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Abstract

The “No Free Lunch” theorem states that for any algorithm,
elevated performance over one class of problems is offset by
its performance over another. Stated differently, no algorithm
works for everything. Instead, designing effective algorithms
often means exploiting prior knowledge of data relationships
specific to a given problem. This “unreasonable efficacy” is
especially desirable for complex and seemingly intractable
problems in the natural sciences. One such area that is rife
with the need for better algorithms is cancer biology—a field
where relatively few insights are being generated from rela-
tively large amounts of data. In part, this is due to the inability
of mere statistics to reflect cancer as a genetic evolutionary
process—one that involves cells actively mutating in order to
navigate host barriers, outcompete neighboring cells, and ex-
pand spatially.
Our work is built upon the central proposition that the Markov
Decision Process (MDP) can better represent the process by
which cancer arises and progresses. More specifically, by en-
coding a cancer cell’s complex behavior as a MDP, we seek
to model the series of genetic changes, or evolutionary tra-
jectory, that leads to cancer as an optimal decision process.
We posit that using an Inverse Reinforcement Learning (IRL)
approach will enable us to reverse engineer an optimal policy
and reward function based on a set of “expert demonstrations”
extracted from the DNA of patient tumors. The inferred re-
ward function and optimal policy can subsequently be used to
extrapolate the evolutionary trajectory of any tumor. Here, we
introduce a Bayesian nonparametric IRL model (PUR-IRL)
where the number of reward functions is a priori unbounded
in order to account for uncertainty in cancer data, i.e., the ex-
istence of latent trajectories and non-uniform sampling. We
show that PUR-IRL is “unreasonably effective” in gaining
interpretable and intuitive insights about cancer progression
from high-dimensional genome data.

1 Introduction

In the follow up survey paper (Halevy, Norvig, and Pereira
2009) to ”The Unreasonable Effectiveness of Mathematics
in the Natural Sciences” (Wigner 1960) it was argued that
solving the most complex AI problems require embracing
the unreasonable effectiveness of data. That is, solving the
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world’s most challenging problems requires we take advan-
tage of the complex structure and relationships inherent in
real-world data. This important insight has already been in-
tuited by AI communities working in computer vision and
natural language processing, resulting in improved AI solu-
tions (Li et al. 2019; Wang and Wan 2018). Unfortunately,
the majority of cancer research exemplifies what happens
when one does the opposite and uses statistical approaches
that assume no meaningful structure exists in cancer data.
Historically, this occurred because there was no algorithmic
means to account for the complexities inherent to cancer and
because our understanding of cancer as a complex process
was lacking. Here, we demonstrate the impact of consider-
ing the underlying biological processes of cancer evolution
into the algorithmic design of tools for studying cancer pro-
gression. More specifically, we argue that Inverse Reinforce-
ment Learning (IRL) is an unreasonably effective algorithm
for gaining interpretable and intuitive insight about cancer
progression because of its ability to take advantage of prior
knowledge about the structure and source of its input data.

In support of this, we implement the Pop-Up Restau-
rant for Inverse Reinforcement Learning (PUR-IRL)
approach—a Bayesian nonparametric IRL model that takes
advantage of relationships between events in seemingly dis-
parate data sources by allowing for the inference of multi-
ple reward functions from non-uniformly sampled data. In
testing PUR-IRL on real-world data from colorectal cancer
(CRC) patients, we verify its ability to infer a series of mu-
tational events, or an evolutionary trajectory, that broadly
matches those arrived at by CRC experts through the cu-
ration of a variety of multi-omics and experimental data
sources. Furthermore, we show that PUR-IRL can accom-
plish this with data taken from a mere tens of patients and
that this outperforms frequency-based statistical approaches
that are commonly used in cancer research. Our experimen-
tal results show that PUR-IRL can correctly identify the
number of distinct experts, the reward function and optimal
policy of each expert, and remain robust in classification un-
der various data sampling conditions. Tested on GridWorld,
PUR-IRL achieved an F1-score of 0.9328 and 0.90331 under
uniform and non-uniform sampling conditions, respectively.
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2 Motivation

Cancer is a complex decision-making process. It is a
population dynamic process whereby choices are made
through the sequential accumulation of advantageous ge-
netic changes—i.e., evolution. Long mimicked computa-
tionally (Koza 1992), evolution represents an optimization
process whereby success is rewarded and failure is erased.
From the myopic viewpoint of a single cell in the human
body, success means survival and replication. These are the
two evolutionary forces that bias a normal healthy cell to-
wards a state of uncontrolled growth that is typically asso-
ciated with cancer. Fortunately, a cell’s evolution to cancer
does not happen overnight. There exist a complex genetic
and regulatory maze of barriers that prevent cells from be-
coming cancerous. This is why humans, for the most part,
do not get cancer in the earlier part of their lives. Only after
the evolutionary game has played out a large multitude of
times (i.e. through many cellular replications), do the major-
ity of humans eventually succumb to cancer. Indeed, cancer
progression is a more nuanced process, enabled by the ac-
quisition of genetic mutations that allow for a cell to gradu-
ally overcome human-host defense mechanisms. In essence,
expert navigation is required by cancer in order to evade the
immune system, overgrow neighboring cells, and expand be-
yond the normal spatial compartments.

