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Abstract

Satellite imagery has long been an attractive data source pro-
viding a wealth of information regarding human-inhabited
areas. While high-resolution satellite images are rapidly be-
coming available, limited studies have focused on how to ex-
tract meaningful information regarding human habitation pat-
terns and economic scales from such data. We present READ,
a new approach for obtaining essential spatial representation
for any given district from high-resolution satellite imagery
based on deep neural networks. Our method combines trans-
fer learning and embedded statistics to efficiently learn the
critical spatial characteristics of arbitrary size areas and rep-
resent such characteristics in a fixed-length vector with mini-
mal information loss. Even with a small set of labels, READ
can distinguish subtle differences between rural and urban ar-
eas and infer the degree of urbanization. An extensive evalua-
tion demonstrates that the model outperforms state-of-the-art
models in predicting economic scales, such as the popula-
tion density in South Korea (R2=0.9617), and shows a high
use potential in developing countries where district-level eco-
nomic scales are unknown.

Introduction

Satellite images captured through remote sensing technol-
ogy provide useful information regarding human activities
and land covers without having to visit the region. Analyz-
ing satellite images provides new insights for establishing
policies and for understanding population-level behaviors in
districts and broader areas. Another advantage of satellite
imagery is its ability to search historical data, which can
reveal the temporal dynamics of specific locations. Several
techniques have been proposed to analyze satellite images.

Many studies measure the critical factors of socioeco-
nomic scales from satellite images, and the demand has been
rapidly increasing. For example, demographic research rep-
resents a popular application area in which scholars have
leveraged the light intensity of nighttime satellite images to
extract economic activities (Ghosh et al. 2013; Chaturvedi,
Ghosh, and Bhandari 2011; Letu et al. 2011). Nighttime
satellite images have also been used to predict the popula-
tion density of counties in the United States (Sutton et al.
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Figure 1: Methods for selecting satellite imagery of target
districts. Unlike the previous methods (Jean et al. 2016), our
neural network model can utilize all image tiles belonging to
the target. At least three points should belong to the district.
The mixed area is a mixed landscape composed of urban and
rural interaction.

1997). Although nighttime images are subject to noise, such
as saturation effects, they have shown to yield a meaningful
linear relationship between brightness and various economic
scales.

More recently, high-resolution daytime satellite imagery
has emerged as an attractive data source that could reveal
fine-grained information at an unprecedented scale. For ex-
ample, transfer learning has been used to extract socioe-
conomic indicators to create an accurate poverty map of
Uganda (Xie et al. 2016). Such research has considerable
implications for sustainable development growth in devel-
oping countries. A convolutional neural network (CNN)
has been used to predict grid cell estimates of county-level
population counts (Robinson, Hohman, and Dilkina 2017).
This work produced a high-resolution grid-shaped popula-
tion map from satellite images at a 30 arc-second resolution
(≈ 1km2). However, this method is not applicable outside
of the United States because conventional statistics are pro-
duced based on districts that can be of any polygon shape
rather than at the grid-level, which leads to a mismatch when
attempting to use satellite images.

The method proposed in this paper is inspired by the
mean-teacher model in semi-supervised learning (Tarvainen
and Valpola 2017) and the full-convolution CNN model with
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transfer learning capacity used to predict poverty (Jean et al.
2016). Our method, which is called ‘Representation Extrac-
tion over an Arbitrary District’ (READ), utilizes daytime
satellite image tiles whose three vertices belong entirely to
the polygon representing each district. This method is de-
picted in Fig. 1. As the picture demonstrates, a single dis-
trict can contain vastly different land covers such as urban
built-up, water, forest, etc. Our task is to learn these sophis-
ticated spatial features of an arbitrarily shaped district based
on high-resolution satellite images to produce a fixed-length
representation of economic scales.

The model has considerable implications for monitoring
the urbanization process not only in developing countries
but also in developed countries. Cities are rapidly evolv-
ing; however, it is far slower to detect this process, often
using decade-cycled demographic surveys. Notably, these
surveys are even extraordinarily costly and time-consuming;
our model offers a possible alternative with a reasonable
budget and time requirement. Our method can measure di-
verse urban phenomena such as urban sprawl with improved
temporal resolution.

