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Abstract

Auditing fairness of decision-makers is now in high demand.
To respond to this social demand, several fairness auditing
tools have been developed. The focus of this study is to raise
an awareness of the risk of malicious decision-makers who
fake fairness by abusing the auditing tools and thereby de-
ceiving the social communities. The question is whether such
a fraud of the decision-maker is detectable so that the soci-
ety can avoid the risk of fake fairness. In this study, we an-
swer this question negatively. We specifically put our focus
on a situation where the decision-maker publishes a bench-
mark dataset as the evidence of his/her fairness and attempts
to deceive a person who uses an auditing tool that computes a
fairness metric. To assess the (un)detectability of the fraud,
we explicitly construct an algorithm, the stealthily biased
sampling, that can deliberately construct an evil benchmark
dataset via subsampling. We show that the fraud made by the
stealthily based sampling is indeed difficult to detect both the-
oretically and empirically.

1 Introduction

Background Machine learning models are being increas-
ingly used in individuals’ consequential decisions such as
loan, insurance, and employment. In such applications, the
models are required to be fair in the sense that their out-
puts should be irrelevant to the individuals’ sensitive feature
such as gender, race, and religion (Pedreshi, Ruggieri, and
Turini 2008). Several efforts have been devoted to establish-
ing mathematical formulation of fairness (Dwork et al. 2012;
Hardt et al. 2016; Dwork and Ilvento 2018) and to propose
algorithms that meet the fairness criteria (Bolukbasi et al.
2016; Feldman et al. 2015; Joseph et al. 2016).

With increasing attention to fairness, social communities
now require to audit systems that incorporate machine learn-
ing algorithms to prevent unfair decisions. For example, a
2014 White House Report (Podesta et al. 2014) mentioned
“[t]he increasing use of algorithms to make eligibility de-
cisions must be carefully monitored for potential discrimi-
natory outcomes for disadvantaged groups, even absent dis-
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criminatory intent”. A similar statement also appeared in a
2016 White House Report (Munoz, Smith, and Patil 2016).

To respond to the above social request, several fair-
ness auditing tools have been developed (Adebayo 2016;
Bellamy et al. 2018; Saleiro et al. 2018). These tools help the
decision-maker to investigate the fairness of their system by,
e.g., computing several fairness metrics (Saleiro et al. 2018),
measuring the significance of the system inputs (Adebayo
2016), and identifying minority groups with unfair treat-
ments (Bellamy et al. 2018). If the decision-maker found
unfairness in their systems, she/he can then fix the systems
by inspecting the causes of unfairness.

These auditing tools are also useful for promoting fairness
of the decision-maker’s system to the social communities.
For promoting fairness of the system, the decision-maker
publishes the outputs of the auditing tools. If the outputs sug-
gest no unfairness in the system, the fact can be seen as an
evidence of the system’s fairness. The decision-maker thus
can appeal fairness of their system by publishing the fact to
earn the trust of the social communities.

Risk of Fake Fairness The focus of this study is to raise
awareness of the potential risk of malicious decision-makers
who fake fairness. If the decision-maker is malicious, he
may control the auditing tools’ results so that his system
looks fair for the social communities even if the system is
indeed unfair. Such a risk is avoidable if the social com-
munities can detect the decision-maker’s fraud. Therefore,
the question is whether such a fraud is detectable. In this
study, we answer this question negatively. That is, the fraud
is very difficult to detect in practice, which indicates that
the society is now facing a potential risk of fake fairness. In
what follows, we refer to a person who attempts to detect the
decision-maker’s fraud as a detector.

If the decision-maker only publishes the auditing tools’
outputs, the detectability of the decision-maker’s fraud is
considerably low. That is, the malicious decision-maker may
modify the auditing tools’ outputs arbitrary, whereas the de-
tector has no way to certify whether or not the outputs are
modified. This concludes that the decision-maker who only
publishes the auditing tools’ outputs might be untrustable.

The decision-maker should publish more information

412



about their system in addition to the auditing tools’ outputs
to acquire the social communities’ trust. However, because
the system’s information usually involves some confidential
information, the decision-maker wants to prove fairness by
publishing minimal information about their system.