In order to truly conquer cancer for future patients, we
need to understand how cancer overcomes our host-defenses
from a unified mechanistic perspective. Myriad observa-
tional studies have taught us that we cannot merely wait for
the same thing to happen twice because no two cancers are
exactly alike. They occur in patients with different genetic
backgrounds and accumulate different genetic alterations.
Yet, despite these differences, they are unified by similar
mechanisms or types of genetic changes. In other words,
there are multiple etiological paths tied together by spe-
cific events that share commonality in their causal mecha-
nism. Understanding these common mechanisms will enable
the development of better therapies and preventative mea-
sures. It will also enable improved prediction of recurrence
and metastatic advancement of cancer, directly impacting
the 606,880 annual cancer deaths in the United States alone
(Siegel, Miller, and Jemal 2019).

Our work is motivated by the multiple parallels between
inverse reinforcement learning (IRL) algorithms and can-
cer evolution. First, reinforcement learning allows us to en-
code the complex behavior of an independent agent as a
Markov Decision Process (MDP). If an agent is known to
behave ‘optimally’, as can be assumed for cancer, there ex-
ists an optimal policy and an underlying reward function.
This reward function structures the space of possible poli-
cies that make up the solutions to the MDP and are ca-
pable of reflecting the multifaceted nature of cancer. Sec-
ondly, by extending Markov chains with the addition of ‘ac-
tions’ and ‘rewards’ to model choice and indicate prefer-
ence, the MDP becomes suitable for modeling sequential
decision-making processes. The use of a finite state-action
space within a stochastic environment makes MDP an in-
terpretable modeling paradigm for encoding the genetic al-
terations that take place within a large, combinatorial event

space. Third, the probabilistic nature of the MDP allows us
to cope with imperfect data. Randomness in cancer data is
both intrinsic to the stochastic nature of the evolutionary
process as well as extrinsically imposed by the ethical lim-
itations and practice-based trade-offs of medicine. For ex-
ample, one can often only sample piecemeal from tumor
sections that are not needed for clinical purposes, therefore
biasing the sampling procedure. In addition, there are ethi-
cal bounds to observing the progression of a tumor or pre-
cursor lesion when excision and/or treatment are in the best
interests of the patient. A probabilistic approach to reason-
ing about uncertainty can be taken during the IRL process
in order to account for demonstrated behavior that is prone
to noise (Ziebart et al. 2008), data that may have been col-
lected from multiple agents (Choi and Kim 2012), or any
other uncertainty that may still exist due to the structure and
source of the observed optimal decision process. Fourth, the
IRL problem reduces to recovering a reward function that in-
duces the demonstrated behavior with a search algorithm to
enforce consistency among the state-action pairs observed
in the expert demonstrations. Once the latent reward func-
tion describing the explicit values of various state and ac-
tion pairs, and optimal policy defining the general (non-
surjective and non-injective) mapping from states to actions
are inferred, implicit causal relationships encoded within
the data can be extrapolated for subsequent predictive and
mechanistic modeling tasks. By assuming the near-optimal
behavior of cancer, the reward weights of this reward func-
tion can be inferred from examples of the agent’s behavior
using IRL (Abbeel and Ng 2004). This has the added advan-
tage of closely matching how cancer data needs to be used
in real-world applications, since one cannot ethically watch
cancer progress unchecked in a patient without immediate
intervention. For these reasons, IRL closely parallels both
the nature of the underlying evolutionary process and re-
alities of the cancer data, making IRL ideal for modeling
cancer as a complex decision-making process. The success-
ful prevention and treatment of cancer (Burrell et al. 2013;
Schwartz and Schäffer 2017) requires that we distill knowl-
edge from ambiguous and problematic data, without direct
experimental validation or a gold-standard. The solutions
provided need to be mappable to biological mechanisms,
i.e., biologically interpretable. Finally, the algorithm must
be both computable and accurate. Because there is no direct
validation possible, these must be shown for simulated data.
In this paper, we use real and simulated data to demonstrate
that

• Reward functions resolve some of the inherent problems
with tumor data, mainly, tumor heterogeneity.

• PUR-IRL usefully captures uncertainties within the can-
cer data and arrives at biologically relevant conclusions.

• PUR-IRL allows for incremental integration of new in-
formation through iterative updates, thereby turning one
large intractable problem into a series of tractable ones.

• PUR-IRL accurately infers optimal policies and latent re-
ward functions given a set of expert demonstrations.
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3 Methods

3.1 Data Pre-processing

Raw Data Generation. Whole genome sequencing
(WGS) was performed on samples from a previously de-
scribed study (Hale et al. 2018a; 2018b) In brief, sam-
ples consist of normal and tumor tissue pairs from 27 pa-
tients. Sequencing was performed using the BGISEQ-500
(2x100bp kit, 3̃0x) and data reads were mapped to human
reference genome GRCh38 with decoy sequences (Li and
Durbin 2009). Somatic mutations and indels were deter-
mined by comparing tumor samples with normal samples
using MuTect2 and subsequently filtered using FilterMutect-
Calls from the Genome Analysis Toolkit (GATK) (DePristo
et al. 2011). Aneuploidy and somatic copy number alter-
ations were determined using Titan (Ha et al. 2014) and used
to infer sample purity. Variant annotation was performed us-
ing SNPeff (Cingolani et al. 2012). Data available upon re-
quest.