READ is a lightweight method of measuring economic
scales from high-resolution images. The learned features are
robust to the size of the original labels. They are highly in-
formative when estimating critical economic scales, such as
population density, age, education, income, etc. We present a
comprehensive evaluation of the model based on a rich set of
data from one developed country, South Korea, and demon-
strate its potential use in a developing country, Vietnam. The
code is released at GitHub.1

Related works

Satellite images have become available for public use. These
images allow the constant monitoring of the earth and re-
veal the detailed land cover during both nighttime and day-
time, rendering them an excellent resource for the predic-
tion of human activities. Nighttime satellite images are in
a lower resolution and have been used to predict the gross
domestic product (Sutton et al. 2007; Chen and Nordhaus
2011), energy consumption (Xie and Weng 2016; Hu and
Huang 2019), epidemic fluctuations (Bharti et al. 2011), and
regional economic productivity (Doll, Muller, and Morley
2006) at the national level. In contrast, high-resolution day-
time satellite imagery can reveal detailed land appearance
over smaller areas.

Scholars have applied daytime satellite images to a CNN-
based model of the Visual Geometry Group 16 (VGG16) ar-
chitecture to predict the population density (Simonyan and
Zisserman 2015). Other scholars (Doupe et al. 2016) used
250m-resolution Landsat-7 satellite imagery as input to esti-
mate the population density of Kenya. A regression model
was used in the study, while a subsequent study (Robin-
son, Hohman, and Dilkina 2017) used a classification model
to determine the electricity use levels of the population
using US Census Summary Grids. Furthermore, This ap-
proach (Vogel et al. 2018) is used to integrate nighttime
lighting data with 30m-resolution Landsat-8 satellite images

1https://github.com/Sungwon-Han/READ

and apply machine learning techniques to detect urban mar-
kets that help capture real economic activity. The latest study
conducted by Facebook Research and Columbia University
released an online high-resolution population density map of
Africa and Asia (Lab and Center for International Earth Sci-
ence Information Network 2019). Their basic idea is to per-
form a binary classification of each satellite image that veri-
fies the existence of a building and rankings the likelihood of
an area having urban structures. While previous models had
adapted VGG for training, this new model applied residual
neural nets. This work contributed to the construction of the
gridded population of the world version 4 (University 2016),
which is known as the current state-of-the-art global popu-
lation density map.

Satellite images have also been used for poverty predic-
tion. At the national level, a previous study reported a lin-
ear relationship between nighttime lights and the percent of
the population living on $2 per day or less using the De-
fense Meteorological Satellite Program (DMSP) F-15 im-
ages (Elvidge et al. 2009). Another study predicted the in-
come level in India using developmental statistics (Pandey,
Agarwal, and Krishnan 2018). These authors trained a con-
volutional network to predict parameters and income levels.
However, the parameters utilized in this model are specific
to the country analyzed.

Deep learning methods can predict demographic infor-
mation through satellite images at the national level. The
performance of models trained using supervised learning
largely depends on the quality and number of the labeled
data (Xiao et al. 2015). This is because of the lack of la-
beled data, which makes it challenging to train deep neural
networks. A recent study proposed a novel approach to ad-
dress this deficiency by adopting two-staged transfer learn-
ing and testing a linear regression of fine-tuned feature ex-
tractors (Jean et al. 2016). However, this method is subject to
noise because the satellite images had to be randomly cho-
sen for each target area to reduce the computation overhead.
Compared to this study, the current paper proposes to uti-
lize all available images instead of sampling via its unique
lightweight structure. Our approach also enables computa-
tion over smaller and flexible geographical boundaries.

Model

We first state the problem. Let dij be the j-th satellite im-
agery of district i ∈ U , where U is the complete set of dis-
tricts in a country. Let Di be the set of satellite imagery of
district i. Since districts can be of any shape and size, the
number of satellite images in Di varies from one district
to another. We define this number for district i as ni, i.e.,
dij ∈ Di where 1 ≤ j ≤ ni. Then, the main problem is
defined as follows:

Problem: Given an image set Di of district i, can we
extract fixed-sized (s) representations ri (i.e., ri ∈ Rs

of any district i) and predict yi the attribute of interest
in the district i?

