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Abstract

Chart-based visual acuity measurements are used by billions
of people to diagnose and guide treatment of vision impair-
ment. However, the ubiquitous eye exam has no mechanism
for reasoning about uncertainty and as such, suffers from a
well-documented reproducibility problem. In this paper we
make two core contributions. First, we uncover a new para-
metric probabilistic model of visual acuity response based
on detailed measurements of patients with eye disease. Then,
we present an adaptive, digital eye exam using modern artifi-
cial intelligence techniques which substantially reduces acu-
ity exam error over existing approaches, while also introduc-
ing the novel ability to model its own uncertainty and incor-
porate prior beliefs. Using standard evaluation metrics, we
estimate a 74% reduction in prediction error compared to the
ubiquitous chart-based eye exam and up to 67% reduction
compared to the previous best digital exam. For patients with
eye disease, the novel ability to finely measure acuity from
home could be a crucial part in early diagnosis. We provide a
web implementation of our algorithm for anyone in the world
to use. The insights in this paper also provide interesting im-
plications for the field of psychometric Item Response The-
ory.

1 Introduction

Reliably measuring a person’s visual ability is an essential
component in the detection and treatment of eye diseases
around the world. However, quantifying how well an indi-
vidual can distinguish visual information is a surprisingly
difficult task—without invasive techniques, physicians rely
on chart-based eye exams where patients are asked visual
questions and their responses observed.

Historically, vision has been evaluated by measuring a pa-
tient’s visual acuity: a measure of the font size at which a
patient can correctly identify letters shown a fixed distance
away. Snellen, the traditional eye exam chart, determines
this statistic by marching down a set of discrete letter sizes,
asking the patient a small number of questions per size to in-
dentify the size where the patient gets less than half the let-
ters correct. This approach is simple and is used daily in the
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treatment of patients; yet, it suffers from some notable short-
comings. Acuity exams such as these exhibit high variance
in their results due to the large role that chance plays in the
final diagnosis, and the approximation error incurred by the
need to discretise letter sizes on a chart. On the other hand,
digital exams can show letter of any size and can adaptively
make decisions based on intelligent probabilistic models. As
such they have potential to address the shortcomings of ana-
log charts.

While promising, contemporary digital exams have yet to
dramatically improve accuracy over traditional chart-based
approaches. The current best digital exam uses a psychomet-
ric Item Response Theory (IRT) algorithm for both selecting
the next letter size to query and for making a final prediction
of acuity. Under simulation analysis, this digital exam results
in a 19% reduction in error over traditional chart-based ap-
proaches. The separate fields of reinforcement learning and
psychometric IRT have independently explored how to ef-
fectively make decisions under uncertainty. By merging the
good ideas from both disciplines we can develop a much
better visual acuity test.

In this paper we make two main contributions. First, we
revisit the human Visual Response Function—a function re-
lating the size of a letter to the probability of a person iden-
tifying it correctly—and discover that it follows an inter-
pretable parametric form that fits real patient data. Second,
we present an algorithm to measure a person’s acuity which
uses several Bayesian techniques common in modern artifi-
cial intelligence. The algorithm, called the Stanford Acuity
Test (StAT)1, has the following novel features:

1. Uses the new parametric form of the human Visual Re-
sponse Function.

2. Returns a soft inference prediction of the patient’s acuity,
enabling us to express a calibrated confidence in the final
result.

3. Uses a posterior probability matching algorithm to adap-
tively select the next letter size shown to a user. This ef-
fectively balances exploration of the acuity belief.

1The previous state-of-the-art, FrACT, was named after
Freiburg, the city in which it was developed. We continue in this
tradition.
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4. Accepts a patient’s prior belief of their acuity, or alterna-
tively, traces their vision over time.

5. Incorporates “slip” estimation for unintended mistakes in
the eye test process.

We demonstrate that each of these additions lead to a more
precise acuity exam. In unison, the result is a test that is
74% more accurate than the analog chart. Compared to the
previous best digital exam, our experiments show an error
reduction of up to 67%.

For patients with more serious eye disease, the novel abil-
ity to finely measure acuity from home could play a cru-
cial role in early diagnosis and effective treatment. We pro-
vide a web implementation for anyone in the world to use at
https://myeyes.ai

1.1 Visual Acuity

Visual acuity is a measurement that captures a patient’s vi-
sual ability in a succinct manner. It is defined to be the letter
size at which the patient can correctly identify the displayed
optotype (letter) with probability τ , where the constant τ is
set for each exam type.