In this study, we investigate a decision-maker who at-
tempts to prove the fairness of their system by constructing a
benchmark dataset. That is, the decision-maker publishes a
subset of his dataset with his decisions as minimal informa-
tion for proving the fairness of the system. Given the bench-
mark dataset with the decisions, the detector can confirm the
fairness of the system by using the auditing tools. In particu-
lar, we focus our attention on an auditing tool that computes
a fairness metric. With this setup, we assess the detectability
of the decision-maker’s fraud.

Biased Sampling Attack With the setup above, we con-
sider a type of decision-maker’s attacking algorithm, biased
sampling attack. In the biased sampling attack, an attacker
has a dataset D obtained from an underlying distribution
P . Here, the dataset D involves the decisions made by the
decision-makers’ system, which are possibly unfair. The at-
tacker deliberately selects a subset Z ⊆ D as the benchmark
dataset so that the value of the fairness metric for Z is within
a fair level. Then, the detector who employs an auditing tool
that computes the fairness metric cannot detect unfairness of
the decision-maker’s system.

The simplest method of the biased sampling attack might
be case-control sampling (Mantel and Haenszel 1959). If the
sensitive information is gender (man or woman) and the de-
cision is binary (positive or negative), this method classi-
fies the dataset into four classes: (man, positive), (woman,
positive), (man, negative), and (woman, negative). Then, it
samples the desired numbers of points from the classes. By
controlling the number of points in each class appropriately,
it produces a fair subset Z.

Fortunately, the fraud of the case-control sampling could
be detected as follows. The detector compares the distri-
bution of the benchmark dataset Z with her prior knowl-
edge (e.g., distributions of ages or zip-codes). Then, be-
cause the case-control samples involve a bias from the orig-
inal distribution, the detector may discover some unnatu-
ral thing, which indicates the decision-maker’s fraud in the
data-revealing process.

To hide the fraud, the malicious decision-maker will se-
lect fair subset Z whose distribution looks similar to that
of D. We refer to such a subset as stealthily biased subset
and the problem of sampling such a subset as stealthily bi-
ased sampling. Intuitively, the problem is formulated as fol-
lows. The mathematical formulation of the problem is given
in Section 3.

Problem 1 (Stealthily biased sampling problem (informal)).
Given a possibly unfair dataset D obtained from an under-
lying distribution P , sample subset Z ⊆ D such that (i) Z
is fair in terms of some fairness criteria, and (ii) the distin-
guishing of the distribution of Z from P is difficult.

Our Contributions In this study, we develop an algorithm
for the stealthily biased sampling problem and demonstrate
its difficulty of detection.

First, we formulate the stealthily biased sampling problem
as a Wasserstein distance minimization problem. We show
that this problem is reduced to the minimum-cost flow prob-
lem and solved it in polynomial time. (Section 3)

Second, we show the difficulty of the detection of the pro-
posed algorithm. We introduce an ideal detector who can ac-
cess the underlying distribution P and compares the distri-
bution of Z and P by a statistical test. The ideal detector has
full information to perform the previously-mentioned fraud
detection procedure, and any realistic detector cannot have
such access. Therefore, if the ideal detector cannot detect the
fraud, we can conclude that any realistic detector either can-
not detect the fraud. We prove that the Wasserstein distance
is an upper-bound of the advantage, which is a distinguisha-
bility measure used in the cryptographic theory (Goldreich
2009), with respect to the Kolmogorov–Smirnov statistical
test (KS test) (Massey Jr 1951) (Theorem 4). This means
that the proposed algorithm is hard to detect even if the ideal
detector uses the KS test. (Section 4)

Finally, through synthetic and real-world data experi-
ments, we show that the decision-maker can indeed pretend
to be fair by using the stealthily biased sampling. Specif-
ically, we demonstrate that the detector cannot detect the
fraud of the decision-maker. In the experiments, we inves-
tigate detectability against a detector who can access an in-
dependent observation from P but cannot P . This detector is
also ideal but more practical than the detector introduced in
Section 4. The experimental results thus show more practical
detectability than the theoretically analyzed one. (Section 5)

2 Preliminaries

Wasserstein Distance Let V be a finite set, and
μ, ν : V → R≥0 be measures on V . A measure π on V ×V is
a coupling measure of μ and ν if μi =

