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Abstract

Problem solving is one of the most important 21st century
skills. However, effectively coaching young students in prob-
lem solving is challenging because teachers must continu-
ously monitor their cognitive and affective states, and make
real-time pedagogical interventions to maximize their learn-
ing outcomes. It is an even more challenging task in social en-
vironments with limited human coaching resources. To lessen
the cognitive load on a teacher and enable affect-sensitive in-
telligent tutoring, many researchers have investigated auto-
mated cognitive and affective detection methods. However,
most of the studies use culturally-sensitive indices of affect
that are prone to social editing such as facial expressions,
and only few studies have explored involuntary dynamic be-
havioral signals such as gross body movements. In addition,
most current methods rely on expensive labelled data from
trained annotators for supervised learning. In this paper, we
explore a semi-supervised learning framework that can learn
low-dimensional representations of involuntary dynamic be-
havioral signals (mainly gross-body movements) from a mod-
est number of short time series segments. Experiments on a
real-world dataset reveal a significant advantage of these rep-
resentations in discriminating cognitive disequilibrium and
flow, as compared to traditional complexity measures from
dynamical systems literature, and demonstrate their potential
in transferring learned models to previously unseen subjects.

1 Introduction

One of the fundamental goals of education is to transform
students into mature problem solvers who are able to over-
come the inherent uncertainty of problems, failed attempts
and impasses. For young children, solving challenging non-
routine math problems emulates the real life challenges they
will encounter later in their lives. Different from routine
math exercises (e.g. back-of-chapter exercises), non-routine
problems may not have immediate solutions, and thus re-
quire innovative thinking, and may often invite a child to
ride an ”emotional roller-coaster” as the student advances
through various stages of problem solving (Chen et al.
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2016). Problem solving is a complex affective and cogni-
tive process replete with states of cognitive disequilibrium
manifested by a mixture of confusion, frustration, indeci-
siveness or struggle, as well as states of flow (Csikszentmi-
halyi 2013) when one is (or at least is feeling of) moving
forward smoothly. The cognitive disequilibrium triggered by
conflicts and contradictions in these problem solving pro-
cesses can be beneficial for learning only if appropriately
regulated and resolved (D’Mello and Graesser 2014) (Fa-
cilitative Confusion Hypothesis), which may be challenging
for an inexperienced problem solver whose self-regulation
and problem solving skills are in their nascent stages.

Therefore, effectively coaching young students requires
teachers to continuously monitor their cognitive and affec-
tive states and make real time pedagogical decisions such as
when to intervene and how best to do so, especially in so-
cial environments with low teacher-student ratios and with
limited coaching resources available for each student. More-
over, teachers also have to effectively handle the high cog-
nitive loads of monitoring a diverse cohort students vary-
ing significantly in their perception of academic self-efficacy
and ability to use of self-regulated learning strategies (Zim-
merman and Martinez-Pons 1990). Intelligent Tutoring Sys-
tems that attempt to teach problem-solving also face similar
challenges. To lessen the cognitive load of teachers and also
to improve the effectiveness of intelligent tutoring, we envi-
sion a decision support system which can monitor the cogni-
tive and affective states of multiple students simultaneously
in real time. The focus of this paper is on the state detection
capability of such a system, specifically needed to discrimi-
nate between cognitive disequilibrium (CD) and flow states,
which are the critical inputs to inform appropriate subse-
quent interventions.

In this work, we investigate a method designed to dis-
criminate between CD and flow using involuntary behav-
ioral signals that are less prone to social editing, including
head and eye movement, which can be non-invasively col-
lected using inexpensive sensors such as cameras. To over-
come limited supply of labeled data, while taking advantage
of the large supply of unlabeled data, we explore a semi-
supervised approach where deep embedding features are de-
rived from unlabeled time series segments, which are then
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fed into a supervised learning algorithm. We compare these
deep features with a set of baseline complexity measures dis-
cussed in dynamical systems literature and note significant
improvement in predictive power. Furthermore, our experi-
ments confirm that our semi-supervised model performs rea-
sonably well even with very limited amount of data.