1.2 Chart-based Acuity Exams

In 1862, Herman Snellen developed the ubiquitous eye
exam: a chart is placed at 6 meters (20ft) from the patient
as they attempt to identify optotypes (letters) of progres-
sively smaller sizes written on different lines (see Fig. 1).
The goal is to find the optotype size at which the user can no
longer identify at least half of the letters on the line. To keep
the exam a reasonable duration, there is a small, discrete set
of lines that are substantially different in size. The Snellen
chart continues to be the most common acuity test, but there
are other charts such as LogMar ETDRS Chart (Council and
others 1980; Ferris III et al. 1982), Tumbling-E, Lea, and
HOTV that generally use the same procedure with a differ-
ent set of optotypes (Rosser, Laidlaw, and Murdoch 2001).
They all share the same core limitations:
Guessing. Making guesses is a critical part of an acuity
exam. As the patient progresses to smaller optotypes, there
is a gradual decrease in how easy it is to identify the let-
ters. As optotype size decreases, the probability of correctly
guessing decreases. This has the predictable problem that
chance plays a large role in the final acuity score. As a con-
crete example, imagine an optotype size where the patient
has a 0.5 probability of correctly identifying a letter. After
guessing for five letters, the Binomial Theorem tells us there
is still a 50% chance that they incorrectly “pass” the current
line by getting more than 2 out of 5 correct.
Discretisation. Because of the limits of printing, it is nec-
essary to discretise acuity scores in printed eye-chart exams.
This makes it hard to have an acuity measure more precise
than the predetermined discretisation. Discretisation is par-
ticularly limiting for patients who need to detect a small de-
creases in vision, as such a change could be indicative of a
time sensitive need for medical intervention.
Confidence. Another limitation of all current tests is their
inability to articulate their confidence in the final measured
acuity. Contemporary eye exams result in a “hard” number

Figure 1: a) ETDRS, b) Snellen and c) StAT eye exams.

for their acuity prediction as opposed to a “soft” probabil-
ity distribution. As an example, a soft prediction can make
claims such as, “there is a 75% chance that the patient’s true
vision is within one line of our predicted acuity score.” Cur-
rent tests can only say how many letters were missed on the
last line, but don’t provide probabilistic uncertainty.

Despite these limitations, chart-based acuity exams are
used every day around the world to diagnose disease, inform
treatment decisions, and evaluate medical research into new
medications and best practices.

1.3 Digital Acuity Challenge

Computers enable digital, adaptive eye exams. A digital acu-
ity eye exam proceeds as follows: the computer presents an
optotype of a chosen font size, and the user guesses it (either
correct or incorrect). The computer then gets to incorporate
that response and chose a new font size to present. The test
continues until either a fixed number of letters have been
shown or till the model has determined an acuity score with
sufficient confidence. A digital exam has two potential ad-
vantages over chart-based exams: (1) a computer can draw
optotypes of any continuous size, and (2) a computer can
adaptively choose the next letter size to show. The digital
acuity challenge is to develop a policy for a digital eye exam
that can hone in on a patient’s true acuity statistic as fast and
as accurately as possible.

1.4 Prior Work

The current state-of-the-art digital optotype size discrimi-
nation exam, the Freiburg Acuity Contrast Test (FrACT),
was first developed in 1996 and has been successfully used
in medical contexts since its conception (Bach and others
1996; Bach 2006).

FrACT builds an underlying model of human visual acu-
ity which assumes that the probability a human correctly

472



Figure 2: An example of a single person’s visual response
function. The FrACT model uses a logistic which is inac-
curate for low probabilities. Error bars are Beta distribution
standard deviation after > 500 measurements.

identifies a letter is a function, v(x, v0, s), of the letter size x
(see Appendix A for discussion of units) and two parameters
that change from person to person (v0 and s):

v(x, v0, s) = c+ (1− c)/(1 + (v0 · x)s). (1)

Here, c is the probability that the human randomly
guesses a letter correctly. The algorithm maintains a Max-
imum Likelihood Estimate (MLE). When choosing a next
item size, the FrACT selects the size at which the function
has the highest slope. The authors graciously offered to pro-
vide the algorithm source code. Digital exams, like FrACT,
work especially well for patients with low vision (Schulze-
Bonsel et al. 2006).