∑
j∈V πij , and νj =∑

i∈V πij , which is denoted by π ∈ Δ(μ, ν). Let (X , d)
be a metric space, i.e., d : X × X → R is positive defi-
nite, symmetric, and satisfies the triangle inequality. Sup-
pose that each i ∈ V has feature xi ∈ X on the metric space.
Then, the Wasserstein distance between μ and ν, denoted by
W (μ, ν), is defined by the optimal value of the following
optimization problem (Vaserstein 1969):

min
∑
i,j∈V

d(xi, xj)πij , s.t. π ∈ Δ(μ, ν). (2.1)

The Wasserstein distance is computed in polynomial time
by reducing to the minimum-cost flow problem or using the
Sinkhorn iteration (Peyré and Cuturi 2019).

Minimum-Cost Flow Let G = (V, E) be a directed graph,
where V is the vertices, E is the edges, c : E → R is the
capacity, and a : E → R is the cost. The minimum-cost flow

413



problem is given by

min
∑
e∈E

a(e)f(e)

s.t. 0 ≤ f(e) ≤ c(e), e ∈ E ,
∑

e∈δ+(u)

f(e)−
∑

e∈δ−(u)

f(e) =

⎧⎨
⎩
0, u ∈ V \ {s, t},
d, u = s,

−d, u = t,

(2.2)

where δ+(u) = {(u, v) ∈ E} and δ−(v) = {(u, v) ∈ E}
are the outgoing edges from u and the incoming edges to
v, respectively. d ≥ 0 is the required amount of the flow.
This problem is solvable in Õ(E√V) time in theory (Lee and
Sidford 2013), where Õ suppresses log factors. The practical
evaluation of the minimum-cost flow algorithms are given in
the study by (Kovács 2015).

3 Algorithm for Stealthily Biased Sampling

We formulate the stealthily biased sampling problem as a
Wasserstein distance minimization problem. The difficulty
of detecting the stealthily biased sampling is studied in Sec-
tion 4. Here, we present a formulation for “categorical bias-
ing,” which controls the number of points in each category.

Problem Formulation Let X be a metric space for the
feature space and Y be a finite set representing the outcome
of the decisions. An entry of x ∈ X corresponds to a sensi-
tive information; let S be a finite set representing the class
of sensitive information, and let s : X → S be the mapping
that extracts the sensitive information from the feature.

The dataset is given by D = {(x1, y1), . . . , (xN , yN )},
where xi ∈ X is the feature of the i-th point and yi ∈ Y is
the decision of the i-th point. For simplicity, we write i ∈ D
for (xi, yi) ∈ D.

Let ν be the uniform measure on D, whose expected num-
ber of points is K, i.e., νi = K

N , (i ∈ D). This is our refer-
ence distribution, i.e., if the decision-maker is not cheating,
he will disclose subset Z ⊆ D following this distribution,
i.e., P(i ∈ S) = νi, where P denotes the probability.

However, as the decision-maker wants to show that the
output is fair, he constructs another distribution μ. Sim-
ilar to the case-control sampling discussed in Section 1,
we classify the dataset into bins S × Y , and control the
expected number of points sampled from each bin. Let
k : S × Y → Z be the number of points of the bins, where
K =

∑
s∈S,y∈Y k(s, y) ≤ |D|. Then, μ satisfies the re-

quirement if
∑

(xi,yi)∈D:s(xi)=s,yi=y

μi = k(s, y), (s ∈ S, y ∈ Y).

(3.1)

We denote by μ ∈ P (k) if μ satisfies the above constraint.
Note that by choosing k appropriately, we can show that Z
is fair, thus meeting the first requirement in Problem 1.

To meet the second requirement in Problem 1, the
decision-maker must determine distribution μ such that μ

s

usy

li rj

t

(k(s, y), 0)

(1, 0)
(∞, d(xi, xj))

(K/N, 0)

Figure 3.1: Flow network for biased sampling. (c, a) on the
edge if it has capacity c and cost a.

is indistinguishable from reference distribution ν. Here, we
propose to measure the indistinguishability by using the
Wasserstein distance. Then, the stealthily biased sampling
problem is mathematically formulated as follows.
Problem 2 (Stealthily biased sampling problem (formal)).
min W (μ, ν), s.t. μ ∈ P (k).