In Fig. 1, this would be equivalent to extracting a represen-
tation and predicting the related attributes of a district given
its complete set of satellite image tiles.
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Figure 2: Our model operates in four steps: (step1) training
embedding via semi-supervised learning and transfer learn-
ing, (step2) data pruning, (step3) dimensionality reduction,
and (step4) calculating the embedded spatial statistics and
conducting regression for validation.

Training embedding via semi-supervised learning
and transfer learning

Network learning with supervision was used to extract
meaningful information from satellite imagery. We con-
structed a labeled custom dataset (C) that includes 1,000
randomly selected satellite images and employed the fol-
lowing three labels, which are directly related to economic
scales: urban, rural, and uninhabited. We hired four anno-
tators to obtain the labels of the images. We integrated the
decisions of all annotators as soft labels (i.e., average votes),
which were then used to build a classifier that divides satel-
lite images into three classes. However, obtaining reliable
labels for each satellite image tile was a time-consuming
task. Here, a key challenge was the relatively small number
of labeled data, which was addressed by adapting a semi-
supervised learning approach.

Semi-supervised learning trains classifiers baesed on a
combination of a small amount of labeled data and a large
amount of unlabeled data. Mean Teacher (Tarvainen and
Valpola 2017), which is a powerful model in this domain,
utilizes unlabeled data to penalize predictions that are incon-
sistent between the student and teacher models. This regu-
larization technique can provide smoothing in the decision
boundary for a robust and accurate forecast. We used the
Mean Teacher architecture with the ResNet18 backbone for
training, where the loss for a labeled and unlabeled dataset
is as follows:

Llabeled = −
∑

i∈label

ỹi log f(d)i

Lunlabeled = ‖f(d)− f̃(d)‖22
Ltotal = Llabeled + w(t)× Lunlabeled

, where ỹ is the ground truth class probability (i.e., rural, ur-
ban, and uninhabited), f is the student mode we aim to op-

timize, and f̃ is the teacher model whose weight follows the
exponential moving average of the student model. The total
loss is the sum of two losses, and we increase the weight of
the unlabeled loss from 0 to 12.5 during the first 40 epochs.

Transfer learning is another powerful approach to over-
coming small data. The knowledge transferred from a sim-
ilar but larger labeled dataset can efficiently help tune a
model with a small labeled dataset (Yosinski et al. 2014;
Oliver et al. 2018). In addition to semi-supervised learning,
we concurrently adopted transfer learning by first pretrain-
ing the CNN model with the ImageNet dataset (Deng et al.
2009) and then using the pretrained model as an initial stu-
dent network in the Mean Teacher model.

We used 1,000-sample labeled data and 22,577-example
unlabeled data and apportioned the labeled data into the train
and test sets by an 80-20 split. The model achieved a 92.0%
accuracy when evaluated based on the majority-voted label
of the test set. Then, the fine-tuned model was used as the
feature extractor, replacing the final fully connected layer.
Images with large dimensions (dij ∈ R256×256×3, 256x256
pixels with an RGB band) can be reduced to relatively low
dimensional vectors (vij ∈ R512, where 512 is the size of the
final layer in ResNet18 excluding the fully connected layer).

To determine whether the classifier extracts essential fea-
tures, we visualized sample images into three-dimensional
space by reducing the embedded vectors by PCA. Fig. 3
displays the extracted features in the reduced vector space
of sample images of various urban and rural areas. Here,
the rural and urban images are separated and aligned well
in the virtual direction (i.e., red and blue arrows). Further-
more, these virtual axes represent the degree of urbanization.
The left-hand side of the picture shows two satellite image
tiles. Both tiles have rural characteristics, and the images
that seem to contain a smaller human population are posi-
tioned further toward the blue arrow (i.e., tile “2” seems less
urbanized than tile “1”). The image tiles on the right-hand
side contain capture more populated areas. Tiles “3” and “4”
that are toward the end of the red arrow show a highly ur-
banized cityscape, whereas tiles “1” and “2” contain fewer
residential areas. This figure demonstrates the strength of
our model in its ability to learn high-level features and align
satellite images along these virtual axes.