More broadly, the FrACT test can be shown to reduce
to Birnhaum’s popular 3PL model which is the basis for
Item Response Theory (IRT) literature used in psychomet-
rics (Birnbaum 1968). From an IRT perspective, each letter
shown to a patient is an “item” and the goal of the test is
to uncover the latent “ability” of a patient to see optotypes,
whose “size” is a function of their difficulty. The 3PL model
makes the same logistic assumption for the relationship be-
tween difficulty of an item and probability of answering cor-
rectly that is made by the FrACT algorithm. As such, the
improvements that we develop for the digital eye exams out-
lined in this paper are likely to be relevant for the many ap-
plications of IRT in testing beyond Ophthalmology.

2 Human Visual Acuity Curve

A central assumption of a vision exam is the function which
relates the size of a letter, x, to the probability that the patient
correctly identifies it: v(x). This function is called the Visual
Response Function (VRF) (Bach and others 1996).

Given enough patience, one can precisely observe the
VRF for a single human. This is very different from a typ-
ical psychometric exam where it would be unreasonable to
ask a patient the same question hundreds of times. Previous

studies have measured VRF curves and concluded that they
are best fit by a logistic function, an assumption that was
adopted by FrACT (Petersen 1990). However, this previous
work missed the notable deviation of the logistic function
from human response close to the point where a patient tran-
sitions from random guessing to actually discerning visual
information (see Fig. 2).

We conducted an IRB-approved experiment at the Stan-
ford Byers Eye Institute and carefully measured the Vi-
sual Response Function for patients with different vision-
limiting eye diseases. Twelve patients were shown randomly
selected optotypes of a fixed size until we were confident
about their probability of responding correctly at that size.
We represented our uncertainty about this probability at each
optotype size as a Beta distribution (the conjugate prior of
the Bernoulli) and continued testing until our uncertainty
about the probability was below a fixed threshold. Patients
took breaks between questions and we randomized the order
of letter size to remove confounds such as tear film dryness
that can lead to vision decrease over the course of an exam.
Surprisingly, we found that the traditional assumption for
the VRF—a logistic curve—struggled to fit the responses
we collected, especially at small letter sizes where the sub-
jects were randomly guessing.

Figure 2 shows an example of a single patient who vol-
unteered to answer over 500 answers to optotypes ques-
tions of varying sizes (see Appendix C for the remaining
patients). These experiments depict the VRF as a combi-
nation of two processes: for tiny letters a patient is unable
to see and guesses randomly, with v(x) = c. For letters
where the patient can discern information, their probability
of answering correctly is determined by an exponential func-
tion, traditionally parameterised by location b and scale λ i.e.
v(x) = 1 − e−λ(x−b). The mixture of these two processes
is a “Floored Exponential” function. The resulting equation
can be reparameterised with values that eye care providers
find meaningful (see Appendix B for derivation):

Floored Exponential
A Floored Exponential is a maximum between a con-
stant floor and an exponential function. For visual acu-
ity we parameterise it as:

v(x, k0, k1) = max

⎧⎨
⎩c, 1− (1− c)

(
1− τ

1− c

) x−k0
k1−k0

⎫⎬
⎭ ,

where x is the font size (in arcmins) of the letter be-
ing tested, c is the probability of a correct answer when
guessing randomly, and k0 is the font size at which a pa-
tient can start to discern visual information. In an acuity
test, we are trying to identify k1: this is the font size at
which a patient can see with probability τ , where τ is
some predefined constant “target probability” specific
to the type of eye exam. In this paper we use τ = 0.80
which means at font size k1, a patient can correctly
guess letters with 80% probability.

The Floored Exponential VRF fits the twelve patients
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with diverse eye diseases and, unlike the logistic function,
it has a more believable generative story (a mixture of two
processes). We are currently conducting a large clinical trial
that is adding to a growing body of evidence that the VRF
is better fit by a Floored Exponential. In the discussion, we
explore the possibility that the Floored Exponential mecha-
nism is being misinterpreted as a logistic in other fields as
well.

3 The Stanford Acuity Test (StAT)

The StAT Test is a novel eye exam based on an improved
model of acuity and an intelligent inference process, named
after the city it was invented in. StAT employs the Floored
Exponential as its VRF and uses likelihood weighted sam-
pling to determine the posterior of k1 given the patient’s re-
sponses so far. The next letter size to query is then selected
by sampling from this posterior. Such an approach balances
exploration-exploitation in an optimistic way, in a manner
similar to Thompson sampling. We also include a probabil-
ity term for the chance that a user “slips” and chooses the
wrong answer.
Algorithm. We formalize the algorithm as follows. At all
times, a StAT digital eye exam keeps track of its belief for
the visual acuity of the test taker based on the sequence of
answers seen so far D = [d0, d1, . . . , dn]. Each observation
is a tuple di = (xi, yi) of the size of letter shown to the pa-
tient xi ∈ R