Extracting expert demonstrations of cancer progression
from patient tumors. Tumors are comprised of multiple
genetically diverse subclonal populations of cells, each har-
boring distinct mutations. While different subclones can ap-
pear distinct, prior knowledge tells us that they are related
to one another through the process of evolution, i.e., the
sequential acquisition of random mutations (Valastyan and
Weinberg 2011). Using this prior knowledge, the evolution-
ary relationship between these subclonal populations can be
described in a series of linear and branching evolutionary
expansions and modeled as a phylogenetic tree. One can as-
sume that a cancer cell, which may exist as one of N sub-
clones, has undergone a sequence of alterations that serve to
maximize a set of rewards (i.e., growth and survival) within
a competitive environment where the neighboring cancer
subpopulations are competing for resources (Valastyan and
Weinberg 2011; Schwartz and Schäffer 2017). The distinct
sequence of subclones visited while traversing down from
the root node down to a leaf node of a tumor’s phyloge-
netic tree (Fig. 1D) can be considered a path or expert-
demonstration of a cancer subclone’s optimal behavior and
serve as the input to the PUR-IRL algorithm.

In other words, the cells present from the tumor are the
result of competition and selection. Cancer cells that under-
went alterations that do not provide a competitive advantage
will be outcompeted. These sub-optimal cells will likely not
survive nor be observed in the tumor biopsy. Conversely, the
most abundant cancer cells found in tumor can be consid-
ered the winners of the evolutionary game by having col-
lected a combination of mutations beneficial to replication
and population expansion—the properties of cancer. If all
cancer cells within a tumor can be identified as correspond-
ing to one of only a finite number of subclone profiles (out
of millions of possibilities), we know that the sequence of
actions displayed by all cells with the same subclone profile
were optimal for the survival and growth of that tumor.

The field of tumor phylogenetics encompasses a variety of
techniques focused on the problem of subclonal reconstruc-
tion (Schwartz and Schäffer 2017; El-Kebir et al. 2015). The
primary focus of such algorithms has been the deconvolu-
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Figure 1: Tracking Tumor Evolution and Reconstructing a
Model of Clonal Architecture. Figure 1A-1B: Illustration of
a biopsy sample from patient colon tumor. Figure 1C: A
model of clonal evolution based on the median values for
the VAFs from each inferred subclonal population. Figure
1D: Representative phylogenetic tree of clonal architecture
based on biopsy sample.

tion of genomic data from an observed tumor into its con-
stituent subclones. In general, we are not given the somatic
mutations for each tumor subclone. Instead, we have to in-
fer these based on the variant allele fractions (VAFs) from
bulk sequencing, i.e., the sum of mutations from all sub-
clones within that sample. These subclonal mutations are
then used to determine the phylogenetic relationships be-
tween subclones. However, these techniques have two key
limitations. First, they almost never produce a unique solu-
tion. That is, for any set of genomic data extracted from a
tumor, there will typically exist multiple, equally valid solu-
tions (phylogenetic trees) (Deshwar et al. 2015). Secondly,
these techniques do not provide a framework for uniting
disparate observations from separate tumors into a general
model for understanding the drivers of carcinogenesis.

IRL methods such as PUR-IRL embrace the combinato-
rial explosion of paths by which each subclonal population
of cancer cells may have developed by trying to unite under a
single optimal policy specifying the ’general rules’ by which
cancer progresses and a reward function elucidating how the
set of diverse set of state-action pairs observed across sub-
clonal demonstrations are related.

3.2 Pop-Up Restaurant Process for Inverse
Reinforcement Learning

Overview of IRL. Inverse Reinforcement Learning (IRL)
infers an environment’s reward function given observa-
tions of an optimally-behaving agent (Abbeel and Ng 2004;
Ng and Russell 2000). Such problems can be modeled using
a mathematical framework for sequential decision-making
known as the Markov Decision Process (MDP). This model
is defined in terms of a set of states S; a set of actions A;
a stochastic transition distribution P (st+1|at, st), describ-
ing the probability of outcomes following the execution of
an action at in state st; and a reward function R(st, at).
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Given an MDP\R, inverse reinforcement learning identi-
fies a reward function R under which π∗ matches the paths
ζ = {ζ1, ζ2, ..., ζM}, where ζi is a sequence of state-action
pairs ζi = {(si,0, ai,0), (si,1, ai,1), ..., (si,T , ai,T )}. In many
cases, this observed behavior can be given explicitly as an
optimal policy π∗ or as a set of sample paths generated by
an agent following π∗.

PUR-IRL:Embracing Uncertainty during IRL. Here,
we describe a general-purpose and data-agnostic algorithm
called the Pop-Up Restaurant Process for Inverse Reinforce-
ment Learning (PUR-IRL) which can infer multiple latent
reward functions from a set of expert demonstrations and
use these to adapt the MDP architecture in order to inte-
grate novel data types. The name of this algorithm alludes
to the periodic updating of the MDP architecture used by
the Chinese Restaurant Process (CRP). Within each peri-
odic update, a new ‘pop-up’ CRP is used for the purpose
of sampling and partitioning expert demonstrations among
K MDP’s, each of which with its own latent reward func-
tion rk. The CRP is a computationally tractable metaphor of
the Polya urn scheme (Johnson and Kotz 1977) that uses the
following analogy: consider a Chinese restaurant with an un-
bounded number of tables. An observation, xi, corresponds
to a customer entering the restaurant, and the distinct values
z∗k correspond to the tables at which customers can sit. As-
suming an initially empty restaurant, the CRP is expressed:

• With probability proportional to c
z∗
k

i−1 − d, the i-th
customer sits at the table indexed by z∗k , in which
case xi = z∗k , where c

z∗
k

i−1 denotes the total number of
customers sitting at a table with distinct value z∗k and d is
a scalar discount parameter

• With probability proportional to α+Kd, the i-th customer
sits at a new table, in which case xi ∼ H , where α is a
scalar concentration parameter , K is the total number of
tables, and H is a random probability measure.

