
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

On Identifying Hashtags in Disaster Twitter Data

Jishnu Ray Chowdhury,1 Cornelia Caragea,1 Doina Caragea2

1Department of Computer Science, University of Illinois at Chicago
2Department of Computer Science, Kansas State University

{jraych2, cornelia}@uic.edu, dcaragea@ksu.edu

Abstract

Tweet hashtags have the potential to improve the search
for information during disaster events. However, there is a
large number of disaster-related tweets that do not have any
user-provided hashtags. Moreover, only a small number of
tweets that contain actionable hashtags are useful for dis-
aster response. To facilitate progress on automatic identifi-
cation (or extraction) of disaster hashtags for Twitter data,
we construct a unique dataset of disaster-related tweets an-
notated with hashtags useful for filtering actionable informa-
tion. Using this dataset, we further investigate Long Short-
Term Memory-based models within a Multi-Task Learning
framework. The best performing model achieves an F1-score
as high as 92.22%. The dataset, code, and other resources are
available on Github.1

Introduction

During disasters, affected individuals often turn to social
media platforms, such as Twitter and Facebook, to find
the latest updates from government and response organi-
zations, to request help or to post information that can
be used to enhance situational awareness (Rhodan 2017;
MacMillan 2017; Frej 2018; Lapin 2018). Nonetheless, the
value of the information posted on social media platforms
during disasters is highly unexploited, in part due to the lack
of tools that can help filter relevant, informative, and action-
able messages (Villegas, Martinez, and Krause 2018).

According to Villegas, Martinez, and Krause (2018), more
than 5, 200 rescue requests made on social media were
missed by the first responders, while about 46% of the
critical damage information posted on social media during
Harvey Hurricane was missed by FEMA in their original
damage estimates (that is almost half of the total costs of
$125 billion estimated for this hurricane).2 As an official
explained: “It’s very labor intensive to watch [social me-
dia] and because of the thousand different ways people can
hashtag something or keyword something, trying to sort out
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1https://github.com/JRC1995/Tweet-Disaster-Keyphrase
2https://coast.noaa.gov/states/fast-facts/hurricane-costs.html

what’s relevant and what’s not and what’s actionable is very,
very difficult” (Silverman 2017).

Examples of tweets that illustrate the diverse ways in
which people use hashtags to highlight information dur-
ing disasters are shown in Figure 1. Specifically, the user-
provided hashtags, when available, are shown in blue color
in the figure. As can be seen, the first two tweets do not have
any user-provided hashtags. The third tweet has a general
disaster-name hashtag, #HurricaneIrma. While this hashtag
is useful in recognizing that the tweet was posted during
Hurricane Irma, it is not useful in identifying situational
awareness (e.g., damage, power loss, blocked street) or the
type of disaster response requests. The fourth tweet, which
explicitly reports damage, has disaster-name, location, and
weather as hashtags, but no specific hashtag about damage.
Finally, the fifth tweet is at the other extreme, in that it has
a large number of hashtags (specifically, 11), some of them
representing lexical variations of the same base word.

These examples show not only that people use a variety of
ways to hashtag tweets or that they may not understand or
know how to hashtag tweets, but also that the user-provided
hashtags tend to be either too general or too specific. More-
over, these examples are not exceptions, but rather they are
representatives for a disaster-related tweet dataset. An anal-
ysis of a large corpus of tweets that was used in this work
revealed that most of the hashtags in a disaster-related tweet
corpus simply represent disaster names and locations, and
that approximately half of the tweets do not have any hash-
tags at all. Thus, filtering based on user-provided hashtags is
not helpful for disaster response or people on the ground to
quickly find relevant information. Similarly, filtering tweets
during disasters based on keyword match is not expected to
work well since keywords can be ambiguous and can lead to
noisy results, e.g., a search for the keyword “Harvey” will
retrieve tweets about the hurricane, but also about people
whose name is “Harvey.”