The rest of the paper is organized as follows. Section 2
provides background of our study by discussing its motiva-
tion and relation to prior work. Section 3 describes the data
collection, methodology, and experiments in detail. Sec-
tion 4 discusses experimental results, and Section 5 explores
their implications. We conclude the paper and present av-
enues of future work in Section 6.

2 Background and Related Work

Cognitive Disequilibrium and Flow in Problem
Solving

In the last few years, the research community has shown
keen interest in the affective and cognitive dimensions of
learning (D’Mello 2013). Studies such as (D’Mello and
Graesser 2014) have shown that children may get confused
when they are unsure of how to proceed or face challenging
impasses. They may also get frustrated when they repeat-
edly make mistakes or important goals are blocked (Kapoor,
Burleson, and Picard 2007). At the same time, students may
also experience delight when they achieve their goals by
overcoming problems or enter a flow state of intense engage-
ment when the learning goals as well as problem solving
paths are clear, and they find an appropriate balance between
skills and challenge (Csikszentmihalyi 2013).

In the practice of problem solving education, a teacher
would be broadly interested in two cognitive states of the
student: (1) Cognitive Disequilibrium, characterized by con-
fusion, frustration and indecisiveness, and (2) the Flow state,
characterized by smooth progression toward the goals. In
this paper, we only consider two distinct and broad cogni-
tive states of primary interest to teachers, and therefore we
also attribute positive emotions such as curiosity and hap-
piness to the flow state, and pose the problem of detecting
cognitive states of a student as a binary classification prob-
lem. (D’Mello 2013) previously found that flow, confusion
and boredom were the most frequent affective states found
in studies employing learning with technology, in support of
our choice of the cognitive-affective states to consider.

Automated Detection of Cognitive-Affective States

The problem of identifying cognitive and affective states of
students is challenging since these states are loosely-defined
psychological constructs embedded in extremely context-
sensitive environments (D’Mello and Kory 2015). Many
studies have investigated the possibility of detecting affec-
tive states automatically, primarily in the context of Intel-
ligent Tutoring Systems. For instance, (Joseph 2005) pro-
posed Engagement Tracing to detect the engagement lev-
els of students based on audit logs from an intelligent tu-
tor. Later, (McDaniel et al. 2007) investigated the relation-
ship between facial features and emotions such as confu-
sion, frustration and delight, and found important patterns in

the way that learners communicate their emotions through
their faces. Most recent literature on affective and cognitive
computing has focused on the use of multimodal features.
These multimodal affect classifiers have also been shown
to be consistently better than their unimodal counterparts
(D’Mello and Kory 2012). (D’Mello and Graesser 2012)
in their affect-sensitive AutoTutor combined decisions from
conversational cues, gross body language and facial feature
tracking in order to track the affective and cognitive states
of students. (Hussain et al. 2011) used multi-channel physi-
ological signals such as heart-activity, skin conductivity and
respiration to detect the learner’s affective states during their
interaction with AutoTutor. While many of these classifiers
have achieved impressive performance, one major limita-
tion is their reliance on data from expensive and intrusive
sensors to monitor body posture (Body Posture Manage-
ment System), electrocardiogram (ECG), etc. The expense
of these sensors coupled with their intrusive nature pre-
clude their deployment at scale, in common classrooms, and
in less developed communities. Furthermore, many studies
have used facial expressions and vocal features as indica-
tors of affect (Camras and Shutter 2010). While facial ex-
pressions are widely considered as a language of emotion
(Ekman 1994), many studies such as (Kilbride and Yarc-
zower 1983) have highlighted that culture and ethnicity may
influence the recognition of emotion by facial expressions.
Furthermore, most affective classifiers are trained using su-
pervised machine learning and require a sufficient supply of
labeled “ground-truth” data from experts and self-reports.
Obtaining labeled data free from cultural, reference (Heine
et al. 2002) and social desirability (Krosnick 1999) is very
hard. In such a scenario, unsupervised representation learn-
ing methods may be handy, since they do not require training
data and may learn useful features. We illustrate the feasibil-
ity of semi-supervised models in the cognitive state detec-
tion pipeline through our experiments later in the paper.