By using the CRP, where a Bayesian nonparametric prior
represents all variables and how they relate to the data, we
can better resolve multiple probabilistic paths to cancer. In
addition, the Bayesian nature of the CRP allows us to work
naturally with the uncertainty of the underlying data as well
as the highly skewed prevalence of events and paths in can-
cer patients. By applying the CRP within the IRL paradigm,
we can learn K reward functions, as K → ∞, from a set of
data paths inferred by tumor phylogenetics.

Bayesian Nonparametric Priors in PUR-IRL. The
probabilistic approach taken by PUR-IRL is similar to a pre-
viously described Bayesian nonparametric method known as
Dirichlet Process Mixture Inverse Reinforcement Learning
(DPM-BIRL) (Choi and Kim 2012). Both methodologies
share the notion of applying a prior on each of the reward
functions r̂tk to encode preference and a likelihood to mea-
sure the compatibility of the reward function with the data,
with PUR-IRL utilizing the Pitman-Yor Process (PYP) and
an additional discount parameter d ∈ [0, 1), where d = 0
reduces the model to a Dirichlet Process. Together, α and d
control the formation of new reward functions.

A key property of any model based on Dirichlet or
Pitman-Yor processes is that the posterior distribution pro-
vides a partition of the data into clusters, without requiring
that the number of clusters be specified in advance. How-
ever, this form of Bayesian clustering imposes an implicit a
priori ”rich get richer” property, leading to partitions con-
sisting of a small number of large clusters. To combat this,
the use of discount parameter d is used to reduce the proba-
bility of adding a new observation to an existing cluster. The
PYP prior is particularly well-suited for multi-reward func-
tion IRL applications where the set of expert-demonstrations
generated by the various ground-truth reward functions may
not follow a uniform distribution. The purpose of extending
the IRL to use this stochastic process is to control the power-
law property via the discount parameter which can induce a
long-tail phenomena of a distribution.

Generative Model. In PUR-IRL, the likelihood is de-
fined as an exponential distribution that utilizes the optimal
Q-function computed using reward function r̂ and an in-
verse temperature parameter η that governs the exploration-
exploitation tradeoff (small η > 0 represents large noise, all
actions are equally probable; large η represents small noise
and more greedy policy):

P (ζ|r̂, η) =
M∏

m=1

N∏
n=1

P (acm,n|scm,nr̂, η) (1)

=

M∏
m=1

N∏
n=1

e(ηQ
∗(scm,n,acm,n;r̂))∑

a′ e(ηQ
∗(scm,n,a′;r̂)) (2)

The posterior distribution can then be given by Bayes’ the-

orem as
posterior

P (r̂|ζ, η, �) ∝
likelihood

P (ζ|r̂, η)
prior

P (r̂|�), where � denotes
hyperparameters for the prior distribution.

We follow the CRP metaphor where the table assignment
tcm = tk indicates that an observed path ζcm belongs to
the table tk. This indicates that the path is generated by the
agent with reward function r̂tk . Let K → ∞, given a set
of observed agent paths represented as customers entering
a restaurant ζ = {ζcm}Mcm=1 and a set of latent parame-
ters {θcm}Mcm=1, the PUR-IRL algorithm constructs a gen-
erative model in which the table tcm = tk assigned to a path
ζcm is defined by the latent parameter θcm drawn accord-
ing to the mixture model θcm |G ∼ G, where G|α,G0 ∼
CRP (α, d,G0). After the reward function r̂tk is drawn from
the prior P (r̂) =

∏F
f=1 P (rf ), the observed path ζcm is

drawn from the likelihood P (ζcm |r̂cm , η) given by (1). The
reward function can be defined as follows:

r̂ = w · γ (3)

R(s, a) =

F∑
f

wf · γf (s, a), (4)

where w : F → [0, 1] represents the weight vector sampled
from the prior and γ : S × A × F → {0, 1} denotes a
binary feature function indicating which reward features are
relevant for each state-action pair. The joint posterior of the
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restaurant’s seating arrangement �S = {tcm}Mm=1 and the set
of reward functions {r̂tk}Kk=1 is defined as follows:

P (�S, {r̂tk}Kk=1|ζ, η, α, d, �) = (5)

P (�S|α, d)
K∏

k=1

P (r̂tk |ζ�S(tk)
, η, �), (6)

where ζ�S(tk)
= {ζtcm |tcm = tk for tcm = tc1 , ..., tcM }.