To address these limitations of tweet retrieval based on
user-provided hashtags or keywords, we envision a system
that learns to identify relevant and topically informative
hashtags and extract them directly from the content of the
disaster tweets, capturing three main elements in a tweet:
1) disaster name; 2) location; and 3) situational awareness
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Figure 1: Examples of tweets posted during disasters. The original user-provided hashtags, when available, are shown in blue
color for each tweet. Relevant and topically more informative hashtags manually identified to have the potential to retrieve
actionable disaster tweets are highlighted in a light red box

information. Examples of relevant and topically informa-
tive hashtags that represent these three elements for the
tweets in Figure 1 are provided with each tweet and are
shown in a light red box in the figure (these hashtags are ex-
tracted directly from the tweets’ content). Precisely, the first
two tweets may be retrieved based on a search for #Hous-
ton and #needhelp. The third tweet can be retrieved with
a search for #HurricaneIrma, #Orlando, #powerlines. The
fourth tweet can be retrieved with a search for #Hurricane-
Florence, #Wilmington and #damage (or #powerlines). Fi-
nally, the fifth tweet can be retrieved when searching for
#WoolseyFire, #ThousandOaks or #Camarillo, or #evacu-
ated, and can be used to find information about evacuated
people. Thus, together, the above three elements can be used
to filter tweets of potential interest to an emergency orga-
nization, which is responding to the disaster in question, or
can be used to recommend hashtags in real time as the user
types.

Although there are previous works that focus on hashtag
recommendation (Gong and Zhang 2016; Li et al. 2016a;
Zhang et al. 2017; Li et al. 2019) and topical keyphrase ex-
traction (Marujo et al. 2015; Zhang et al. 2016) for the gen-
eral Twitter, research on identifying and extracting hashtags
from the disaster Twitter data is limited. A notable excep-
tion is the work by Imran et al. (2013b), where the authors
extracted short information nuggets representing “what”,
“where”, “when”, etc., for a very small number of tweets
classified in specific situational awareness categories.

One potential reason that hindered progress on automatic
hashtag identification (or extraction)3 from disaster-related
tweets is the lack of large publicly available social me-
dia datasets annotated with relevant and topically informa-

3We use interchangeably hashtag identification and hashtag ex-
traction in this paper.

tive hashtags. To fill in this gap, we constructed a large
and unique dataset of disaster-related tweets annotated with
hashtags to enable the development of deep learning tech-
niques for automatic hashtag identification in order to fur-
ther research in this critical area.

In doing so, we first collected tweets related to multiple
disasters and disaster types (e.g., hurricane, flooding) and
then manually crafted a lexicon, which was used together
with the hashtags from the tweets, whenever available, to an-
notate a large dataset. Using this dataset, we further inves-
tigated a powerful deep learning model, initially proposed
by (Zhang et al. 2016) for keyphrase extraction from gen-
eral tweets, and evaluate its performance capability for hash-
tag extraction from disaster-related tweets. This model, a
joint-layer Long-Short Term Memory network trained using
Multi-Task Learning (LSTM-MTL) and its variants that cap-
ture specifics of informal writing can be regarded as strong
baselines on this dataset. Specifically, we make the follow-
ing contributions:

1. We present a hashtag annotated dataset of more than
67, 288 tweets related to disasters of various types (e.g.,
hurricanes, floodings, and earthquakes) and validate the
hashtag annotations using human judgements.

2. We develop an LSTM-MTL model and variants that in-
corporate informal writing styles in order to exploit our
new dataset for automatic hashtag extraction. The dataset,
code, and other resources from this work are made avail-
able on Github.

3. We conduct a thorough empirical evaluation of the
LSTM-MTL model and its variants and show improve-
ments of these variants over strong baselines.
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Related Work

Mizuno et al. (2016) described two systems that can be used
to analyze and summarize information posted on social me-
dia during disasters. The first system, called DISAANA,
can answer questions (e.g., “What is in short supply in Ku-
mamoto?”) and list problem reports identified using Twitter
data (e.g., “people were burried alive”). The second system,
called D-SUMM, can be used to summarize similar prob-
lem reports into a broader category. These systems work di-
rectly on Twitter, and could benefit from informative extrac-
tive hashtags in order to reduce the number of tweets they
can be used on, and consequently, improve their speed.