The Expressive Power of Gross Body Movements

Many researchers have investigated the role of facial expres-
sions, speech patterns and physiological responses, as in-
dices of cognitive and affective states. (D’Mello, Dale, and
Graesser 2012) also pointed out that owing to the numer-
ous degrees of freedom, the human body is a potentially
ideal affective communication channel. However, only few
studies have focused on gross-body movements as predictors
of cognitive and affective states, which is surprising due to
the embodied nature of affect and cognition (D’Mello, Dale,
and Graesser 2012). Gross-body movements are promising
predictors of cognitive states because they are mostly invol-
untary and therefore less prone to social editing in com-
parison to vocal and facial features. In addition, the hu-
man body owing to its large number of degrees of freedom
forms a rich affective communication channel (D’Mello,
Dale, and Graesser 2012). Existing research utilizing gross
body movements as an index of affect, has mostly focused
on gestures and specific postures (Coulson 2004), and re-
lied on expensive sensors such as Body Posture Measure-
ment Systems (DMello et al. 2008), which are hard to de-
ploy at large scales in practice. A few years ago, (D’Mello,

421



Dale, and Graesser 2012) established that body fluctuations
in the normal state of mind (cognitive equilibrium) are char-
acterized by correlated pink noise, and underwent whitening
when their participants experienced states of cognitive dis-
equilibrium. Inspired by the findings, we hypothesized that
states of cognitive disequilibrium and flow differ in the com-
plexity of the gross body movement signals. By considering
gross body movements in addition to facial action units in
the form of time series (rather than raw video logs), we en-
sure that our features are not only privacy-preserving, but
also involuntary and therefore less susceptible to social edit-
ing. Moreover to the best of our knowledge, no existing work
has been able to demonstrate the influence of culture & eth-
nicity on gross body movements.

3 Data and Methodology

Data Collection and Pre-processing

Our experiments are based on a dataset collected in one-
to-one coaching scenarios for math problem solving. Seven
children within eight to twelve years of age and their par-
ents were recruited from a local community. Parents were
asked to record videos (using a web camera) and pencast
videos (using a Livescribe Smartpen) of their children solv-
ing a math problem. The cohort comprised of three girls,
four boys (two girls were siblings) and their parents (two fa-
thers and four mothers). The dataset consisted of 36 sessions
having a cumulative duration of 307 minutes, with a mean
duration of 7.9 minutes per session.

A number of features were extracted from the dataset
along the visual and writing channels. Visual features such
as Facial Action Units (FAUs), head and eye gaze orienta-
tions were extracted using OpenFace (Baltrušaitis, Robin-
son, and Morency 2016) at a sampling frequency of 30 Hz.
We computed the first and second order derivatives of all vi-
sual features with the exception of Facial Action Units using
NumPy’s gradient function which approximates the gradient
of an array using second order accurate central differences
in the interior points and second-order accurate one sides in
the end points. The writing speed was estimated from Live-
scribe Echo Smartpen by computing the cumulative distance
covered by the tip of the pen and thereafter measuring the
change in the “amount of ink” collected in a trailing win-
dow of two seconds. The final sets of features used in our
study are listed in Table 1.

Ground Truth Labels

In order to validate our results, we annotated non-
overlapping 10-second time series segments for states of
cognitive disequilibrium or flow. We use those annotations
as a proxy for ”ground truth” that teachers would rely on in
real time decision making. 20% of the video segments from
each child were annotated by two independent annotators1.
Each annotator labeled a ten-second window within a ses-
sion based on the “perceived” cognitive state of the child,
as cognitive disequilibrium (1), neutral (2), flow (3) or off-
task behavior (-1). The rest of the data was then labeled by

1The first and second authors of the paper. The second author
has considerable experience in annotating similar datasets.

one annotator, after a satisfactory inter-rater consensus was
reached with Cohen’s kappa greater than 0.5.