Inference Procedure. To infer the latent reward functions
from a set of paths, we approximate the full posterior joint
distribution over the set of random variables via Bayesian
inference with Metropolis-Hastings MCMC (MH-MCMC)
sampling (Hastings 1970). MH-MCMC makes use of the
full joint density function and (independent) proposal dis-
tributions for each variable of interest to simulate samples
from a probability distribution. Given K unique table index
values {t1, ..., tK} in the restaurant, we can define the pos-
terior distribution for table tcm as:

P (tcm |�S\cm , {r̂tk}Kk=1, ζ, η, α, d) (7)

∝
likelihood

P (ζcm |r̂tcm , η)
prior

P (tcm |�S\cm , α, d)

P (tcm |�S\cm , α, d) ∝
{

count\cm,tcj
−d

M+α if tcm = tcj
α+Kd
M+α if tcm �= tcj ,

(8)

where �S\cm = {tci |ci �= cm for ci = c1, c2, ..., cM}, and
count\cm,tcj

is the number of paths, excluding the current
path, assigned to table tcj . Furthermore, if the sampled table
tcm for path ζcm is assigned to a new table, a new reward
function r̂tk can be drawn from the distribution:

P (r̂tk |�S, r̂\tk , ζ, η, �) ∝
likelihood

P (ζ�S(tk)
|r̂tk , η)

prior

P (r̂tk |�) (9)

Algorithm 1 PUR-IRL
Initialize S0, A0, P 0

for each pop-up i ≤ pIters do
Update MDP\R = (Si−1, Ai−1, P i−1)

Initialize restaurant seating arrangement �S and set of
reward functions {r̂tk}Kk=1 for all of its tables {tk}Kk=1
for each crp j ≤ cIters do

for each customer cm ≤ totalDemos do

t∗cm ∼ P (t|�S\cm , α, d)

if t∗cm /∈ �S\cm then

r̂t∗cm ∼ P (r̂|�)
end if
tcm = t∗cm and r̂tcm = r̂t∗cm

w.p min

{
1,

P (ζcm |r̂t∗cm ,η)

P (ζcm |r̂tcm ,η)

end for
for each table tk ≤ totalTables do

ε ∼ N (0, 1)
r̂∗tk = r̂tk + 1

2τ
2∇logf(r̂tk) + τε

r̂tk = r̂∗tk w.p min
{
1,

f(r̂∗tk )×g(r̂∗tk ,r̂tk )
f(r̂tk )×g(r̂tk ,r̂

∗
tk

)

end for
end for
Use features in {r̂tk}Kk=1 with maximum posterior-
probability to refine Si, Ai, P i

end for

Following random initialization of restaurant seating ar-
rangement and its corresponding reward functions, the PUR-
IRL algorithm begins an iterative procedure in which it per-
form two update operations. In the first update operation, the
seating arrangement �S is updated by sampling a new table
index t∗cm for each customer cm according to Equation (7).
If this new table index does not exist in the current seating
arrangement �S\cm , a new reward function is drawn from the
reward prior. In the second update operation, each reward
function r̂tk is updated by using a Langevin gradient update
rule (Choi and Kim 2012). Following the CRP, the set of
features associated with reward functions with the highest
posterior probability are used for updating the S,A, P in the
next pop-up restaurant iteration. Using the inferred optimal
policy and reward function weights to prioritize which states
and actions need to be updated, additional data sources (i.e.
external functional, clinical databases, etc.) can be incre-
mentally integrated into the MDP architecture in a tractable
manner.

4 Real-World Use Case

4.1 The Colorectal Cancer Reward Function

Prior IRL methods have been applied in settings where
reward function approximators with well-defined MDP’s
may suffice (i.e. GridWorld, route planning) (Choi and Kim
2012; Ziebart et al. 2008). We have designed an IRL exper-
iment that is significantly more challenging—namely, the
reconstruction of the evolutionary trajectories of CRC di-
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rectly from tumor WGS data. With advances in bioinfor-
matics and genomic sequencing, significant progress has
been made in our understanding of CRC as a disease with
multiple molecular subtypes (Guinney et al. 2015), dis-
tinct genetic trajectories for progression (Dickinson et al.
2015), and distinct modes of evolution (Sottoriva et al.
2015; Kim et al. 2018). This knowledge has been fueled
by large cohorts with strong statistical analyses (Guinney
et al. 2015), subclonal phylogenies (Deshwar et al. 2015;
Sottoriva et al. 2015), and expert curation (Dickinson et al.
2015; Kim et al. 2018). However, this knowledge is largely
incomplete due to the massive computational complexity of
trying to acquire, analyze and model molecular properties
across multiple scales. This poses a combinatorial problem
that is currently heavily reliant on manual expertise.

Embracing Uncertainty in the MDP Structure of Can-
cer. Defining states and actions for IRL can be treated sim-
ilarly to problems of feature representation, feature selec-
tion and feature engineering in unsupervised and supervised
learning. For cancer data, we utilize the Generalized Latent
Feature Model (GLFM) (Valera et al. 2017). Here, a state
is encoded by a binary sparse code that indicates the pres-
ence/absence of latent features, inferred via GLFM, on the
nucleotide, gene, and functional pathway level. An action
then represents a stochastic event such as a somatic muta-
tion in a specific gene. In addition to generating binary codes
which provide more interpretable latent profiles of states
and actions in the biological domain, the GLFM’s use of
a stochastic prior over infinite latent feature models allows
model complexity to be adjusted on the basis of observations
that will increase in volume and dimensionality as new data
sources are incorporated in the PUR-IRL MDP.