A variety of hashtag recommendation approaches have
been proposed for general tweets. For example, Li et al.
(2016a) used a multi-class classification approach (i.e., each
candidate hashtag represents a class), which combines the
skip-gram model for finding word embeddings (Mikolov et
al. 2013), with a convolutional neural network for learning
sentence vectors, and a long short-term memory (LSTM)
network (Hochreiter and Schmidhuber 1997) for combining
sentence vectors into a tweet vector. The tweet vectors were
provided as input to a softmax layer, which was used to iden-
tify hashtags associated with the tweet, among a set of can-
didate hashtags. The approach was tested on a general tweet
dataset, using a set of 20 popular hashtags. Experimental re-
sults showed that the proposed approach performed better
than baselines that used TF-IDF or other types of recurrent
neural networks.

Gong and Zhang (2016) also formulated the problem as
a multi-class classification task, and proposed an approach
based on convolutional neural networks, seen as a global
channel, combined with the attention mechanism, seen as a
local channel, to recommend hashtags. The attention mech-
anism was used to identify tweet words that trigger hash-
tags. The model was tested on a general tweet dataset with
user-provided hashtags as gold-standard, and gave signifi-
cant improvements over several baselines that did not use
deep learning models.

Li et al. (2016b) proposed an LSTM-based approach that
uses the attention mechanism to incorporate the topic infor-
mation (Blei, Ng, and Jordan 2003) of the tweet into the
model. Implicitly, the model finds associations between lo-
cal hidden representations of the words and the global topic
information of the tweet, and uses these associations to gen-
erate a representation that leads to useful topical hashtags
when passed through a softmax layer. Most recently, Li et
al. (2019) extended their previous approach to include a co-
attention mechanism that models content and topic infor-
mation simultaneously. The extended approach was inspired
from another hashtag recommendation approach (Zhang et
al. 2017) that used the co-attention mechanism to combine
textual and visual information available in many tweets.
More specifically, the tweet content was modeled using a
bidirectional LSTM (Bi-LSTM) sequence encoder, while
the tweet topic was modeled using the approach proposed
in (Zhao et al. 2011b). Using a co-attention mechanism, a
new content/topic representation is learned for each tweet.
As with the other hashtag recommendation approaches, this
approach was evaluated on general tweets. Experimental re-

sults showed significant improvements over several base-
lines, including the previous model in (Li et al. 2016b).

One common theme to the hashtag recommendation ap-
proaches reviewed above is that they formulate the problem
as a multi-class classification task, where the hashtags are a
priori established, and a softmax layer transforms the hid-
den tweet representation into a probability distribution over
the hashtags. Usually, there is a small number of candidate
hashtags, e.g., 20 as in (Li et al. 2016a).

While these approaches allow recommendation of hash-
tags that do not appear in the tweet, the requirement of pre-
selecting a fixed number of hashtag candidates makes the
classification-based approaches impractical for our purpose.
In a time of disaster, it is expected that there could a new
set of emerging disaster-related entities that we may want to
use as hashtags. In critical times, we cannot afford to col-
lect new sets of candidate hashtag classes and re-train the
classification models. Therefore, instead of a classification-
based approach, we take an extractive approach to this task.
Precisely, we explore models for extracting important terms
(which may serve as good hashtags) present in the tweets. As
such, our task more closely aligns with keyphrase extraction.

Hashtags in tweets are closely related to keyphrases.
For example, Zhang et al.(2016) used hashtags as gold
keyphrases for keyphrase extraction from Twitter. There-
fore, we treat the task of hashtag identification as similar
to the task of keyphrase extraction. Thus, close to our re-
search is also the work on keyphrase extraction from Twitter
(Marujo et al. 2015; Zhang et al. 2016; Zhao et al. 2011a;
Bellaachia and Al-Dhelaan 2012). For example, (Marujo et
al. 2015) formulated the problem as binary classification and
showed that word embeddings in a system such as MAUI
(Medelyan, Frank, and Witten 2009) perform better than the
TF-IDF (Sparck Jones 1972) for keyphrase extraction on
general tweets. Zhang et al. (2016) formulated the problem
as a sequence labeling task which allows the extraction of
keyphrases of arbitrary lengths, without being constrained
by some fixed number of classes. Zhang et al. (2018) extends
the work of Zhang et al. (2016) by encoding conversational
context.