Data pruning

According to the Global Rural-Urban Mapping Project,
only 3% of the land cover is an urban area, and approxi-
mately 40% of the land over is an agricultural area (Doxsey-
Whitfield et al. 2015; Foley et al. 2005). The remaining un-
inhabited area accounts for the largest portion of the earth.
Since such regions do not show human artifacts, they could
act as noise when extracting representations related to hu-
man activities. We built a CNN classifier by filtering areas
that are probably uninhabited. For the training, we reused a
custom dataset that included 1,000 randomly selected satel-
lite images. Three annotators labeled the images as either
inhabited or uninhabited, and their majority votes were used
as the ground truth labels. This process labeled 53.9% of the
images as inhabited, and the remaining 46.1% of the images
were labeled uninhabited.
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Figure 3: Embedded space analysis shows that rural images (blue) are well separated from more urban images (red). For the
blue cluster, as we observe images from anchor points 1 to 2, the de-urbanization trend becomes more pronounced. In contrast,
for the red cluster, as we observe images from anchor points 1 to 4, the degree of urbanization becomes more intense.

The CNN classifier included the pretrained ResNet18
model with the ImageNet dataset. The dataset was ran-
domly shuffled and split into a training set (80% of the data)
and a test set (20%). The model was trained to minimize
cross-entropy loss for binary classification. Stochastic gra-
dient descent was used to reduce the loss term, and data-
augmentation methods, such as rotating or flipping figures,
were used to increase the amount of training data. As a re-
sult, the classifier achieved 95.5% accuracy in the test set.
We removed all images that were labeled uninhabited from
each district. Of the initial 96,131 images, 51,618 (53.702%)
images were removed in this manner.

Dimensionality reduction of embedding

The next step reduced the 512 dimensions from the final
layer in ResNet18 into smaller sizes. Since our goal is to
predict attributes of interest yi and obtain a unique repre-
sentation from a pruned image set D̂i across districts (i.e.,
n=230 administrative districts), we aimed to produce a di-
mension size vi smaller than the number of districts n to
avoid overfitting. We implemented a principal component
analysis (PCA) to reduce the dimensions of the embedded
features vi, which appears in the center of Fig. 2.

PCA is nonparametric and does not require a parameter
tuning process. PCA uses orthogonal linear transformations
of the original vectors to extract principal components with
the maximum variance. A sufficient number of principal
components should explain most of the variance in the data
while efficiently reducing dimensions. To determine this
number (k), we investigated how each new principal vec-
tor explained much variance. The trend shows that the first
four components explain approximately 80% of the variance
and that additional gains rapidly become marginal. After the
10th component, the gain is less than 0.5% of the total vari-
ance. We consider up to the first ten principal components
for the dimensionality reduction, i.e., k (1 ≤ k ≤ 10).

Presenting the embedded spatial statistics

This final step addresses the challenge arising from the
varying input size in which a different number of image
tiles define districts. Previous studies in a different domain
have attempted to address such arbitrary input length prob-

lems via preprocessing techniques, such as adding sequence
padding or recurrent neural network-based learning (Yang
et al. 2016; Hochreiter and Schmidhuber 1997). However,
these methods cannot resolve the substantial differences in
input lengths that are typical in demographic research. The
smallest district could be covered by fewer than ten image
tiles, whereas the largest district requires more than hun-
dreds of tiles, resulting in orders of magnitude difference.

We present a technique to summarize any length of image
features into a fixed set of vectors. Let g be the composition
of the fine tuned feature extractor and k (1 ≤ k ≤ 10) be
the resulting principal components. All images dij in D̂i are
transformed to v′j ∈ Rk by g. Let the matrix of the final
embedded vectors from district i be Ri ∈ Rni×k.

To produce a fixed-length embedding from vast geo-
graphic areas, we propose to utilize the following descrip-
tive statistics: (i) the mean μ, (ii) the standard deviation σ,
(iii) the number of satellite images of a district n, and (iv)
Pearson’s correlation of the dimensionally reduced features
ρ. These four quantities are fundamental embedded spa-
tial statistics capturing the observation that satellite images
of areas with geo-proximity exhibit similar traits. Descrip-
tive statistics represent data by central tendency (mean, me-
dian, and mode), dispersion (variance, standard deviation,
and skewness), and association (chi-square and correlation).
The proposed quantities are descriptive statistics represent-
ing satellite images that belong to the same district.