The choice of 10-second windows was inspired by litera-
ture where a number of studies such as (D’Mello, Dale, and
Graesser 2012) used fixed size windows for annotating af-
fect. The choice of the window size was also driven by the
fact that complexity measures such as Higuchi Fractal Di-
mension expect stationary time series as input, and while 10s
windows (300 time steps at 30 frames-per-second video) are
short enough to be considered stationary, they also include
sufficient number of time steps to accurately compute the
complexity measures. In our experiments, we only used time
series segments labeled as cognitive disequilibrium and flow
since both the annotators had substantial agreement (average
Cohen’s kappa = 0.6). From a total of 3532 time series seg-
ments, we could only use 2483 time series segments for our
analysis. The remaining segments were shorter than 10s, too
short for computing complexity measures.

Measures of Time Series Complexity

Measures of time series complexity were developed to dis-
tinguish regular, chaotic and random behavior. Measures
such as Higuchi Fractal Dimension, Approximate Entropy,
etc. have been widely used in bio-medical signal process-
ing applications such as electroencephalographic time series
analysis (Esteller et al. 2001) and psychology (Pincus and
Goldberger 1994).

In their seminal work, (D’Mello, Dale, and Graesser
2012) found that fluctuations in gross body movements in
states of cognitive equilibrium are characterized by corre-
lated pink noise, and undergo whitening when students ex-
perience cognitive disequilibrium. White noise is character-
istic of random systems having no long or short term cor-
relations between observations, whereas pink noise exhibits
both long and short term correlations (D’Mello, Dale, and
Graesser 2012). Inspired by those results and the success
of complexity measures in analyzing physiological time se-
ries (Kantz, Kurths, and Mayer-Kress 2012), we hypothesize
that states of cognitive disequilibrium and flow may differ in
complexity.

Numerous time series complexity measures have been
proposed, but in our study we consider the following six
most widely used: Approximate Entropy (Pincus 1991),
Sample Entropy (Richman and Moorman 2000), Spectral
Entropy (Powell and Percival 1979), Permutation Entropy
(Bandt and Pompe 2002), Katz Fractal Dimension (Esteller
et al. 2001), and Higuchi Fractal Dimension (Higuchi 1988).

In order to test our hypothesis, we conducted the two-
sample Kolmogorov-Smirnov (K-S) test which compares
the empirical distribution functions of two samples under
the null hypothesis that both are drawn from the same un-
derlying distribution. We carried out a total of 48 univari-
ate two-sample K-S tests, one for each combination of 8
features (gaze vel X, gaze vel Y, gaze acc X, gaze acc Y,
head vel T, head vel R, head acc T, head acc R) and 6
complexity measures. The two samples for the test were the

2198 segments for Cognitive disequilibrium and 158 for flow
3128 segments for Cognitive disequilibrium and 120 for flow
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Features Description Derivation from OpenFace features

FAUs Indicate the presence or absence of 18
Facial Action Units

AU01 c, AU02 c, AU04 c, AU05 c, AU06 c, AU07 c,
AU09 c, AU10 c, AU12 c, AU14 c, AU15 c, AU17 c,
AU20 c, AU23 c, AU25 c, AU26 c, AU28 c, AU45 c

gaze vel X Velocity of eye gaze along X-axis (gaze angle x)′
gaze vel Y Velocity of eye gaze along Y-axis (gaze angle y)′
gaze acc X Acceleration of eye gaze along X-axis (gaze vel Y)′
gaze acc Y Acceleration of eye gaze along Y-axis (gaze vel Y)′

head vel T Translational velocity of head
√

(pose Tx)′2 + (pose Ty)′2 + (pose Tz)′2

head vel R Rotational velocity of head
√

(pose Rx)′2 + (pose Ry)′2 + (pose Rz)′2

head acc T Translational acceleration of head
√

(pose Tx)′′2 + (pose Ty)′′2 + (pose Tz)′′2

head acc R Rotational acceleration of head
√

(pose Rx)′′2 + (pose Ry)′′2 + (pose Rz)′′2
writing speed Speed of writing -

Table 1: Features used in the study. X are features returned by OpenFace. (X)′ and (X)′′ are their first and second derivatives.

Figure 1: Composition of the i-th layer of the network
(Franceschi, Dieuleveut, and Jaggi 2019).

states of cognitive disequilibrium and flow. We also carried
out a randomization test (with 1000 runs) and computed the
K-S statistics (D) by randomly permuting cognitive state la-
bels. The results of our experiments are discussed in detail
in Section 4.