We chose to focus on a sequence labeling model for
identifying hashtag, and specifically a model based on the
Joint-Layer-RNN proposed by Zhang et al. (2016) since
it achieved state-of-the-art performance on general tweets.
This approach enables the model to extract new hashtags
that may not have been seen before in the training data. This
is particularly important in the context of disaster tweet an-
notation as new disasters with specific new names, locations,
requests, and needs happen all the time.

Hashtag Annotated Dataset
Previous approaches for tweet keyphrase or hashtag extrac-
tion have been used with general tweets, where the user-
provided hashtags are considered to be the gold-standard.
There is no large corpus for disaster tweet hashtag extrac-
tion. Furthermore, as explained above, the user-provided
hashtags for disaster-related tweets do not always contain
useful or sufficient information in terms of situational aware-
ness and disaster response. Therefore, the strongest con-
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Disaster Size

Joplin Tornado (Imran et al. 2013b) 2280

Sandy Hurricane (Imran et al. 2013a) 514

Olteanu, Vieweg, and Castillo (2015)
Colorado Wildfires 623

Costa Rica Earthquake 191

Guatemala Earthquake 133

Venezuela Refinery & 36

Alberta Floods 641

Australia Bushfire 631

Bohol Earthquake 334

Boston Bombings 391

Colorado Floods 696

LA Airport Shootings 603

Manila Floods 434

Sardinia Floods 66

Singapore Haze 281

Typhoon Yolanda 619

West Texas Explosion 422

Typhoon Pablo 507

Philippines Floods 540

Imran, Mitra, and Castillo (2016)
Pakistan Earthquake 1262

California Earthquake 1453

Chile Earthquake 1047

Ebola Virus 1468

Hurricane Odile 992

India Floods 1183

M.E.R.S 1234

Pakistan Floods 1524

Typhoon Hagupit 1453

Cyclone Pam 1328

Nepal Earthquake 28

Mexico Earthquake (Alam, Ofli, and Imran 2018) 904

Harvey Hurricane (Alam, Ofli, and Imran 2018) 2952

Irma Hurricane (Alam, Ofli, and Imran 2018) 3050

Nepal Earthquake (Alam, Joty, and Imran 2018) 4890

Queensland Floods (Alam, Joty, and Imran 2018) 2941

Ours
Chiapas Earthquake (ours) 2549

Mexico Earthquake (ours) 3742

Harvey Hurricane (ours) 4349

Irma Hurricane (ours) 4246

Maria Hurricane (ours) 12, 200

California Fire (ours) 2551

All Disasters Tweets (in total) 67, 288

Table 1: Number of tweets extracted for different disasters
from different sources.

tribution of our work is to construct a benchmark dataset
for disaster tweet hashtag extraction and to provide several
models that can be used as strong baselines for this dataset.

Collection of Disaster Tweets

To construct a large ground-truth dataset for hashtag ex-
traction, we first collected publicly available datasets that
contain tweets related to a big variety of disasters of differ-
ent types (Imran et al. 2013a; 2013b; Olteanu et al. 2014;
Olteanu, Vieweg, and Castillo 2015; Imran, Mitra, and
Castillo 2016; Alam, Joty, and Imran 2018; Alam, Ofli, and
Imran 2018). All these existing datasets were annotated us-
ing crowdsourcing platforms or volunteers, with respect to
relevance to a disaster and/or informativeness. We removed
tweets annotated as irrelevant, as uninformative, or as related
to emotional support and sympathy.

In addition to the publicly available disaster datasets, we
also used a collection of tweets that we crawled, using the
Twitter streaming API, during the following disasters: Hur-
ricane Harvey, Hurricane Irma, Hurricane Maria, Mexico
Earthquake, Chiapas Earthquake, and California Fire (wild-
fire). This collection was filtered for disaster relevance using
a Naı̈ve Bayes classifier trained on CrisisLexT6 (Olteanu et
al. 2014). Finally, we removed duplicates and non-English
tweets from the combined dataset that consists of the pub-
licly available datasets and our own collection of tweets. The
resulting combined dataset comprises a large variety of dis-
asters of different types (37 disasters in total), as illustrated
in Figure 2. The size of each disaster name in the figure is
proportional to the number of tweets from that disaster in-
cluded in our new dataset. The overall details of our dataset
including all the disasters present in it along with their cor-
responding source and size are provided in Table 1.