Our initial MDP structure consists of 1084 actions and
144 states. An action corresponds to an event occurring
at one of 1084 known ‘driver’ genes of CRC aggregated
from two public datasets (Bamford et al. 2004; Tomczak,
Czerwińska, and Wiznerowicz 2015). For example, action
aAATK
0 corresponds to a mutation event occurring within

any region of the AATK gene. The state space consists of
144 possible states composed of 12 latent features that were
inferred via the GLFM algorithm. A state is an abstract rep-
resentation that encodes features that are present internally
or externally to a cancer cell (agent). The GLFM algorithm
was used to infer these latent features from the list of al-
terations attributed to each inferred subclone. In this ex-
periment, each state is represented by a 12-dimensional bi-
nary vector indicating the presence/absence of the 12 latent
features inferred via the GLFM algorithm. Each latent fea-
ture reflects a unique frequency distribution of alterations
to genes in 14 signaling pathways associated with CRC
(Notch, Hedgehog, WNT, Chromatin Modification, Tran-
scription, DNA damage, TGFβ, MAPK, STAT-JAK, PI3K-
AKT, RAS, Cell-cycle, Apoptosis, Mismatch Repair). To in-
fer a set of latent features, each subclone must be converted
into a 14-dimensional vector indicating the count of alter-
ations attributed to each signaling pathway. This set of 14-
dimensional vectors serves as input to the GLFM algorithm.
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Figure 3: Summary results of PUR-IRL run on 27 CRC pa-
tient tumors. A) Heatmap of state/action pairs with highest
reward values; B) Optimal paths derived from reward func-
tion with highest posterior-probability; C) Schematic pre-
sentation of the correlation between genetic changes and
stages of colon cancer progression known as the ”Vogel-
gram”

Embracing Uncertainty in Tumor Subclone Expert-
Demonstrations. WGS data was used to infer the sub-
clonal composition of a tumor using a slightly modified
PhyloWGS algorithm (Deshwar et al. 2015) for efficiently
identifying multiple possible unique phylogenetic trees. In
a preliminary run of this experiment, 215,000 traversed
paths derived from phylogenetic trees generated from a
subset of (N=27) tumor samples were provided as expert-
demonstrations to the PUR-IRL algorithm; with each path
describing an ordered list of subclones within a given tu-
mor sample and represented by a corresponding sequence
of state-action pairs. The PUR-IRL model was run with 6
‘pop-up’ updates between every 100 CRP iterations.

Figure 3 summarizes the inferred reward function with
highest posterior probability from this preliminary run. Fig-
ure 3.A shows a subset of the inferred reward function across
the 27 tumor dataset. The optimal policy generated over this
reward function consists of the state-action pairs N-APC,
S13-KRAS, S7-SMAD4, highlighted in grey, pink, and red,
respectively. The actions in these pairs correspond to ge-
netic changes that are known to characterize CRC progres-
sion (Dienstmann et al. 2017) as summarized in Figure 3.C.
We compare this to the most likely paths drawn in Figure
3.B that were obtained by simulating a MDP with our new
reward function. Despite uncertainties in how our data was
generated, we were able to recapitulate an optimal path, or
evolutionary trajectory, with biologically relevant conclu-
sions which match the literature derived model of CRC pro-
gression (Fearon and Vogelstein 1990). This demonstrates
the PUR-IRL model’s ability to identify singular genetic
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Figure 4: Posterior Probability of Inferred Reward Functions
during PUR-IRL Iterations

changes that are often not the most frequent, but are nonethe-
less critical for CRC progression. In Figure 4, we analyze the
posterior probability of the inferred reward functions follow-
ing each of the 6’pop-up’updates and 100 intermediate CRP
iterations. The results of this analysis demonstrate that incre-
mental integration of new information by PUR-IRL provides
a tractable methodology for improving the reward functions
without the use of a large initial state or action-space while
still allowing for the exploration of new features.

5 PUR-IRL Performance

In order to demonstrate the PUR-IRL algorithm’s utility and
accuracy, we ran PUR-IRL on data generated by multiple ex-
perts and sampled under uniform and non-uniform sampling
conditions. Specifically, we performed three sets of exper-
iments (130 total) that evaluated the performance of PUR-
IRL on the GridWorld problem (Abbeel and Ng 2004). In
each experiment, we evaluate the IRL model under different
discount hyperparameter values {0.0, 0.3, 0.7, 1.0}, where
PUR-IRL with d = 0 reduces to the DPM-IRL. The Grid-
World is a simple deterministic world that is often used to
illustrate the basic concepts of Q-learning. It allows us to
evaluate our approach under different scenarios in which the
inference of latent reward functions can be validated using
simulated ground-truths.