By substituting the definition of the Wasserstein distance
into Problem 2, we obtain

min
∑
i,j∈D

d(xi, xj)πij , s.t. π ∈ Δ(μ, ν), μ ∈ P (k). (3.2)

As the objective function is linear in π and both Δ(μ, ν) and
P (k) are polytopes, Problem 3.2 is a linear programming
problem, hence is solved in a polynomial time (Grötschel,
Lovász, and Schrijver 1981).

Efficient Algorithm To establish an efficient algorithm
for the stealthily biased sampling problem, we reduce the
problem to a minimum-cost flow problem.

We construct the network G = (V, E) in Figure 3.1 with
capacity c and cost a. Vertices V consist of the following five
classes: (i) supersource s, (ii) case-controlling vertices usy

for all s ∈ S and y ∈ Y , (iii) left vertices li for all i ∈ D,
(iv) right vertices rj for all j ∈ D, and (v) supersink t. Edges
E consist of the following four classes: (i’) (s, usy) for all
s ∈ S and y ∈ Y , whose cost is 0 and capacity is k(s, y),
(ii’) (usy, li) for all i ∈ D with s(xi) = s and yi = y, whose
cost is 0 and capacity is one, (iii’) (li, rj) for all i ∈ D and
j ∈ D, whose cost is d(xi, xj) and capacity is ∞, and (iv’)
(rj , t) for all j ∈ D, whose cost is 0 and capacity is K/N .

By setting the flow amount to K, the solution to the above
instance gives the solution to the stealthily biased sampling
problem, where πij is the flow across edge (li, rj), and μi

is the flow across edge (us(xi)yi
, li). As |V| = O(|D|)

and |E| = O(|D|2), the problem is solvable in Õ(|D|2.5)
time (Lee and Sidford 2013).

4 Stealthiness of Sampling

We theoretically confirm that the stealthily biased sampling
is difficult to detect. Recall that the decision-maker’s pur-
pose is to make distribution μ indistinguishable from the
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uniform distribution ν. To measure the indistinguishability,
we introduce advantage, which is used in cryptographic the-
ory (Goldreich 2009).

Let νK be K product distribution of a sample drawn from
the uniform probability distribution, and let μK be K prod-
uct distribution of a sample generated by our stealthily bi-
ased sampling algorithm. To define the advantage, let us con-
sider the following game in which a detector attempts to dis-
tinguish μK and νK : (1). Flip an unbiased coin. (2). If a head
outcome is achieved, the decision-maker reveals D ∼ μK to
the detector; otherwise, the decision-maker reveals D ∼ νK

to the detector. (3). The detector estimates the side of the
flipped coin. If the probability that the detector estimates the
outcome of the unbiased coin correctly is near 1/2, the de-
tector cannot distinguish whether the obtained samples are
biased.

Let H be a random variable such that P(H = 1) =
P(H = 0) = 1/2, which represents the flipped unbiased
coin. The detector’s estimation algorithm is a mapping Φ
from D to {0, 1}, where the output is 1 if the detector ex-
pects that the samples are drawn from νK ; otherwise, the
output is 0. The probability that the detector detects bias cor-
rectly is obtained as P(Φ(D) = H), where the randomness
comes from flipped coin H and dataset D. Then, the advan-
tage is defined as follows:

Adv(Φ;μK , νK) =
∣∣P(Φ(D) = H)− 1

2

∣∣ . (4.1)

A smaller Adv value implies that biased distribution μK is
more difficult to distinguish from νK against a detector with
the test algorithm Φ.

Stealthiness against Kolmogorov–Smirnov Test To as-
sess the difficulty of detecting the stealthily biased sampling,
we consider an ideal detector who can access the underly-
ing distribution ν. Here, we analyze the advantage when the
ideal detector who uses the KS test.

The KS test is a goodness-of-fit test for real-valued sam-
ples. Let Fν be the cumulative distribution function of dis-
tribution ν, and let FK be the cumulative distribution func-
tion of the empirical measure of the obtained samples. Then,
the KS statistic is defined as KS(D; ν) = supx |FK(x) −
Fν(x)|. The KS test is rejected if KS(D; ν) is larger than an
appropriate threshold.