Disaster Lexicon

Following the disaster-relevant data collection, we pro-
ceeded with a disaster lexicon construction, as follows: we
first sampled approximately 150 tweets from each of the
37 disasters in our collection; then, we manually identified
terms that were relevant and topically informative for the re-
spective disaster and added them to the lexicon. The types of
terms and phrases that we identified as relevant and informa-
tive are: location terms, requests or help-related terms (need
food, send help, etc.), situation awareness terms (‘building
collapse’, ‘100 dead’, ‘stranded’, ‘trapped’, etc.), disaster
names (‘Hurricane’, ‘Hurricane Maria’), names of important
persons, organizations, or nouns related to important voca-
tions (related to ‘government’, ‘president’, etc.), terms re-
lated to disaster warnings and updates, and other terms as-
sociated with infrastructure damage, property loss, affected
individuals, injured or missing persons, fatality rates, etc.

We only stored unigram and bigram phrases in the lexi-
con. In total, we extracted 2, 140 lexicon phrases from our
sample tweets (≈ 5, 500 tweets). Finally, we included some
phrases from the CrisisLex lexicon (Olteanu et al. 2014),
which were not already in our lexicon. Our final lexicon con-
tains 2, 430 unique phrases.
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Figure 2: Wordcloud of disasters in our dataset.

Dataset Annotation

We used the manually constructed lexicon to automatically
annotate hashtags in the tweets, by matching the lemmatized
version of a tweet phrase with a lemmatized phrase in the
disaster lexicon. We chose to use the lemmatized version
of a word instead of its stemmed version to avoid ambigu-
ous words resulting from chopping off the end of words.
While our lexicon only contain bigrams and unigrams, we
chain together overlapping bigram matches in a sequence
to create larger keyphrases. Consider the example where
we have a subsequence: “hurricane maria recovery efforts”,
and we have the following bigram phrases from the lexicon:
“hurricane maria”, “maria recovery”, and “recovery efforts”.
Thus, there are overlapping matches between the given sub-
sequence and the bigram lexicon phrases. In this case, we
can chain the bigram matches together, combining them into
a single annotated keyphrase: “hurricane maria recovery ef-
forts”. We found that most of the time, phrases from the lex-
icon appear in the tweets within a similar context (due to the
fact that we pre-filtered most tweets that do not occur in a
disaster context). This fact mitigates the risk of annotating
phrases in an unsuitable context even though our annotation
approach does not take context into account.

In addition to hashtags annotated as gold-standard based
on the manually constructed lexicon, we also used user-
provided hashtags as gold-standard (when available), as they
generally capture disaster names and locations, as men-
tioned before. However, we removed the # sign, and seg-
mented all hashtagged phrases into the constituent words,
before annotating them, to ensure that the model learns to
distinguish hashtag-like words without relying on the # sign.
We also removed user mentions and urls from the tweets.

Benchmark Dataset

To enable progress on hashtag identification in disaster
tweets and facilitate models’ comparisons, we created a
benchmark dataset by splitting our dataset into training, val-
idation and test subsets. The test subset consists of: (1) three
disasters that are not represented in the training data, specif-
ically, Maria Hurricane, Philippines Flood and California
Fire, and (2) 7% of the data (removed from the training set)
from the disasters represented in the training set. The perfor-
mance of the models is evaluated on each of these four sub-
sets separately. The validation subset consists of the whole

Figure 3: Diagram of the LSTM-MTL model with word
embeddings, POS-embeddings, and concatenated IPA and
phonological features.

Typhoon Pablo data, together with 15% of the data (removed
from the training set) from the disasters occurring in the
training set.

Quality Assessment

To assess the quality of our semi-automated lexicon annota-
tion, we had human annotators manually inspect the lexicon-
based annotations for a sample of tweets, and make an as-
sessment about the annotation of a tweet as appropriate or
not appropriate. For this task, we sampled 500 tweets from
our dataset (training set), and uploaded them to Amazon Me-
chanical Turk. The task was to decide whether a given pre-
dicted keyphrase is appropriate (as hashtag) for a given tweet
or not. The specific options were “Appropriate”, “Not Ap-
propriate”, and “Unsure”. Each tweet was assessed by three
annotators. Approximately 89% of the keyphrases had a ma-
jority vote for “Appropriate” and only about 3% of the sam-
pled data were consensually voted as “Not Appropriate” by
all the three annotators.