Deep Feature Embedding

The field of affective and cognitive computing relies on su-
pervised learning algorithms (D’Mello, Bosch, and Chen
2018), and is therefore heavily dependent on training data
from expert annotators or self-reports by participants of a
study. Since most advanced and powerful supervised learn-
ing algorithms require substantial amounts of training data
to learn reliable decision functions, application of affective
computing is severely limited by short supply of trained ex-
pert annotators or potentially biased self-reports. To this end,
we investigated the utility of an unsupervised representa-
tion learning model proposed by (Franceschi, Dieuleveut,
and Jaggi 2019), which can be trained on a large amount
of unlabeled data to learn potentially useful feature rep-
resentations. By automatically learning useful features for
classifying raw data, representation learning algorithms re-
place manual feature engineering and allow systems to
identify potential discriminators and use them to support
a specific predictive task. Very few studies have focused
on unsupervised representation learning for time series and
(Franceschi, Dieuleveut, and Jaggi 2019) is amongst the
few general-purpose representation learning algorithms for
time series without any structural assumptions on non-
temporal data. Their model can learn representations from
multivariate time series segments of varying lengths in a

completely unsupervised fashion using a triplet loss func-
tion coupled with time-based negative sampling. The model
(Figure 1) comprises of a deep neural network with dilated
causal convolutions to handle time series (Oord et al. 2016).
This model minimizes an unsupervised triplet loss function
which assigns similar time series proximate embeddings
based on the assumption that they occur in temporal proxim-
ity while a distant subseries chosen at random (from either
the same time series or a different one) is likely to be dis-
similar. Therefore, for a reference time subseries xref , the
paper chooses one of its own subseries as the positive exam-
ple xpos and another randomly chosen subseries xneg as the
negative example. In order to improve the convergence and
the stability of the training procedure, the model chooses
multiple negative samples independently. The training ob-
jective of the model is given by the following equation:

C = −log
(
σ
(
f
(
xref , θ

)T
f
(
xpos, θ

)))−
K∑

k=1

log
(
σ
(
f
(
xref , θ

)T
f
(
xneg
k , θ

)))
(1)

where f(., θ) is a deep network with parameters θ and σ is
the sigmoid function.

The unsupervised representation learning model was
trained on 248 time series segments each having 27 features
(refer Table 1) over 300 time steps. The unsupervised model
returns embeddings of a fixed and pre-determined shape.
We trained our models for 4 different output dimensions
of (64, 1), (128, 1), (256, 1) and (512, 1) respectively, and
found that the model with 64 features performed compara-
bly to more complex ones in the classification task, and we
chose to use 64-dimensional embeddings as our featuriza-
tion.

Using these output embeddings as feature vectors and
manually annotated labels, we trained a random forest clas-
sifier to predict the cognitive state (Flow or Cognitive Dis-
equilibrium) of a time series segment. We chose random
forests because they are able to learn non-linear and complex
decision boundaries, work well with high-dimensional data
and can be robust to outliers. The unsupervised representa-
tion learning model coupled with a random forest classifier
can function as a semi-supervised model, where the former
learns embeddings (features) from a large number of time
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Figure 2: ECDFs of Approximate Entropy (AppEn) values
of Gaze velocity in CD (red) & Flow (blue). While CD has
slightly lower complexity than flow, this difference is not
obvious in regions of low complexity.

series segments in a completely unsupervised fashion, and
the latter uses these features and a limited number of anno-
tations to learn a decision function. Such a semi-supervised
paradigm can be extremely useful in practice of affective
computing, where obtaining vast amounts of unlabeled data
is extremely easy, but its annotation can be expensive.