Fig. 4 displays the feature vectors of the satellite images
of five districts over a 3-dimensional space. Two rural dis-
tricts appearing on the left-hand side exhibit a similar em-
bedding space, whereas the three districts on the right-hand
side exhibit different embedding spaces. Densely urbanized
areas (red dots) have high variances (y-axis) and high mean
values (z-axis) in the figure. In contrast, vast rural areas,
which are denoted by blue or light blue dots, have compara-
tively low variances and low mean values (z-axis). The im-
ages on the right-hand side were chosen from a new district
town that has a mixture of rural and urban areas and reports
its embedded space in ‘mixed’ (yellow dots). The satellite
images belonging to this mixed district indeed possess sta-
tistical characteristics intermediate between urban and rural.
Similar to these examples, areas with distinct characteristics
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Figure 4: Embedding examples: (a) two rural areas show
similar traits on the reduced dimensions; (b) semi-urban ar-
eas (marked as mixed) possess both traits of rural and urban
areas.

have different statistical values; thus, the summarized fea-
tures can reflect the characteristics of districts.

Finally, cross-products of features were added to consider
interactions to enrich the information regarding unknown
embedded space distributions. These complete sets of fea-
tures were learned per district i, as illustrated in the bottom
part of Fig. 2 and became a fixed-sized representation ri. To
predict the yi value for district i, we used ri to fit a regressor.

Data

This study utilizes the following data: regional-level demo-
graphics and high-resolution satellite imagery. Both data
types from many developed countries are accessible via the
REST APIs of Esri R©ArcGIS, a famous repository of maps
and geographic (Johnston et al. 2001). We chose South Ko-
rea as a representative developed country for training the
model. Then, among all available satellite images of South
Korea, we further identified those in which at least three ver-
tices of an image tile belong to the polygon representing
the boundaries of each district, as illustrated in Fig. 1. This
heuristic is simple but reasonable for addressing various
polygon shapes. In total, 96,131 satellite images (256x256
pixels) of 230 South Korean districts were collected in this
manner. The utilization of all image tiles per district distin-
guishes our work from those of others, c.f., previous studies
used a fixed set of satellite images; – for example, a semi-
nal study conducted in African countries used 100 randomly
chosen images tiles over 10x10km2 areas (Jean et al. 2016).

Satellite imagery data

The World Imagery satellite data captured by DigitalGlobe
provides 256x256-pixel image tiles over a wide range of
zoom levels, Z (0∼18). While a single increment in the
zoom level enlarges the area within both the vertical and
horizontal directions, the overall number of pixels maintains
the same size. Hence, the resolution becomes double, and
the coverage becomes quarter per increment.

The highest freely available resolution is 0.6m-resolution,
which is Z=18. However, under such resolution, image an-
notation becomes challenging because of the small spatial

Table 1: Example of demographic attributes
Category Variable ID Description

Population density Population per square kilometer
Age 0-14 Population density by age 0-14

15-29 Population density by age 15-29
30-44 Population density by age 30-44
45-59 Population density by age 45-59
60+ Population density by age 60+

Education nodegree Population density by no degree
elementary Population density by elementary school
middle Population density by middle school

... ...
phd Population density by Ph.D. degree

Household count Household count per square kilometer
size Average household size

Income total Total purchasing power per household
capita Purchasing power per capita

coverage of each image tile. Moreover, the size of district
data increases exponentially, leading to computation over-
head in training the model. In contrast, choosing a zoom
level below 15 results in poor performance because one im-
age tile may contain multiple districts. The smallest district
in data spans 2.8km2, which cannot be distinguished at a
zoom level 14. We chose the zoom level of 15 with 4.7m-
resolution, which allows for the identification of large ob-
jects that cover more than 5x5m2. For example, we can start
to recognize buildings and roads but not the cars on the street
at Z=15. Each image covers approximately 1.4km2, which
is considered appropriate for observing human settlements
in the previous research (Jean et al. 2016) using a satellite
image of coverage 1km2.

Demographics data

The Esri Demographics by Michael Bauer Research GmbH
provides 2018 demographics data and the boundary poly-
gon shapes of districts in 135 countries. For South Korea,
the following data types were available: Population, Age,
Education, Household, and Income. The population density
and 27 other demographics measured per capita were used
as representative ground truth data in this paper. Table 1 dis-
plays example demographic fields and their descriptions.