LSTM and Variants

For the core modeling of our dataset, we use the Joint-
layer Recurrent Neural Network (RNN) model proposed by
Zhang et al. (2016) and investigate several of its variants
that capture specifics of informal writing in social media.
We chose this model because it achieves state-of-the-art per-
formance on general Tweet dataset (with hashtags treated
as ground truth). It significantly outperforms other models
such as Marujo’s (Marujo et al. 2015) variant of MAUI
(Medelyan, Frank, and Witten 2009). Furthermore, tradi-
tional keyphrase extraction models such as TF-IDF (Salton
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Model Pr Re F1 Pr Re F1

Maria Hurricane California Fire

LSTM 89.65% 83.49% 86.46% 91.21% 85.29% 88.15%

2-layer LSTM 89.81% 83.08% 86.31% 91.09% 84.79% 87.83%

LSTM-MTL 89.87% 83.93% 86.80% 90.96% 85.40% 88.09%

LSTM-MTL+ELMo 90.48% 85.80% 88.08% 92.65% 89.19% 90.89%

LSTM-MTL+IPA,POS 89.19% 84.92% 87.00% 91.00% 86.76% 88.83%

LSTM-MTL+ELMo,IPA,POS 90.97% 85.59% 88.20% 91.88% 87.72% 89.75%

Philippines Flood Multiple disasters

LSTM 85.99% 83.39% 84.67% 92.89% 88.95% 90.88%

2-layer LSTM 85.71% 83.59% 84.64% 92.39% 88.08% 90.18%

LSTM-MTL 85.29% 83.94% 84.61% 92.88% 89.27% 91.04%

LSTM-MTL+ELMo 87.30% 85.52% 86.40% 93.67% 90.55% 92.08%

LSTM-MTL+IPA,POS 87.26% 84.58% 85.90% 93.38% 89.74% 91.52%

LSTM-MTL+ELMo,IPA,POS 87.88% 85.92% 86.89% 93.83% 90.66% 92.22%

Table 2: Precision, Recall, and F1 scores on four test datasets

and McGill 1986), TextRank (Mihalcea and Tarau 2004), or
KEA (Witten et al. 1999) that rely on statistical features like
word co-occurences and word counts of terms within a doc-
ument, are not expected to work well on Twitter data since
tweets consist of very short text. Hence, in a tweet, most can-
didate keyphrases will usually occur only once and a word
can only co-occur with very few other different words. In-
deed, we find them to perform considerably poorly com-
pared to Joint-layer RNN based models on Twitter data in
the work of Zhang et al. (2018). We also compare the Joint-
layer RNN with other RNN models (a single layered BiL-
STM, and a two layered BiLSTM). We describe Joint-layer
RNN model and its variants in what follows. A diagram of
the most complete variant is shown in Figure 3.

LSTM-MTL: The Joint-layer RNN is a Bi-LSTM model
(Hochreiter and Schmidhuber 1997; Graves, Jaitly, and Mo-
hamed 2013), trained using Multi-Task Learning (MTL),
which stacks two Bi-LSTM layers and jointly trains them on
two related tasks. The first Bi-LSTM is trained on the task of
identifying single words that are suited to be part of a hash-
tag (a lower level auxiliary task). The second Bi-LSTM is
trained to label hashtag candidate phrases of arbitrary length
(the main task, treated as a sequence labeling problem).
Similar MLT approaches have been used in other contexts
(Søgaard and Goldberg 2016; Liu, Qiu, and Huang 2016).
For this model, we used GloVe embeddings (Pennington,
Socher, and Manning 2014) pre-trained on Twitter. The em-
beddings were loaded using Flair (Akbik, Blythe, and Voll-
graf 2018). Following Zhang et al. (2016), we represented
each word in a sequence as a concatenation of three words,
specifically, the current word and its immediate neighbors.

LSTM-MTL+ELMo: In this variant of the Joint-layer
RNN, we concatenate the GloVe embeddings with contex-

tualized ELMo word embeddings (Peters et al. 2018). How-
ever, to keep the number of parameters smaller, we did not
use the three-word window representation as in the original
model, as ELMo is already encoding the context.