Let us consider the detector’s algorithms based on the
KS statistic. We formally define a detector’s algorithm that
returns 1 if the KS statistic is larger than threshold τ as
ΦKS,τ (D) = I(KS(D; ν) > τ), where I is the indicator
function.

We analyze the advantage against ΦKS,τ under a flatness
assumption on sample distribution ν. For x ∈ X , let Bε(x)
be the ε-ball centered at x. Then, the flatness assumption is
defined as follows:

Assumption 3. There exist constants s, C > 0 such that for
any ε > 0, supx∈X ν(Bε(x)) ≤ (ε/C)

s.

Many natural distributions on a real line satisfy Assump-
tion 3. For example, the one-dimensional normal distribu-
tion satisfies Assumption 3 with s = 1 and C =

√
2/π.

Under the flatness assumption on ν, we reveal an upper
bound on the advantage against the KS test in the categor-
ical biasing setting. Let M be the number of pair types of
decision and sensitive attribute. Let κ and κ′ be the distri-
bution over pairs of decision and sensitive attribute on the
sample distribution and biased distribution. Then, we reveal
the following theorem.
Theorem 4. Let W (μK , νK) be the Wasserstein
distance equipped with the distance d(D,D′) =
mini=1,...,K d(xi, x

′
i) for D = {x1, ..., xK} and

D′ = {x′
1, ..., x

′
K}. Under Assumption 3, for thresh-

old τ ≥ (C/K)1/s/2, we have

Adv(ΦKS,τ ;μ
K , νK)

≤ K1/sW (μK ,νK)/C1/s + 4K! ((1+TV(κ,κ′))/K)
K
, (4.2)

where s and C are the constants from Assumption 3,
TV(κ, κ′) =

∑M
i |κi−κ′

i|/2 is the total variation distance.
The proof of this theorem can be found in the supplemen-

tary material. Since 1 + TV(κ, κ′) < e and K! ∼ (K/e)K ,
the second term in (4.2) is o(1) and is dominated by the first
term. Because the stealthily biased sampling minimizes the
Wasserstein distance (i.e., the first term of (4.2)), it also min-
imizes the upper-bound of the advantage. This implies that
the stealthily biased sampling is difficult to detect for the
ideal detector. Consequently, for any realistic detector who
has less information than the ideal one, it is even more diffi-
cult to detect the stealthily biased sampling.

5 Experiments

In this section, we show that the stealthily biased sampling
is indeed difficult to detect, through experiments on syn-
thetic data and two real-world data (COMPAS and Adult).1
In the experiments, we adopted the demographic parity
(DP) (Calders, Kamiran, and Pechenizkiy 2009) as the fair-
ness metric for auditing. Here, let s ∈ {0, 1} be a sensitive
feature and y ∈ {0, 1} be a decision. The DP is then defined
as DP = |P(y = 1 | s = 1)− P(y = 1 | s = 0)|. A large
DP indicates that the decision is unfair because the decision-
maker favors providing positive decisions to one group over
the other group.

Summary of the Results Before moving to each exper-
iment, we summarize the main results here. In the experi-
ments, we investigated detectability of the decision-makers’
fraud against an ideal detector who can access an indepen-
dent observation D′ from the underlying distribution P . In
all the experiments, we verified the following three points.
R1. Both the stealthily biased and case-control sampling

could reduce the DP of the sampled set Z.
R2. The stealthily biased sampling was more resistant

against the detector’s fraud detection compared to the
case-control sampling. Specifically, the stealthily bi-
ased sampling marked low scores of the fraud detection
criteria for a wide range of the experimental settings.

1The codes can be found at https://github.com/sato9hara/
stealthily-biased-sampling
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R3. In all the experiments, the decision-makers success-
fully pretended to be fair. They could select a subset
Z with small DPs and small fraud detection criteria.