We consider an 8×8 GridWorld, where each of the 64
cells corresponds to a state representing to the location of
the agent on the grid. The agent can execute one of four pos-
sible actions in order to move north, south, east or west. The
execution of an action has a 20% chance of failing and re-
sulting in a random move to one of the adjacent states. The
grid is divided into non-overlapping subregions of 2×2 cells.
A small number of the 16 subregions has a positive reward
associated with them. For each i = 1, ..., 16, there is one
feature γi(s) indicating whether the state s is in subregion i.
Thus, the rewards may be written r̂ = wT · γ. The weights
w can be sampled from a prior distribution and the initial

state drawn from a uniform distribution on the states.
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Figure 5: GridWorld Simulation Results

In the first set of experiments, the GridWorld conditions
from (Choi and Kim 2012)—3 expert demonstrations gen-
erated per expert—were amended to explicitly model 4 sce-
narios in which the number of experts is greater than or
equal to one. In each scenario, we randomly sample the
weights for the G ground-truth reward functions (experts),
{rg1 , r

g
2 , r

g
3 ...r

g
G} from a Gaussian prior and evaluate IRL

performance under uniform sampling conditions (i.e. each
expert generates the same number of paths). This experiment
was repeated 10 times for each scenario. The results of this
experiment (Fig. 5A) demonstrate that PUR-IRL and other
IRL methods that use Bayesian nonparametric priors (DPM-
IRL) can recapitulate the ground-truth reward function(s)
from data that follows the single expert assumption in ad-
dition to scenarios where the true number of data-generating
experts is unknown. As an additional sanity check, we were
able to verify that performance of PUR-IRL (d = 0) model,
which reduces the underlying PYP to a DP, mimics that of
DPM-IRL and the results found in (Choi and Kim 2012). In
the second experiment set, we randomly sample the weights
for 3 ground-truth reward functions, under 5 uniform sam-
pling conditions of increasing dataset size. Results from
this experiment (Fig. 5B) show that with an increase in the
number of paths, PUR-IRL model performance improves in
terms of the number of tables (inferred reward functions),
normalized mutual information, F1-scores and the expected
value difference (EVD) between the ground-truth reward
functions and the learned reward functions. Unsurprisingly,
the outlier model (PUR-IRL with d = 1.0) fails to improve
in performance or accurately recapitulate the true number
of reward functions (tables) due its heavy bias for fat-tail
distributions. In the final experiment set we sought to evalu-
ate IRL performance under 4 non-uniform sampling condi-
tions which closely resemble those found in real-world data
(i.e the total set of paths is distributed across 3 experts ac-
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cording to a power-law distribution). In Figure 5C, we can
see that the addition of the discount hyperparameter within
the PUR-IRL model allows us to control how well the final
model fits with input dataset and thus allowing us to exceed
performance when d = 0. Although the GridWorld MDP
does not encapsulate many of the complexities that we ad-
dress with our framework (i.e. ability to infer the number and
identity of biologically relevant states and actions from high-
dimensional data), it nevertheless demonstrates that PUR-
IRL can accurately infer optimal policies and latent reward
functions given a set of expert demonstrations under various
data scenarios likely to be found in real-world applications.

6 Discussion

In this paper, we explore the use of IRL as a viable approach
for distilling knowledge about a complex decision-making
process from ambiguous and problematic tumor data. To do
so, we introduce and evaluate the PUR-IRL algorithm and
its ability to use expert demonstrations of cancer evolution
from patient tumor WGS data. We demonstrate that by for-
malizing cancer behavior as a MDP, the state-action pairs
highlighted by the inferred reward function and optimal pol-
icy can be used to reach interpretable biological conclusions.
Furthermore, we were able to show that the incremental in-
tegration of new information through iterative MDP struc-
tural updates allows for improvements in the posterior prob-
ability of our reward function in an adaptive manner that is
amenable to new input data. Finally, we were able to reca-
pitulate ground truth reward functions from simulated expert
demonstrations using GridWorld, demonstrating PUR-IRL’s
ability to infer reward functions despite uncertainties about
the source and structure of our input data.

Cancer evolution remains one of the most important and
intractable problems in the natural sciences—one that sits
at the intersection of myriad biological disciplines rang-
ing from molecular and developmental biology to stochas-
tic processes and population dynamics. Each of these re-
search areas and their associated datasets sheds light on im-
portant pieces of the biological puzzle, but data integration
and knowledge synthesis requires a unified framework. It is
our hope that the development of unreasonably effective al-
gorithms such as PUR-IRL will advance our understanding
of the complex structure and relationships inherent in can-
cer data. Furthermore, we explicitly choose to do so using
an IRL approach that allows us to quantify the influence of
intrinsic and extrinsic factors on cancer progression while
also accounting for uncertainty. This provides a mechanistic
time-ordered event history of cancer, granting us a window
into causality using data derived from observational studies
of human tumors.

Acknowledgments. We would first like to thank the pa-
tients who volunteered for the original study. We also thank
the many other individuals who made this work possible in-
cluding members of the Mayo Clinic Microbiome Labora-
tory, study coordinators, students, colorectal surgeons, pro-
gram directors, and pathology assistants. We also specially
acknowledge the assistance of Gregory Dougherty during
software development and Dr. Lisa Boardman for her clini-

cal insight. We would like to thank the National Cancer In-
stitute (R01CA179243), the DeWitt and Curtiss families, the
Center for Individualized Medicine at Mayo Clinic for their
generous support of this work. Last but not least, Mathieu
Wiepert, Marie Kostecki, and Shamailah Lando for keeping
the high-performance computing clusters running through
our exhaustive calculations.

