general shape and velocity pattern of roosts
(Fig. 6, fourth column). Humans recognize precipitation
from larger-scale patterns and movement. Filtering using
ρHV nearly eliminates rain false positives. The second lead-
ing source of false positives was wind farms. Surprisingly,
these share several features of roosts: they appear as small
high-reflectivity “blobs” and have a diverse velocity field
due to spinning turbine blades (Fig. 6 last column). Humans
can easily distinguish wind farms from roosts using tempo-
ral properties. All wind farms are filtered successfully using
the wind turbine database. Since our case study focuses on
Tree Swallows, we marked as “other roost” detections that
were believed to be from other communally roosting species
(e.g. American Robins, blackbirds, crows). These appear in
radar less frequently and with different appearance (usually
“blobs” instead of “rings”; Fig. 6, fifth column) due to be-
havior differences. Humans use appearance cues as well as
habitat, region, and time of year to judge the likely species
of a roost. We marked uncertain cases as “other roost”.

Migration and Habitat Use Fig. 5 shows swallow roost
locations and habitat types for five half-month periods start-
ing in October to illustrate the migration patterns and sea-
sonal habitat use of Tree Swallows. Habitat assignments
are based on the majority habitat class from the National
Land Cover Database (NLCD) (USGS 2011) within a
10 km× 10 km area surrounding the roost center, following
the approach of (Bridge et al. 2016) for Purple Martins. Un-
like Purple Martins, the dominant habitat type for Tree Swal-
lows is wetlands (38% of all roosts), followed by croplands
(29%). These reflect the known habits of Tree Swallows to
roost in reedy vegetation—either natural wetlands (e.g. cat-
tails and phragmites) or agricultural fields (e.g., corn, sugar
cane) (Winkler et al. 2011).

In early October, Tree Swallows have left their breed-
ing territories and formed migratory and pre-migratory
roosts throughout their breeding range across the northern
US (Winkler et al. 2011). Agricultural roosts are widespread
in the upper midwest. Some birds have begun their south-
bound migration, which is evident by the presence of roosts
along the Gulf Coast, which is outside the breeding range. In
late October, roosts concentrate along the eastern seaboard
(mostly wetland habitat) and in the central US (mostly crop-
land). Most of the central US roosts occur near major rivers
(e.g., the Mississippi) or other water bodies. The line of
wetland roosts along the eastern seaboard likely delineates
a migration route followed by a large number of individu-
als who make daily “hops” from roost to roost along this
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Figure 4: Left: tracking example, with raw detections (top) and track (bottom). Transient false positives in several frames lead to
poor tracks and are removed by the rescoring step. Middle: precision@k before and after rescoring. Right: Roost radius relative
to time after sunrise.

Oct 01-15 Oct 16-31 Nov 01-15 Nov 16-30 Dec 01-15

WaterCroplandWetland Urban Forest Shrubland Grassland Barren

Figure 5: Tree Swallow fall migration in 2013. The color circles show detected roost locations with each half-month period.
The location of each roost is determined by the center of the first bounding box in the track, when the airborne birds are closest
to their location on the ground. Faint gray triangles show radar station locations.

Figure 6: Some detections visualized on the reflectivity (top)
and radial velocity (bottom) channels of different scans. The
first three columns show swallow roost detections while the
next three columns show detections due to rain, roosts of
other species, and windmills.

route (Winkler 2006). By early November, only a few roosts
linger near major water bodies in the central US. Some birds
have left the US entirely to points farther south, while some
remain in staging areas along the Gulf Coast (Laughlin et
al. 2016). By December, Gulf Coast activity has diminished,
and roosts concentrate more in Florida, where a population
of Tree Swallows will spend the entire winter.

Widespread statistics of roost locations and habitat us-
age throughout a migratory season have not previously been
documented, but are enabled by our AI system to automati-
cally detect and track roosts. Our results are a starting point
to better understand and conserve these populations. They
highlight the importance of the eastern seaboard and Missis-
sippi valley as migration corridors, with different patterns of
habitat use (wetland vs. agricultural) in each. The strong as-

sociation with agricultural habitats during the harvest season
suggests interesting potential interactions between humans
and the migration strategy of swallows.

Roost Emergence Dynamics Our AI system also enables
us to collect more detailed information about roosts than pre-
viously possible, such as their dynamics over time, to an-
swer questions about their behavior. Fig. 4 shows the roost
radius relative to time after sunrise for roosts detected by our
system. Roosts appear around 1000 seconds before sunrise
and expand at a fairly consistent rate. The best fit line cor-
responds to swallows dispersing from the center of the roost
with an average airspeed velocity of 6.61m s−1 (unladen).

6 Conclusion

We presented a pipeline for detecting communal bird roosts
using weather radar. We showed that user-specific label
noise is a significant hurdle to doing machine learning with
the available data set, and presented a method to overcome
this. Our approach reveals new insights into the continental-
scale roosting behavior of migratory Tree Swallows, and can
be built upon to conduct historical analysis using 20+ years
of archived radar data to study their long-term population
patterns in comparison with climate and land use change.
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