Results

Performance evaluation and ablation study

We conduct a set of experiments. The first evaluation takes
advantage of the population demographics by dividing these
data into a training set and a test set in an 80%–20% ratio. 4-
fold cross-validation is applied to the training data set to tune
the model’s hyperparameters, such as the PCA dimensions
and the regularization term in the cost function.

We implemented eight baselines to evaluate. Nightlight
uses the total light intensity of the districts from nighttime
satellite imagery to predict economic scales (Bagan and Ya-
magata 2015). A regressor was built and trained to obtain
the sum of nightlights in each district. Then, Auto-Encoder
extracts compact features as step2 on our model. An autoen-
coder is an unsupervised deep learning algorithm that does
not need any label information. The model aims to learn an
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approximate identity function to construct an output that is
similar to the input while limiting the number of hidden lay-
ers. No-Proxy is identical to the proposed model but lacks
any knowledge transfer from the proxy dataset. This model
was pretrained only with the ImageNet dataset and, hence,
can demonstrate the value of the custom dataset.

To verify the effectiveness of READ compared to a well-
known model (Xie et al. 2016), we trained JMOP (Jean
Model with Our Proxy) which is a combination of two mod-
els. First, we use a proxy which is predicting for rural, ur-
ban, and inhabited classes in the same method of READ.
Then, we summarize the features and use them to predict
with an identical set of model (Xie et al. 2016). Finally,
SOTA is the best known grid-based approach for population
density prediction (Lab and Center for International Earth
Science Information Network 2019). The implementation
details of this model are not published, but the prediction
results on each arc-second block (approximately 30x30m2)
are shared online. We could aggregate the published grid-
level data across districts and regress such data with ground
truth statistics. The four remaining baselines are ablation
studies that remove each feature from READ.

Table 2: Baseline results and ablation study. Performance
comparison on predicting population density by READ and
eight baselines.

Model MSE R-Squared

Nightlight 0.4254±0.0664 0.6133±0.0635
Auto-Encoder 1.6242±0.3445 0.6347±0.0823
No-Proxy 0.2800±0.1118 0.7359±0.1117
JMOP 0.4448±0.0998 0.8985±0.0253
SOTA - 0.9231

READ w/o μ 0.2612±0.0632 0.9429±0.0155
READ w/o ρ 0.2165±0.0596 0.9527±0.0140
READ w/o n 0.1921±0.0471 0.9579±0.0119
READ w/o σ 0.1902±0.0592 0.9586±0.0130
READ 0.1761±0.0383 0.9617±0.0090

All models were trained with an 80%-20% train-test ratio
and 4-fold cross-validation. XGBoost (Chen and Guestrin
2016) was used to enhance prediction accuracy. The mod-
els were evaluated 20 times with a randomly split dataset.
Table 2 reports the mean and standard deviation of the pre-
diction performances. READ outperforms all of the nine
baselines in both the R-squared (R2) and mean squared er-
ror (MSE) values. Our model even outperforms the cur-
rent state-of-the-art (SOTA) approach, which is (Lab and
Center for International Earth Science Information Network
2019). We find that transfer learning from the custom la-
beled dataset helps produce a more meaningful embedded,
by distilling knowledge associated with urban and rural clas-
sifications. This finding is demonstrated by the increased
prediction quality against two models: No-Proxy and Auto-
Encoder. Furthermore, the quality gain over JMOP indicates
that the summarizing technique of READ contributes mas-
sively to the performance gain. The ablation study shows
that removing any of the descriptive statistics lowered the
performance, indicating that n, μ, ρ, and σ all make a mean-

ingful contribution.

Comparisons of architecture alternatives

Subsequently, we tested alternative design choices. First, we
considered the following networks as the backbone CNNs:
1) DenseNet121, a densely connected convolutional network
that connects each layer to each other layer in a feed-forward
fashion (Huang et al. 2017); 2) AlexNet, an 8 layer net-
work that won the ImageNet challenge 2012 (Krizhevsky,
Sutskever, and Hinton 2012); and 3) VGG16, a 16 layer
very deep convolutional network (Simonyan and Zisser-
man 2014). These options were compared to our choice of
ResNet18 (He et al. 2016). Using ResNet18 as the back-
bone CNN was found to yield the highest R2 value, which is
demonstrated in Table 3. The difference, however, remains
in the range between 0.021 and 0.0253.