Implementation We used Python 3 for data processing.
In all the experiments, we used the squared Euclidean dis-
tance d(xi, xj) = ‖xi − xj‖2 as the metric in Wasserstein
distance. To solve the minimum-cost flow problem (3.2), we
used the network simplex method implemented in LEMON
Graph Library.2 With LEMON, the problem could be solved
in a few seconds for the datasets with the size N up to a
few thousand. For the Adult dataset, we used a bootstrap-
type estimator to improve the computational scalability (see
the full version (Fukuchi, Hara, and Maehara 2019) for the
detail).

5.1 Synthetic Example

Example 5 (Loan check). Consider a decision-maker who
decides to lend money (y = 1) or not (y = 0) based on the
applicants sensitive feature s ∈ {0, 1} (e.g., gender) and a
d-dimensional feature vector x ∈ [0, 1]d, where first feature
x1 is an income. Here, we model the criteria of the decision-
maker as

y = I(x1 + bs > 0.5), (5.1)

where b ≥ 0 is a constant. Note that this decision-maker is
unfair if b �= 0.

To pretend to be a fair, for a set of individual’s feature,
sensitive feature, and the decision D = {(xi, si, yi)}Ni=1,
the decision-maker selects subset Z ⊆ D as evidence that
the decisions are fair. We solve this problem by using both
the stealthily biased and case-control sampling.
Data We set the underlying data distribution P as follows.
We sampled sensitive feature s with P(s = 1) = 0.5, and
sampled feature vector x in a uniformly random manner over
[0, 1]d with d = 1.3 Decision y is made by following the
criteria (5.1). We sampled dataset D with N = 1, 000 ob-
servations from the underlying distribution P . We set the
parameters in the criteria (5.1) to be b = 0.2. Thus, the DP
of the decision-maker is 0.2.
Attacker To reduce the DP through sampling, the sam-
pled set needs to satisfy P(y = 1 | s = 1) ≈ P(y = 1 |
s = 0) ≈ α for a predetermined ratio of positive decisions
α ∈ [0, 1]. The expected number of sampling in each bin
(s, y) ∈ {0, 1} × {0, 1} is then determined by k(s, y) =
0.5Kαy(1− α)1−y� (recall that P(s) = 0.5, ∀s ∈ {0, 1}).
Detector As a detector, we adopted the Kolmogorov–
Smirnov two-sample test. The detector has an independent
observation D′ = {(x′

j , s
′
j)}200j=1 as a referential dataset sam-

pled from underlying distribution P . Here, we note that the
detector has no access to decision y for D′ because the de-
cision criteria (5.1) is not disclosed. Given Z, the detector
applies the Kolmogorov–Smirnov two-sample test to detect
whether the distribution of S is different from that of refer-
ential set D′. Here, we consider the strongest detector: we

2https://lemon.cs.elte.hu/trac/lemon
3Results for higher dimensional settings were almost the same

as d = 1. See the full version (Fukuchi, Hara, and Maehara 2019).

assume that she knows that only income x1 is used in x
for the decision. We denote the distribution of income x1

in Z and D′ by PS(x1) and PD′(x1), respectively. The de-
tector can then use the Kolmogorov–Smirnov two-sample
test4 in three ways: (i) test PS(x1) = PD′(x1), (ii) test
PS(x1 | s = 1) = PD′(x1 | s = 1), and (iii) test
PS(x1 | s = 0) = PD′(x1 | s = 0). In the experiment,
we set the significance level of the test to be 0.05.
Result We selected a subset Z ⊆ D with size |Z| = 200
using both the stealthily biased and case-control sampling.
We repeated the experiment 100 times, and summarized the
results in Figure 5.1, for several different ratios of positive
decisions α. As we summarized earlier, three key observa-
tions R1, R2, and R3 can be found in the figures.
R1. Figure 5.1a shows that both the stealthily biased and
case-control sampling successfully reduced DP to less than
0.1 through sampling the subset Z. We note that no signifi-
cant differences were observed in DPs between the two sam-
pling methods.
R2. Figures 5.1b, 5.1c, and 5.1d show that the stealthily
biased sampling was more resistant to the Kolmogorov–
Smirnov test, compared to the case-control sampling.
Specifically, the stealthily biased sampling attained a small
rejection rate in a wide range of α in the sampling process.
R3. By using the stealthily biased sampling, the decision-
maker successfully pretended to be fair. By setting α in the
sampling to be 0.6, none of the tests could confidently re-
ject that disclosed dataset Z is different from the referen-
tial dataset D′. For α = 0.6, the rejection rates of all the
three tests were kept around 0.05, which is exactly the same
as the significance level. These results indicate that the de-
tector cannot detect the fraud made by the stealthily biased
sampling: the DP of Z is small, and its distribution is suffi-
ciently natural so that the statistical test cannot reject it. The
case-control sampling showed higher rejection rates in tests
of P(x | s = 1) and P(x | s = 0), and thus was outper-
formed by the stealthily biased sampling.