4 Results

Analysis of Time Series Complexity Measures

The results of K-S and randomization tests are illustrated
in Table 2. It can be clearly seen that the distributions of
complexity measures of gaze velocity significantly differ
across states of Cognitive Disequilibrium and Flow. Further-
more, distributions of Approximate and Sample Entropies of
all behavioural features yielded significant differences be-
tween the two states. In order to investigate the directionality
of the difference i.e. to answer whether behavioral signals
in Cognitive Disequilibrium resulted in higher complexity
than Flow or vice versa, we plotted the Empirical Cumu-
lative Distribution Functions (ECDFs) for each complexity
measure-feature pair which had a significant difference (Fig-
ure 2). The plots reveal that it is much more likely to ob-
serve lower complexity values in CD than in Flow. These
results are in contrast to the findings of (D’Mello, Dale, and
Graesser 2012), which suggested that cognitive disequilib-
rium is correlated with a whitening of gross-body movement
signals. Since whitening of a signal adds to its complexity,
then gross body signals in Cognitive Disequilibrium should
have higher complexity. However, our results (for instance
Figure 2) consistently suggest otherwise. Inspired by these
statistical results, we investigate the utility of complexity
measures from a multivariate point of view in predicting CD
and Flow.

Deep Feature Embedding Results

Figure 3 is a 3-dimensional UMAP (McInnes, Healy, and
Melville 2018) visualization of deep features (embeddings)
returned by the unsupervised representation learning model.
Subplots A and B represent embeddings of baseline non-
personalized features and are colored by labels and subjects

respectively. As shown, the deep features group the data
points into two separate clusters and in most cases the same
subjects belongs to the same cluster. In other words, it seems
that the deep embeddings have learned mostly the between-
subject difference rather than the discrimination between la-
bels. Subplots C and D are results from embedding learned
from personalized features (i.e. features for a given sub-
ject are normalized using mean and standard deviation of
the same subject aggregated across all sessions). As a re-
sult, the post-personalization features remove the between-
subject variation and thus force the embeddings to learn
something different, as can be seen from subplot D. It is
however not obvious from subplot C whether the embedding
is able to discriminate between labels due to its high dimen-
sional feature space and possibly non-linear decision bound-
ary, which motivates us to feed the embedding results into
powerful classifier such as random forest for further evalu-
ation. The next section presents results from these experi-
ments.

Predictive Utility of Deep Features Embedding and
Complexity Measures: Multivariate View

We conducted experiments to compare predictive utility of
time series complexity measures and deep embedding fea-
tures by feeding the two different features sets into ran-
dom forest classifiers. We choose random forest for illus-
tration as one a popular model type capable of learning
complex non-linear decision boundaries. In order to test
the utility of feature personalization/normalization, we com-
pared the performance of the model using personalized and
non-personalized features for both complexity measures and
deep embedding features. In addition, we conducted three
types of experiments given the hierarchical structure of the
data: one subject has multiple sessions (one session is one
child solving one problem) and one session has multiple

Figure 3: 3D visualization of Deep Feature Embedding:
(A) non-personalized features version colored by labels; (B)
non-personalized features version colored by subjects; (C)
personalized features version colored by labels; (D) person-
alized features version colored by subjects.
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Gaze Velocity Gaze Acceleration Head Velocity Head Acceleration
Complexity Measures X Y X Y Translational Rotational Translational Rotational
Approximate Entropy 0.278 0.155 0.243 0.243 0.172 0.231 0.167 0.200

Higuchi Fractal Dimension 0.140 0.208 0.119 0.119 0.122 0.141 0.071 0.114
Katz Fractal Dimension 0.176 0.128 0.085 0.085 0.182 0.230 0.151 0.222

Permutation Entropy 0.215 0.218 0.283 0.283 0.119 0.082 0.077 0.079
Sample Entropy 0.259 0.166 0.178 0.178 0.177 0.224 0.190 0.210
Spectral Entropy 0.136 0.196 0.157 0.157 0.174 0.133 0.119 0.278

Table 2: Kolmogorov-Smirnov statistics. Values in bold indicate statistically significant differences at 5% significance levels.
All these values also had empirical p-values < 0.05 resulting from the randomization test. The distribution of complexity
measures of gaze velocity differs significantly across states of Cognitive Disequilibrium and Flow.