Table 3: Comparison across different backbone networks.
Model ResNet18 DenseNet121 AlexNet VGG16
R2 0.9617 0.9337 0.9364 0.9407

We also apply the following regressors: 1) XG-
Boost (Chen and Guestrin 2016); 2) Ridge and Lasso as
linear models with different regularization terms; 3) Ran-
dom Forest (RFT) as a widely used ensemble model; and 4)
Gradient Boosting Tree (GBT) as an ensemble model with
boosting that nullifies overfitting. Fig. 5 shows the predic-
tion accuracy as a function of the dimension size. The Lasso
and Ridge regression showed a decreasing performance over
the component count after four components in the case of
Ridge and six components in the case of Lasso regression.
These results are likely due to high dimensional input fea-
tures and the lack of effective regularization in those mod-
els. In contrast to these methods, XGBoost, Random Forest,
and Gradient Boosting Tree were resistant to overfitting, and
XGBoost achieved the best performance in our model.

Figure 5: Prediction performances by the number of PCA
components.

Evaluation over broader scales and countries

The final evaluation reports predictions of a complete set of
economic scales by READ. All values are log-scaled, and
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XGBoost is used. The average R2 of 20 trials of prediction
of the study area is shown in Table 4. The third column rep-
resents READ applied to South Korea to predict the popu-
lation density and its subclass divided by age very precisely
(R2 ¿ 0.95). In the income category, the purchasing power
per capita (capita) is predicted by R2 as 0.7603. Finally, two
demographics in the household category show an extreme
difference in their prediction quality. While the household
count per square kilometer (count) reports the highest R2 of
0.9664, the average household size (size) reports the lowest
R2, i.e., 0.6181, among the economic scales.

Table 4: Prediction performances of economic scales for
South Korea and Vietnam.

Category Variable ID South Korea Vietnam

Population density 0.9617 0.8863
Age 0-14 0.9520 0.8756

15-29 0.9570 0.8791
30-44 0.9575 0.8881
45-59 0.9624 0.8804
60+ 0.9654 0.8731

Household count 0.9664 0.8896
size 0.6181 0.4460

Income capita 0.7603 0.6822

The high prediction capability of READ may be due to the
custom dataset, which was built from the same country (see
step1 in Fig. 2). To test its applicability, we gathered a total
of 226,305 satellite images along with economic scale data
from another country, Vietnam. Then, we applied the model
learned from South Korea to predict the economic scales of
Vietnam. Surprisingly, READ achieved a high R2 value of
0.8863 in predicting the population density in Vietnam, even
when it was trained solely on data from a different country.

The above finding demonstrates that the learned spatial
representation of READ successfully captures general in-
dicators of socioeconomic scales that extend beyond a sin-
gle country use. It may be that Asian countries exhibit sim-
ilar pathways in economic growth and demographic tran-
sition (McNicoll 2006). Interestingly, we also note a sub-
stantial difference in the prediction quality of specific de-
mographic attributes between the two countries. For exam-
ple, the highest R2 value in the age category is found in
the ‘60+’ group in South Korea (0.9654) but in the ‘30-44’
group in Vietnam (0.8881), which might have been affected
by the concentration of the elderly population in rural ar-
eas in South Korea due to demographic transition and rural-
urban migration. In contrast, a more substantial younger
population is known to live in rural areas in Vietnam (UN-
data 2019), compared to South Korea.

Finally, as another way to quantify how much gain build-
ing a custom labeled dataset of land covers contribute to the
model, we conducted another experiment. We additionally
built a custom labeled dataset for Vietnam by hiring two lo-
cal annotators and obtained the land cover labels for 1,000
randomly selected images. We used this customized dataset
to retrain the entire model. However, building a customized
dataset for Vietnam only led to a marginal gain in predic-

tions. The prediction of population density improved to the
R2 value of 0.8876. We expect that the minimal performance
gain from building a custom dataset for Vietnam data is due
to the quality of satellite images. Unlike in the case of South
Korea, many satellite images of the region available from
ArcGIS contained clouds, even after applying a cloud filter.