References

Abbeel, P., and Ng, A. Y. 2004. Apprenticeship learning
via inverse reinforcement learning. In Proceedings of the
twenty-first international conference on Machine learning,
1. ACM.
Bamford, S.; Dawson, E.; Forbes, S.; Clements, J.; Pettett,
R.; Dogan, A.; Flanagan, A.; Teague, J.; Futreal, P. A.; Strat-
ton, M. R.; et al. 2004. The cosmic (catalogue of somatic
mutations in cancer) database and website. British journal
of cancer 91(2):355.
Burrell, R. A.; McGranahan, N.; Bartek, J.; and Swanton, C.
2013. The causes and consequences of genetic heterogeneity
in cancer evolution. Nature 501(7467):338.
Choi, J., and Kim, K.-E. 2012. Nonparametric bayesian
inverse reinforcement learning for multiple reward func-
tions. In Advances in Neural Information Processing Sys-
tems, 305–313.
Cingolani, P.; Platts, A.; Coon, M.; Nguyen, T.; Wang, L.;
Land, S.; Lu, X.; and Ruden, D. 2012. A program for
annotating and predicting the effects of single nucleotide
polymorphisms, snpeff: Snps in the genome of drosophila
melanogaster strain w1118; iso-2; iso-3. Fly 6(2):80–92.
DePristo, M. A.; Banks, E.; Poplin, R.; Garimella, K. V.;
Maguire, J. R.; Hartl, C.; Philippakis, A. A.; Del Angel, G.;
Rivas, M. A.; Hanna, M.; et al. 2011. A framework for vari-
ation discovery and genotyping using next-generation dna
sequencing data. Nature genetics 43(5):491.
Deshwar, A. G.; Vembu, S.; Yung, C. K.; Jang, G. H.; Stein,
L.; and Morris, Q. 2015. Phylowgs: reconstructing subclonal
composition and evolution from whole-genome sequencing
of tumors. Genome biology 16(1):35.
Dickinson, B. T.; Kisiel, J.; Ahlquist, D. A.; and Grady,
W. M. 2015. Molecular markers for colorectal cancer
screening. Gut 64(9):1485–1494.
Dienstmann, R.; Vermeulen, L.; Guinney, J.; Kopetz, S.; Tej-
par, S.; and Tabernero, J. 2017. Consensus molecular sub-
types and the evolution of precision medicine in colorectal
cancer. Nature Reviews Cancer 17(2):79.
El-Kebir, M.; Oesper, L.; Acheson-Field, H.; and Raphael,
B. J. 2015. Reconstruction of clonal trees and tumor com-
position from multi-sample sequencing data. Bioinformatics
31(12):i62–i70.
Fearon, E. R., and Vogelstein, B. 1990. A genetic model for
colorectal tumorigenesis. cell 61(5):759–767.
Guinney, J.; Dienstmann, R.; Wang, X.; De Reynies, A.;
Schlicker, A.; Soneson, C.; Marisa, L.; Roepman, P.; Nya-
mundanda, G.; Angelino, P.; et al. 2015. The consensus

444



molecular subtypes of colorectal cancer. Nature medicine
21(11):1350.
Ha, G.; Roth, A.; Khattra, J.; Ho, J.; Yap, D.; Prentice,
L. M.; Melnyk, N.; McPherson, A.; Bashashati, A.; Laks,
E.; et al. 2014. Titan: inference of copy number architec-
tures in clonal cell populations from tumor whole-genome
sequence data. Genome research 24(11):1881–1893.
Hale, V. L.; Jeraldo, P.; Chen, J.; Mundy, M.; Yao, J.; Priya,
S.; Keeney, G.; Lyke, K.; Ridlon, J.; White, B. A.; et al.
2018a. Distinct microbes, metabolites, and ecologies define
the microbiome in deficient and proficient mismatch repair
colorectal cancers. Genome medicine 10(1):78.
Hale, V. L.; Jeraldo, P.; Mundy, M.; Yao, J.; Keeney, G.;
Scott, N.; Cheek, E. H.; Davidson, J.; Green, M.; Martinez,
C.; et al. 2018b. Synthesis of multi-omic data and commu-
nity metabolic models reveals insights into the role of hy-
drogen sulfide in colon cancer. Methods 149:59–68.
Halevy, A.; Norvig, P.; and Pereira, F. 2009. The unreason-
able effectiveness of data.
Hastings, W. K. 1970. Monte carlo sampling methods using
markov chains and their applications. Biometrika 57(1):97–
109.
Johnson, N., and Kotz, S. 1977. Urn models and their appli-
cation: an approach to modern discrete probability theory.
Wiley Series in Probability and Statistics: Applied Probabil-
ity and Statistics Section. Wiley.
Kim, M.; Druliner, B. R.; Vasmatzis, N.; Bae, T.; Chia, N.;
Abyzov, A.; and Boardman, L. A. 2018. Inferring modes
of evolution from colorectal cancer with residual polyp of
origin. Oncotarget 9(6):6780.
Koza, J. R. 1992. Genetic programming: on the program-
ming of computers by means of natural selection, volume 1.
MIT press.
Li, H., and Durbin, R. 2009. Fast and accurate short read
alignment with burrows–wheeler transform. bioinformatics
25(14):1754–1760.
Li, Y.; Mahjoubfar, A.; Chen, C. L.; Niazi, K. R.; Pei, L.; and
Jalali, B. 2019. Deep cytometry: Deep learning with real-
time inference in cell sorting and flow cytometry. Scientific
reports 9(1):11088.
Ng, A. Y., and Russell, S. 2000. Algorithms for inverse
reinforcement learning. In in Proc. 17th International Conf.
on Machine Learning. Citeseer.
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