+ and whether the letter was correctly guessed
yi ∈ {0, 1}. This past data is used both to determine which
letter size to query next and also to diagnose the final acuity
of the patient at the end of the exam. The StAT algorithm is
formally defined in Algorithm 1.
Computing posterior. The continuous distribution for the
joint assignment of our two latent variables k1 and k0 given
a set of observations D can be calculated by applying Bayes
rule:

f(k1, k0|D) ∝ f(k0, k1) · p(D|k0, k1) (2)

∝ f(k1)f(k0|k1)
n∏

i=1

p(di|k0, k1), (3)

where p(di|k0, k1) = v(xi, k0, k1) if yi = 1 (see Floored
Exponential box) and 1− v(xi, k0, k1) otherwise.
Likelihood Weighting. Exact inference of the marginalized
posterior of k1 given D is:

p(k1|D) =

∫
k0

p(k0, k1|D) dk0.

To the best of our knowledge this equation does not have
an analytical solution. However using likelihood weighting
(Shwe and Cooper 1991), we can sample particles from the
joint posterior f(k1, k0|D) given by Equation 3. We first
sample k1 from it’s prior and then sample k0 from p(k0|k1),
weighting the particles by p(D|k1, k0) . We sample a total
of 5,000 particles which densely covers the two parame-
ters. After drawing particles from the posterior, the k1 values
of those particles represent the distribution f(k1|D) and, as
such, these particles approximate a soft belief about acuity
over the continuous range of possible acuity scores.

Figure 3: Our model maintains a soft belief about the poste-
rior p(k1|d0, . . . di) at each timestep ti in the test.

We don’t discard any particles for a patient between pa-
tient queries. After we receive a new datapoint di, we simply
re-weight each particle by multiplying their previous weight
by p(di|k0, k1), using the particle’s values for k0 and k1.
This makes the computation time of the update step grow
linearly with the number of particles and constant with re-
spect to the length of the exam.

Figure 3 shows an example of the posterior distribution
for k1 (the statistic for visual acuity) changing over the
course of one acuity exam. Initially there is an uncertain be-
lief about the patient’s acuity. As the exam progresses, the
posterior converges to the true acuity.
Prior over k1. This Bayesian approach requires us to pro-
vide a prior probability for k1. Thanks to Bach (2006), we
obtained over a thousand acuity scores of patients. Based on
this data, we observed that the log of the acuity score was
well fit by a Gumbel distribution. The best-fit prior for the
data was log k1 ∼ Gumbel(μ = −0.1, β = 0.3). In ac-

Algorithm 1 The Stanford Acuity Test (StAT)
Inputs:

• A patient with an unknown VRF, p(x; k0, k1), in the
Floored Exponential family.

• A length N of maximum questions to ask the patient.
Algorithm:

1. Inititalise belief of p(k1) with prior.
2. For i = 1, . . . , N :

i) Sample xi ∼ p(k1|d1, . . . , di−1) from current belief of
k1.

ii) Query patient at letter size xi and record whether re-
sponse was correct as yi. Store di = (xi, yi).

iii) Update posterior belief of k1 to get p(k1|d1, . . . , di).
3. Return argmaxk1

p(k1|d1, . . . , dN )
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knowledgement of the fact that we can’t be sure that users
of our test will come from the same distribution collected
by FrACT, we set our Gumbel prior to be less confident
log k1 ∼ Gumbel(μ = 0.3, β = 0.5).

Although we fit a generic prior, if a patient (or doctor) has
a belief about the patient’s acuity score, they can express that
belief via a different Gumbel prior where μ is the best guess
acuity (in LogMAR units) and β is a reflection of confidence
in the prior. If a user has a reasonable idea of their vision, our
acuity algorithm will be quicker and more accurate.
Slip Probability. Even if a user can see a letter, they some-
times get the wrong answer because they “slip” and acci-
dentally provide the wrong response or their answer is in-
correctly entered. Explicitly modelling this source of uncer-
tainty is as important for a digital eye exam, as it is in tradi-
tional tests (Cao and Stokes 2008).

To account for this slip probability, We replace the VRF
v(x) with vs(x) where s is the slip probability:

vs(x) = s · c+ (1− s) · v(x).