Features Deep Complexity
Non-personalized Personalized Non-personalized Personalized

Experiments Random LOPO Random LOPO Random LOPO Random LOPO
Precision 0.83 (0.037) 0.81 (0.063) 0.82 (0.035) 0.78 (0.083) 0.74 (0.062) 0.61 (0.099) 0.71 (0.030) 0.69 (0.143)

Recall 0.82 (0.04) 0.7 (0.111) 0.8 (0.050) 0.61 (0.159) 0.71 (0.070) 0.5 (0.138) 0.71 (0.033) 0.59 (0.143)
F1 0.82 (0.04) 0.71 (0.092) 0.8 (0.050) 0.61 (0.137) 0.71 (0.071) 0.48 (0.127) 0.71 (0.033) 0.60 (0.135)

Accuracy 0.82 (0.04) 0.7 (0.111) 0.8 (0.050) 0.61 (0.158) 0.71 (0.070) 0.5 (0.137) 0.71 (0.033) 0.59 (0.143)
AUC 0.83 (0.052) 0.79 (0.058) 0.8 (0.051) 0.74 (0.143) 0.72 (0.056) 0.43 (0.177) 0.71 (0.034) 0.55 (0.133)

Table 3: Performance comparison of deep feature embeddings vs. complexity measures, personalized vs. non-personalized
feature sets in Random and LOPO experiments.

time series segments. The first type of experiment (“Ran-
dom”) makes a random split between train and test sets4,
ignoring the grouping structures. This type of experiment
could yield inflated algorithm performance as the informa-
tion from the same session and the same subject may appear
in both the training and testing sets, allowing the model to
succeed by hooking-onto personal characteristics of some
distinct subjects. The second type of experiment is con-
ducted by leaving one session out (“LOSO”) where the test
set contains all data from one session (thus the same sub-
ject). This setup illustrates a “warm start” where we have
data from all other subjects in addition to data from the same
test subject, but from different sessions than the left-out
test session. The last type is leave-one person(subject)-out
(“LOPO”), which represents a “cold start” scenario where
the model is trying to predict for a completely unseen sub-
ject. Due to varying degrees of information sharing between
training and test set, we expect the performance will degrade
from the upper bound case of random split, to LOSO and to
the most conservative (but of most practical utility) LOPO
experiments. Figure 4 shows the Area Under Receiver Op-
erating Characteristic Curve (AUC) scores under various ex-
perimental conditions, comparing the effect of feature per-
sonalization and utility of deep embedding features versus
baseline complexity features. The left panel shows the re-
sults from non-personalized features while right panel are
those with personalized features. There are several interest-
ing findings:

• Effect of experiment conditions: We observe a downward
trend for both deep features and complexity measures
from random split to Leave-One-Person-Out (LOPO,
“cold start” condition), suggesting that the supervised
model can be trapped to overfit on subject’s specifics;

4Random split results are reported over 5-folds of cross valida-
tion throughout the paper.

• Effect of deep embeddings and complexity features: As
shown, deep features seem to have a clear advantage in
predictive utility over complexity measures. This advan-
tage is more prominent with non-personalized feature set;

• Effect of feature personalization: With complexity mea-
sures, personalization shows slight improvement from the
non-personalized ones across all experiment conditions.
With deep embedding features, it is interesting to note
that the performance does not drop as significantly as in
non-personalized version. In fact, the LOPO scores reveal
a level of performance comparable with the random split
evaluation with non-personalized features.
Table 3 presents detailed performance metrics (Precision,

Recall, F1 score, Accuracy and Area Under ROC Curve)
under different experiment conditions, generally consistent
with data in Figure 4.

Towards Semi-supervised Learning: How Much
Supervision is Necessary?

We conducted sensitivity analysis to demonstrate the utility
of unsupervised embedding in the prediction task. In these
set of experiments, we fixed the held-out test set, varied the
size of the training set and reported the performance of our
semi-supervised approach accordingly. For brevity, we only
present results using non-personalized deep embedding fea-
tures with random split and leave-one-person-out (LOPO)
evaluation. As shown in Figure 5, the model was able to
achieve reasonable performance even with limited amount
of supervision. For random split, the performance drop is
more prominent however within reasonable range. For the
leave one person out (LOPO) condition, the performance is
robust even with very limited amount of labeled data.