Discussion & Conclusion

This paper proposed a novel model that efficiently limits the
number of dimensions via transfer learning to summarize
any number of satellite images. The final spatial representa-
tion, which is a fixed-length embedded vector, can be used to
estimate the socioeconomic growth of urban and rural areas
at the district level. This method could benefit developing
countries lacking the much-needed infrastructure to monitor
their rapid urbanization process closely. Utilizing all of the
high-resolution daytime satellite images, without restraining
the model to handle random samples as in previous work,
led to the substantial performance gain. Our approach can
be widely applied by national and regional governments to
estimate economic scales, such as the age and purchasing of
district-level populations. Below, we discuss two potential
application domains of READ.

Revealing sub-district level scales

While we present the results of district-level predictions, the
proposed method predicts attributes over smaller levels, i.e.,
satellite image tiles. The potential to utilize such micro-level
inference is magnificent. READ not only distinguishes ur-
ban and rural areas, as demonstrated in Fig.6, but also cap-
tures the fine-grained layout of land cover. The rural area
depicted in the figure indicates that the degree of urbaniza-
tion is not even across the district and that the regions il-
lustrated in white color, in particular, lack urban infrastruc-
ture. Such fine-grained demographic information could be
highly valuable in helping answer questions, such as “which
areas of the city are growing the fastest or the slowest?”
and “which areas outside the city lack critical infrastructure,
such as roads?” that could have been answered, otherwise,
via expensive offline surveys. Our technique, READ, can
sufficiently summarize the high-resolution satellite imagery
to benefit neighborhood-level demographic research.

Figure 6: A single district often comprises multiple neigh-
borhoods of different economic scales. READ naturally
models such small-scale variations.
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Application to measure urban sprawl

Cities are overgrowing worldwide, and this urbanization
process is sometimes faster than the development of the nec-
essary infrastructure needed for the urban population. This
problem of tracking rapid urban growth, which is called ur-
ban sprawl (Ewing, Pendall, and Chen 2002), has been chal-
lenging due to the lack of data, particularly in rapidly evolv-
ing developing countries. We show with an example that ap-
plying READ over historical data can help better understand
urban sprawls.

Fig. 7 displays the embedded feature vectors of satellite
images on the reduced dimensions of one district at different
times over a 3-dimensional space. By comparing the embed-
ded feature vectors of the same region in (a) 2010, (b) 2015,
and (c) 2018, we observe different types of vector space. The
densely urbanized area (c) is diffusing in the x-axis direc-
tion. However, the less developed area (a) is spreading along
the z-axis. Our finding indicates the change in a particular
area that is relatively fast-growing over time. Detecting the
changes in a specific region is recognized as an essential as-
pect of implementing policy to improve the quality of the
local economic activity.

Figure 7: READ can be used to compare the evolution of the
same district over multiple years. This given district exhib-
ited mostly rural features in 2010, but its visual composition
changed to contain a mix of urban and rural features towards
2018.

Limitations & Future work

This work has several limitations. First, the application of
our model will be affected by the urbanization patterns and
the quality of satellite imagery. Although we confirmed a
high R2 value in Vietnam for the model trained from South
Korea data, such high applicability may be due to both
countries showing similar patterns of urbanization, partic-
ularly in terms of building shapes (Iimi 2005). The architec-
tural similarity may have contributed to the consistent per-
formance over a new country, even though the model was
solely trained using another country’s data. Nonetheless, we
emphasize that land cover labels considered in the current
paper (i.e., rural, urban, and uninhabited) are general. The
model, therefore, is not specific to describing particular re-
gional characteristics such as agriculture or mining. In the

future, we plan to consider other benchmark data from vastly
different cultural backgrounds. Second, our model utilizes
only freely available data. Currently, rich geospatial data de-
scribing the elevation of surfaces such as buildings, vegeta-
tion, and other human artifacts, are becoming available, e.g.,
the Digital Surface Model (DSM) data. While DSM data
is costly to obtain, future studies may incorporate alterna-
tive datasets to advance characterizing urban agglomerations
further. Finally, our approach lacks interpretability. Due to
the black-box nature of the deep learning model utilized,
the model cannot determine which image feature most con-
tributes to urbanization. We aim to enhance interpretability
by adopting explainable structures, such as grad-CAM (Sel-
varaju et al. 2017).
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