Lastly, we note that the stochastic decision-maker can be
far more evil than the deterministic decision-maker consid-
ered in this section. See the full version (Fukuchi, Hara, and
Maehara 2019) for the detail.

5.2 Real-World Data: COMPAS

For the first real-world data experiment, we focus on the
COMPAS dataset (Angwin et al. 2016).5 The COMPAS
dataset contains several defendant’s records obtained from
the Broward County Sheriff’s Office in Florida. Each defen-
dant is scored his or her risk of recidivism using a software
called COMPAS. ProPublica (Angwin et al. 2016) revealed
that the COMPAS risk score is discriminative: it tends to
score white defendants with low scores while scoring black
defendants with high scores.

4In practice, the detector does not know that x1 is a key fea-
ture. Thus, the detector needs to use the two-sample test for multi-
dimensional data. However, in our preliminary experiments, we
found that multi-dimensional tests have very low detection pow-
ers. Therefore, we used an advantageous setting for the detector.

5https://github.com/propublica/compas-analysis
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Figure 5.1: Results for the decision-maker with a = 0.2. The shaded regions in (a) denotes the average DP ± std. The shaded
regions in (b)–(d) denote 95% confidence intervals. The dotted line in (b)–(d) denotes the significance level 0.05.

Because Florida had strong open-records laws, the en-
tire COMPAS dataset was made public, and the bias in the
COMPAS risk score was revealed. Here, we consider a vir-
tual scenario that the decision-maker was aware of the bias
in the risk score, and he wants to pretend to be fair by hiding
the bias. To attain this goal, the decision-maker discloses a
subset of the COMPAS dataset as evidence that the COM-
PAS risk score is fair.
Data We used the same data preprocessing following the
analysis of ProPublica (Angwin et al. 2016), which results
in eight features x ∈ R

8 of each defendant, with race as
sensitive attribute s ∈ {0(black), 1(white)}, and the deci-
sion y ∈ {0(low-risk), 1(middle/high-risk)}. The prepro-
cessed data includes 5, 278 records, which we randomly held
out 1, 278 records as the referential dataset D′ for the de-
tector. From the remaining 4, 000 records D, we sampled
2, 000 records as Z using both the stealthily biased and case-
control sampling. To reduce the DP in the sampling, we re-
quired the sampled set to satisfy P(y = 1 | s = 1) ≈ P(y =
1 | s = 0) ≈ α for some α ∈ [0, 1].
Detector The detector tries to detect the bias in the dis-
closed dataset Z by comparing its distribution with the refer-
ential dataset D′. In the experiment, we adopted the Wasser-
stein distance (WD) as the detector’s detection criteria.6 If
the WD between Z and D′ is sufficiently large, the detector
can detect the bias in Z, and thus the fraud of the decision-
maker is revealed.
Result We repeated the experiment 100 times by randomly
changing the data splitting, and summarized the results in
Figure 5.2.7 As the baseline without any biased sampling,

6In COMPAS and Adult experiments, we did not adopt the
multi-dimensional two-sample tests because they were too weak.

7Here, we measured the WD on P(x). The WD on P(x | s = 1)
and P(x | s = 0) can be found in the full version.

we computed DP and the WD for randomly sampled records
from D, which are denoted as Baseline in the figures. The
figures show the clear success of the stealthily biased sam-
pling, as we summarized in R1, R2, and R3. In Figure 5.2(a),
with the stealthily biased sampling, the DPs of Z have re-
duced significantly (R1). In Figures 5.2(b), the WDs be-
tween Z and D′ were sufficiently small for α = 0.6 so
that they are completely indistinguishable from the baselines
(R3). The case-control sampling had higher WDs, and it was
thus easier for the detector to detect (R2).