We included this extension after observing that slip mistakes
would lead to inaccurate predictions unless explicitly mod-
elled (see noSlip in Table 1).
Choosing query letter. An essential step in the intelligence
of this algorithm is to decide which next letter size to query
the patient. One simple approach would be to query at the
most likely MAP estimate of k1 according to the current
belief. Although sensible, this method suffers from being
overly greedy in its search for the true acuity of the patient,
an issue we notice in the performance of this algorithm (see
greedyMAP in Table 1).

The problem with greedily using the current MAP esti-
mate of a distribution comes up often in a different setting in
Artificial Intelligence: that of multi-armed bandits problem.
Specifically, the Thompson sampling algorithm models the
posterior reward distribution of each arm and samples from
this distribution rather than picking the most likely value in
an effort to balance exploration and exploitation.

We use a similar idea in our algorithm: to determine the
next letter size to query the patient, the algorithm samples
from its current posterior belief over k1. This means the al-
gorithms is likely to pick exploratory letter sizes at the start,
when it is less confident (high variance), and becomes in-
creasingly greedy as its confidence increases. This method
is sometimes called Posterior Probability Matching and it is
believed to be the way humans make decisions under un-
certainty (Sabes and Jordan 1996; Wozny, Beierholm, and
Shams 2010).

In contrast to this, the FrACT test uses a purely greedy
variance minimization strategy for choosing the next letter
size. Specifically, it selects the optotype size that maximizes
the likelihood of observation (and thus minimizes the vari-
ance in acuity belief). This is a reasonable strategy, but, since
the test is N steps long, it suffers from the aforementioned
problems and tends to fail at initial exploration of the space.

4 Experiments

4.1 Performance Evaluation

To evaluate the performance of our algorithm with respect
to other policies, we simulate patients by sampling param-
eters for the Floored Exponential VRF, in a manner similar
to Shamir et al. (2016). Specifically, for all experiments we
sample 1000 random patients and use them to simulate the
performance of each policy. Since we sample the true acu-
ity parameters, we can simulate the exam process and also
measure the accuracy of each policy. Acuity scores, k1, are
sampled from a high variance Gumbel, with a mode of 2
arcmins. We add a small s = 0.05 slip probability to re-
sponses.
Measuring error. After a virtual acuity test has been run, we
have two numbers: the true acuity of the simulated patient,
and the acuity that the algorithm diagnosed. From these two
numbers we calculate the relative error, which measures the
percentage deviation of the prediction from the true acuity.

We use relative error in place of absolute error because of
the logrithmic nature of visual acuity. It is generally mean-
ingful to say that a prediction is off by 10%. In contrast, a
prediction which has an absolute error of 1.0 arc mins could
be a terrible prediction for a patient with perfect vision (pre-
diction: 20/40, truth: 20/20) but a great prediction for a pa-
tient with low vision (prediction: 20/110, truth: 20/100).
Why not evaluate on humans? At first blush, it seems that
we should evaluate algorithms on their ability to “perform
well” on real humans. However testing an algorithm on peo-
ple has a huge downside: there is no gold standard. Imagine
an algorithm that runs a visual acuity test on a human. At the
end of the test the algorithm declares the patient has an acu-
ity score of 20/42. Was that correct? Unfortunately, there is
no way to tell. There is no procedure, invasive or otherwise,
that can let you know how well the patient could truly see.

Historically, algorithms were measured on their ability to
give the same score on a test and a subsequent retest on the
same human. This is a poor measure as it rewards algorithms
that make the wrong prediction (as long as that wrong acuity
score is repeated). In this case two wrongs shouldn’t make
a right. To give an example of how bad this can get, an un-
intelligent algorithm that predicts every individual to have 0
acuity, has a retest rate of 100%.

Simulations on the other hand can sample a latent true
acuity and test if an algorithm can infer that chosen value.
As such there is a gold standard. For this reason, simulation
is becoming the preferred method of evaluation (Shamir et
al. 2016). The threat to validity of a simulation is that we
have to assume that the simulation is correct. To assuage this
concern, algorithms should be tested on a variety of simula-
tion assumptions and substantial effort needs to be put into
validating our simulation models. In fact, this need is exactly
what led to the discovery of the Floored Exponential.

4.2 Baseline Acuity Tests

We use the following baselines and prior algorithms to com-
pare against the StAT algorithm.
Const Policy. This policy always predicts the most common
visual acuity in our data i.e. the mode of the visual acuity
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Figure 4: (a) The tradeoff between length of exam and error for the different algorithms. (b) A visualization of the predictions
made by StAT. (c) Calibration test: StAT confidences correspond to how often it is correct.