Comparison with Deep Supervised Learning

We also compared the performance of our semi-supervised
model with ResNet (He et al. 2016). (Fawaz et al. 2019) in
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a recent and comprehensive survey found that ResNet can
significantly outperform other deep learning approaches in
classifying time series on the UCR/UEA and MTS archives.
In addition, they found encouraging results (comparable pre-
dictive performance and significantly less training & testing
time) while comparing ResNet to other state-of-the-art time
series classification algorithms such as HIVE-COTE (Lines,
Taylor, and Bagnall 2016).

Semi-supervised Supervised (ResNet)
Experiments Random LOPO Random LOPO

Precision 0.83 (0.037) 0.81 (0.063) 0.81 (0.016) 0.77 (0.074)
Recall 0.82 (0.04) 0.7 (0.111) 0.81 (0.023) 0.78 (0.071)

F1 0.82 (0.04) 0.71 (0.092) 0.81 (0.024) 0.77 (0.069)
Accuracy 0.82 (0.04) 0.7 (0.111) 0.81 (0.022) 0.78 (0.072)

AUC 0.83 (0.052) 0.79 (0.058) 0.8 (0.016) 0.73 (0.081)

Table 4: Performance comparison of semi-supervised-model
& ResNet.

Table 4 compares ResNet and the deep semi-supervised
model introduced above on several performance metrics. For
brevity, we only use the non-personalized feature set for two
types of experiments: random split and leave-one-person-
out. The results reveal that while ResNet achieved higher
accuracy (0.78%) in the LOPO experiments, there was no
significant difference (within 95% confidence interval) be-
tween the models in terms of AUC in both evaluation sce-

Figure 4: Area Under ROC Curve (AUC) with 95% confi-
dence interval, varying experimental conditions, feature pe-
nalization choices and featurization techniques (deep em-
bedding vs. complexity measures).

Figure 5: Area Under Curves (AUCs) with varying amount
of training data, comparing random split and LOPO experi-
ments.

narios.

5 Discussion

In this paper, we explored a semi-supervised framework
to model the dynamics of involuntary behavioral signals
collected using inexpensive sensors in order to discrimi-
nate between cognitive disequilibrium and flow as the pri-
mary input for decision making by human teachers or in-
telligent tutoring systems. Experimental results with a mod-
estly sized multi-modal multi-sensor dataset, collected from
young children practicing problem solving in a naturalis-
tic environment, reveal several insights. Firstly, in compar-
ison to time series complexity measures commonly cited
in dynamical systems literature, we find that the deep fea-
ture embedding approach is able to identify plausible dis-
criminators between those two states of interest more ef-
fectively than considered alternatives, when coupled with a
random forest classifier. Secondly, we notice that this deep
representation was able to effectively generalize from train-
ing subjects to previously unseen subjects, as demonstrated
by its robust performance with leave-one-person-out exper-
iments, and the advantage is even more pronounced with
personalized features. Thirdly, sensitivity analysis with the
semi-supervised framework shows that with deep embed-
dings features, the model is able to learn effective discrimi-
nation with even a small number of labeled data points, and
the resulting performance is comparable with a potent fully
supervised deep learning alternative which often requires
large extents of supervision. When further validated with
a more diverse set of subjects, the proposed approach has
the promise to scale up practicality of the task of cognitive
and affective state detection that is often bottle-necked by
high costs of label acquisition even with abundant unlabeled
data. Practically relevant capability of generalization to un-
seen subjects is also encouraging as the proposed approach
would often be expected to work well with out-of-sample
subjects in the real world use cases.

6 Conclusion

Effective coaching of problem solving requires real time
monitoring of students’ cognitive and affective states, which
can be challenging in societal environments with limited
teaching resources. This paper tackles this challenge with
a semi-supervised framework designed for automatic detec-
tion of two critical states of students during problem solv-
ing: Cognitive Disequilibrium and Flow. The discrimination
model learns from involuntary behavioral signals that are
less prone to social editing than more common alternatives,
and that can be feasibly collected using inexpensive sensors.
We empirically demonstrated the utility of the proposed ap-
proach and shown that it could work well even with a modest
amount of data and limited supervision. When fully devel-
oped into a working system, we envision that the proposed
methodology can play a role in augmenting human teacher’s
perceptual capability in the classroom as well as in improv-
ing the effectiveness of intelligent tutoring systems.
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