5.3 Real-World Data: Adult

As the second real-world data experiment, we used the Adult
dataset (Dheeru and Karra Taniskidou 2017). The Adult
dataset contains 48,842 records with several individual’s
features and their labels (high-income or low-income). The
dataset is known to include gender bias: in the dataset, while
30% of the male have high-income, only 10% of the female
have high-income. The DP of the dataset is therefore 0.2. If
we naively train a classifier using the dataset, the resulting
classifier inherits the bias and becomes discriminative, i.e.,
the classifier favors to classify males as high-income. The
goal of this experiment is to show that as if the biased classi-
fier is fair by disclosing a part of the dataset with classifier’s
decision.
Data & Classifier In the data preprocessing, we converted
categorical features to numerical features.8 We randomly
split 10,000 records for the training set, 20,000 records for
the test set, and the remaining 18,842 records for the referen-
tial set D′ for the detector. In the experiment, we first train
a classifier using the training set. As a classifier, we used
logistic regression and random forest with 100 trees. We la-

8We used the implementation used in https://www.kaggle.com/
kost13/us-income-logistic-regression/notebook
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Figure 5.2: Results for the COMPAS dataset: The shaded regions in (a) denotes the average DP ± std. The shaded regions in
(b) denote the average WD ± std.
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Figure 5.3: Results for the Adult dataset: The shaded regions in (a) denotes the average DP ± std. The shaded regions in (b)
denote the average WD ± std.

beled all the records in the test set using the trained classifier
and obtained the dataset D with the classifier’s decision. We
then sample the subset Z ⊆ D with size |Z| = 2, 000 using
both the stealthily biased and case-control sampling. To re-
duce the DP in the sampling, we required the sampled set to
satisfy P(y = 1 | s = 1) ≈ P(y = 1 | s = 0) ≈ α for a
predetermined ratio of positive decisions α ∈ [0, 1].
Detector We adopted the same detector as the COMPAS
data experiment, who refers to the WD as the bias detection
metric.
Result We repeated the experiment 100 times by randomly
changing the data splitting, and summarized the resultsf for
logistic regression in Figure 5.3.9 As the baseline, we com-
puted the DP and the WD for randomly sampled 2, 000 sam-
pled records from D, which is denoted as Baseline in the
figure. Similar to the results of COMPAS, the figures again
show the clear success of the stealthily biased sampling (R1,
R2, and R3).

6 Conclusion

We assessed the risk of malicious decision-makers who try
to deceive auditing tools, by investigating the detectability
of the decision-maker’s fraud. We specifically put our fo-
cus on an auditing tool that computes a fairness metric. To
assess the (un)detectability of the fraud, we considered the
biased sampling attack, where the decision-maker publishes

9Here, we measured the WD on P(x). The WD on P(x | s = 1)
and P(x | s = 0) can be found in the full version (Fukuchi, Hara,
and Maehara 2019). The results for random forest can be found
also in the full version (Fukuchi, Hara, and Maehara 2019).

a benchmark dataset as the evidence of his or her fairness.
In this study, we demonstrated the undetectability by explic-
itly constructing an algorithm, the stealthily based sampling,
that can deliberately construct a fair benchmark dataset. To
derive the algorithm, we formulated the sampling problem
as a Wasserstein distance minimization, which we reduced
to a minimum-cost flow problem for efficient computation.
We then showed that the fraud made by the stealthily based
sampling is indeed difficult to detect both theoretically and
empirically.

A recent study of (Aı̈vodji et al. 2019) has shown that ma-
licious decision-makers can rationalize their unfair decisions
by generating seemingly fair explanations, which indicates
that an explanation will not be effective for certifying fair-
nesses. Our results indicate that passing the auditing tools
will not be sufficient as the evidence of the fairness as well.
Assessing the validity of other auditing tools and mecha-
nisms against malicious decision-makers would be essential.

Lastly, in this study, we revealed the difficulty of detect-
ing decision-maker’s fraud. While auditing tools are getting
popular, we will need additional social mechanisms that cer-
tify the reported results of these tools. We hope that our
study opens up new research directions for practical social
mechanisms that can certify fairnesses.
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