μ Acuity Error μ Test length

Const 0.536 0
Snellen† 0.264 27
ETDRS† 0.254 42
FrACT 0.212 20
StAT 0.069 20

StAT-noSlip 0.150 20
StAT-greedyMAP 0.132 20
StAT-logistic 0.125 20
StAT-noPrior 0.090 20

StAT-goodPrior 0.047 20
StAT-star 0.038 63

Table 1: Average relative error for each algorithm. Except
for Snellen each test was allowed 20 letters. Results are av-
erage relative error after 1000 tests. † Snellen and ETDRS
used 19 unique optotypes.

prior. This serves as a true null model because it doesn’t take
patient responses into account at all.
Snellen and ETDRS. The Revised 2000 Series ETDRS
charts and the Traditional Snellen Eye Chart were pro-
grammed so that we could simulate their response to dif-
ferent virtual patients. Both exams continue until the user
incorrectly answers questions for more than half of the let-
ters on a line. ETDRS has a function for predicted acuity
score that takes into account both the last line passed, and
how many letters were read on the last line not-passed. Both
charts use 19 unique optotypes.
FrACT. We use an implementation of the FrACT algorithm
(Bach and others 1996), with the help of code graciously
shared by the original author. We also included the ability
to learn the “s” parameter as suggested by the 2006 paper
(Bach 2006), and verified that it improved performance.

5 Results and Evaluation

The results of the experiments can be seen in Table 1.

Accuracy and error. As can be seen from Table 1, the StAT
test has substantially less error than all the other baselines.
After 20 optotype queries, our algorithm is capable of pre-
dicting acuity with an average relative error of 0.069. This
prediction is a 74% reduction in error from our implemen-
tation of the ubiquitous Snellen test (average error = 0.276),
as well as a 67% reduction in error from the FrACT test (av-
erage error = 0.212). One possible reason for the improve-
ment over FrACT is that the simulations used in our evalua-
tions are based off the Floored Exponential model that StAT
uses. However, even when we evaluate StAT on simulations
drawn from the FrACT logistic assumption, we still achieve
a 41% reduction in error. The improved accuracy of the StAT
algorithm suggests our Bayesian approach to measuring acu-
ity is a fruitful proposal, both because of our introduction of
the Floored Exponential as well as our posterior sampling
based algorithm for choosing the next letter size to query.

Figure 4 (b) visualizes what StAT’s small relative error
means in terms of predictions. Each point in the plot is a
single patient. The x-axis is the true acuity of the patient
and the y-axis is the predicted accuracy. We can qualitatively
observe that the predictions are often accurate, there are no
truly erroneous predictions, and that the exam is similarly
accurate for patients of all visual acuities.

Moreover, as seen in Figure 4 (a), StAT’s significant im-
provement in error rate holds even when the length of the
exam is increased. It is also evident that increasing exam
length reduces our error rate: if we increase the exam length
to 200 letters, the average error of StAT falls to 0.020. While
this is highly accurate, its far too long an exam, even for pa-
tients who need to know their acuity to high precision.
StAT Star Exam. Our primary experiments had a fixed
exam length of 20 letters. However, since our algorithm
models the entire belief distribution over k1, we can run an
alternative test that keeps asking the patient queries until it
has a 95% confidence that the relative error is less than ε
= 0.10. We call this the StAT-star test, and it should be the
preferred test for patients who want to have a high confi-
dence in their score.

After running StAT-star 1000 times, 95.1% of results had

476



error less than 0.10, suggesting that the algorithm’s confi-
dence is well calibrated. The exam is longer with an average
length of 63 optotypes, but had the lowest average error of
all tests: 0.038.
Improved prior. We experimentally verified that if a user
already had a reasonable understanding of their vision, they
could express this as a prior and get more accurate exam
results. For example, we saw if a patient was able to guess
their vision to within ± 1 line on a Snellen chart, then the
average error of the standard 20 question StAT test would
drop to 0.051.
More optotype choices. StAT was evaluated using four
unique optotype choices (the tumbling-e optotype set). Our
algorithm improved slightly as the number of optotype op-
tions increased. If we instead use 19-letter optotype options
(and thus a guess probability of c = 1/19), error drops to an
average error of 0.052.
Robustness to slip. Our results proved to be quite invariant
to an increase in slip probability, as long as the slip proba-
bility was bellow 1/3. For larger likelihood of slip, our per-
formance started to degrade.
Importance analysis. Since our model contributed several
extensions to the state of the art, we performed an impor-
tance analysis to understand the impact of each individual
decision: (1) model slip or noSlip (2) posterior sample or
greedyMAP (3) Floored Exponential VRF or logistic (4)
gumbel prior or noPrior. For each decision we ran error anal-
ysis with that decision “turned-off”. All four decisions had a
large increase in error when they were turned-off, suggesting
that they were all useful in making a low error test.

When we turned-off the decision to explicitly model acci-
dental “slips”, we had the largest increase in error. While all
of our contributions were useful, modelling slips is clearly
an important addition.
Calibrated uncertainty. One of the novel abilities of the
StAT algorithm is that it can express its confidence in terms
of probabilities. To evaluate the reliability of the confidences
computed by the StAT test, we plot a calibration curve for
the algorithm (see Figure 4 (c)). We ran 10,000 experiments
of the StAT algorithm: for each run, we recorded both the
final predicted value of k1 as well as the probability, accord-
ing to the algorithm, that k1 was within a relative error of
0.1 of the true acuity k∗1 . We then binned these probabilities
and, for all the entries in a bin, computed the empirical frac-
tion of times the algorithm was correct (“empirical success
rate”). We compare the predicted confidence to the empirical
success rate.

For a perfectly calibrated model, this plot should look like
a straight line y = x. As we can see in Figure 4 (c), the
model’s confidence is well-calibrated and thus reliable as a
measure of uncertainty. The figure also shows that after 20
questions, the algorithm often predicts an 80% probability
that relative error is within 0.1. StAT is not always correct,
but unlike previous models it has a calibrated sense for how
confident it should be.

6 Discussion
The algorithm we have presented in the paper demonstrates
a promising approach to measuring the visual acuity that is

more accurate while also providing robust notions of uncer-
tainty. In this section, we discuss the implications of this
idea, highlighting important limitations and future work.

6.1 Real World Considerations

Although this work has potential for huge impact in diag-
nosing and treating vision related illnesses, caution must be
taken before using this algorithm in a real-word setting.
Benefit of variation. In our consideration of eye exams, we
did not explicitly design for human fatigue. Being asked the
same size question repeatedly is tiring for patients, espe-
cially if the letters are difficult to see. Some digital exams
mitigate this concern by intentionally giving users “easy”
questions every once-in-a-while. The Monte Carlo sampling
aspect of the StAT decision making process naturally leads
to a highly dynamic set of letter sizes. We believe this helps
keep the test interesting and reduces fatigue.
Floored Exponential assumption. One of the biggest as-
sumptions in our paper is that the human VRFs matches the
Floored Exponential function. Although we tested this as-
sumption on a number of actual patients with real eye dis-
eases and found promising fits, more clinical trials at a larger
scale would be needed to be confident in this facet of the al-
gorithm and to understand if there are certain eye diseases
for which it is not the correct parametric form. This same
limitation exists in other eye exams as well, for example the
“logistic” assumption built into the FrACT exam, which is
used in clinical settings. See Figure 5 for our initial results
in this deeper exploration.
Peripheral vision. A possible concern for medical practi-
tioners in using a test like StAT involves the role periph-
eral vision plays in traditional eye exams. According to the
literature, checking acuity with single optotypes instead of
lines over-estimates true acuity due to an effect known as the
crowding phenomenon (Lalor, Formankiewicz, and Waugh
2016). The scheme discussed in this paper easily extends
to showing multiple letters at a time. Presenting single let-
ters has the advantage that it is easy for patients at home to
self administer the test (the user interface is more straight
forward), however for hospitals we recommend the multiple
line version.
Convention. Switching to a more accurate system like StAT
could require a recalibration of the medical Ophthalmology
literature that was built on traditional acuity exams. Our re-
sults show that current measures of visual acuity are highly
susceptible to inaccuracies. Since these measures are used
in research when designing appropriate diagnoses and pre-
scriptions, it could be the case that the field has naturally
adapted to the errors of traditional chart-based exams.

6.2 Beyond Eye Exams

Both of the main contributions in this paper: the VRF and the
more intelligent adaptive test, have great potential to con-
tribute to any psychometric test, well beyond vision.

The core idea behind the VRF could extend beyond just
visual acuity. In educational Item Response Theory, the
probability of a student answering a multiple choice ques-
tion correctly is currently modelled as a logistic, with the
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input representing the easiness of the question and the out-
put representing the probability of a correct answer from the
student. The effectiveness of the Floored Exponential func-
tion over the logistic function as a model for the acuity func-
tion suggests that it may be useful, even for education. Intu-
itively, the generative story makes sense: when the question
is absurdly difficult, the best a student can do is guess. Oth-
erwise, they possess useful information about the question
which combines in an exponential manner. Exploring this
model in the understanding student responses to questions is
an interesting future direction.

Moreover, the sampling inspired algorithm we use is a
novel method for the “computer adaptive test” problem. In
the case of visual acuity testing it was an improvement over
the contemporary MLE based exam. Therefore, it may prove
to be an improvement over MLE based computer adaptive
tests in other domains as well.

6.3 Future Work

We hope the ideas here provide a foundations for even fur-
ther research into improving our ability to diagnose and treat
eye related diseases. We outline some seemingly fruitful di-
rections of future research.
Clinical trials. An essential next step in demonstrating the
usefulness of these ideas is to actually try them on real pa-
tients with a series of controlled trials. These experiments
would provide insight into the failure modes of our approach
as well as other unforeseen factors such as the cognitive load
of taking a StAT acuity test. Such research, in conjunction
with input from the medical community, could truly trans-
form the ideas in this paper into an actionable reality.
Smarter letter querying. There is potential for investigat-
ing a more intelligent way to pick the next letter size based
on current belief. One direction we want to explore is prov-
ing some optimality bounds on our approach. Another or-
thogonal investigation would involve learning a policy for
picking the next letter size that optimises an objective like
minimising test length or maximising confidence.

7 Conclusion

Vision-limiting eye diseases are prevalent, affecting billions
of people across the world (A. Stevens et al. 2013). For pa-
tients with serious eye diseases, the ability to finely mea-
sure acuity could be a crucial part in early diagnosis and
treatment of vision impairment. In this paper, we present a
novel algorithm based on Bayesian principles for measuring
the acuity of a patient. This algorithm outperforms all prior
approaches for this task while also providing reliable, cali-
brated notions of uncertainty for its final acuity prediction.
Our approach is incredibly accurate, easy to implement, and
can even be used at home on a computer. With further re-
search and input from the medical community, we hope for
this work to be used as a foundation for revolutionising the
way we approach visual acuity testing for people around the
world.
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Appendix

A Units of Acuity

Visual acuity, and optotype size, measure visual angle sub-
tended at the eye by an optotype, in minutes of visual arc.
Because the semantic meaning of vision loss is better ex-
pressed in a logrithmic space, logMAR, the log10 of the min-
imum visual angle of resolution, is a popular choice of units.
In the Snellen chart, the visual angle is articulated via a frac-
tion in meters (e.g. 6/6) or in feet (e.g. 20/20). The ETDRS
chart represents acuity in logMAR units. In this paper we
use visual angle (arcmins) as our unit space and its log, log-
MAR (Westheimer 1979).

Note that the original FrACT paper uses “decimal” units
(1/visual angle) and equation (1) is the FrACT assumption
written for visual angle units.

B Reparametrising the Floored Exponential

The Floored Exponential v(x) consists of a floor c and an
exponential function, 1 − e−λ(x−b), parametrised by loca-
tion b and scale λ. These parameters capture the full class
of Floored Exponential functions but have no intuitive inter-
pretation for eye care providers.

To address this issue, we firstly reparamterise the Floored
Exponential with parameter k0, which represents the letter
size at which the patient can start to discern information. In
other words, it is the value of x where the exponential curve
is above the floor of c. Normally, the exponential function
1 − e−λ(x−b) exceeds the floor of 0 at x = 0. To have it
exceed the floor of c at x = k0, we scale it by (1 − c), shift
it up by c, and then shift it right by k0. This gives

v(x) = max
{
c, (1− c)(1− e−λ(x−k0)) + c

}

= max
{
c, 1− (1− c)e−λ(x−k0)

}
.

We next replace λ with the parameter k1 which represents
the patient’s true acuity i.e. the letter size at which v(k1) =
τ , for some fixed constant τ ∈ (c, 1]. We solve for λ at this
letter size:

τ = 1− (1− c)e−λ(k1−k0)

⇐⇒ e−λ(k1−k0) =
1− τ

1− c

⇐⇒ e−λ(x−k0) =

(
1− τ

1− c

) x−k0
k1−k0

.

This gives the final equation:

v(x, k0, k1) = max

⎧⎨
⎩c, 1− (1− c)

(
1− τ

1− c

) x−k0
k1−k0

⎫⎬
⎭ .

C Floored Exponential VRF
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Figure 5: As part of our ongoing research we are verifying
that the Floored Exponential fits different patients with dif-
ferent eye diseases. Here are the curves from eight patients
from our study.
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