LSTM-MTL+IPA,POS: This model variant of the Joint-
layer RNN is aimed at better handling noise in the data.
Hence, we incorporate information about the informal writ-
ing, inspired from the methods proposed by Aguilar et
al. (2018). They noted how Twitter users often tend to
spell words based on their pronunciations, which means
it is possible to make more normalized representations of
the words by using their phonetics or corresponding IPA
(International Phonetic Alphabet) letters, alongside with
their phonological features. Following their work, we used
Epitran (Mortensen, Dalmia, and Littell 2018) to convert
graphemes to phonemes (represented using IPA), and Pan-
phon (Mortensen et al. 2016) to convert each IPA phoneme
into a vector representing various phonological (articula-
tory) features associated with it. We also used part-of-speech
(POS) taggers as provided by Owoputi et al. (2013) to ex-
plicitly add POS-tag information to this model.

We used randomly initialized embeddings for each POS-
tag and IPA symbol. We directly used the phonological vec-
tor representations created with Panphon as embeddings for
phonological features. We concatenated the embeddings of
IPA symbols with their corresponding phonological feature
vectors. The result of the concatenation, a character level
representation of the phonetics and phonological features for
each word, was fed to a character-level CNN (Zhang, Zhao,
and LeCun 2015), followed by a global max-pooling layer,
to create word level representations. Unlike Aguilar et al.
(2018), we chose to use a CNN as opposed to a Bi-LSTM
for creating the word level representations because the CNN
is much faster. The output of the CNN was concatenated
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Figure 4: Examples of tweets from our test dataset. The agreement between predicted hashtags and annotated gold-standard
hashtags is marked with blue. Gold-standard hashtags that are not in the set of predicted hashtags are marked with yellow,
and predicted hashtags that are not annotated as gold-standard are marked with red. The predictions are made with LSTM-
MTL+ELMo, POS, IPA model. (Personal information and urls were removed.)

with the POS-tag embeddings and pre-trained GloVe em-
beddings. The resultant representation was then fed to the
stacked Bi-LSTM model. This model uses the three-word
window representation on GloVe embeddings.

LSTM-MTL+ELMo,IPA,POS: The last variant of the
Joint-layer RNN is a combination of the above two models.
It uses ELMo concatenated with GloVe embeddings, POS-
tag embeddings, and CNN encoded word-level represen-
tations of phonetics and phonological features. Given that
ELMo captures context, this model does not use the three-
word window representation.

Experimental Setup and Results

We describe our experimental setting and present results on
our four test datasets in this section.

Experimental Settings

We used 100 dimensional Twitter GloVe embeddings, 1024
dimensional ELMo embeddings, 64 dimensional POS-tag
embeddings, and 22 dimensional IPA embeddings. Phono-
logical features were represented with a 22 dimensional vec-
tor. The embeddings were further fine-tuned during training.
Each Bi-LSTM network had 300 hidden units. For the CNN,
we used 128 filters and a kernel of size 3. We used dropouts
of 0.5 on the input to the Bi-LSTM layers. For optimization,
we used the nadam optimizer (Dozat 2016) with a learning
rate of 0.0015. Hyper-parameters were either tuned on the
validation data or selected based on values that gave good
results in prior works.

Results

The results of the experiments are shown in Table 2 for the
four test datasets, specifically, Maria Hurricane, California

Fire, Philippines Floods, and a dataset sampled from mul-
tiple disasters that are explicitly represented in the training
data (however, with no overlap between train and test). The
multiple disasters dataset is used to evaluate the ability of the
models to generalize between similar training and test data,
and can be seen as providing an upper bound for the perfor-
mance of the models. We grouped the results according to
the baselines (LSTM, 2-layer LSTM, and LSTM-MTL) and
our explored variants of the LSTM-MTL that capture infor-
mal writing in social networks. Underlined scores in the ta-
ble are best within each group and bold scores are best over-
all. As can be seen from Table 2, our models can generalize
well to unseen and underrepresented disasters like Califor-
nia Fire, Philippines Floods, and Maria Hurricane.

Regarding the performance of the models, interest-
ingly, we find in Table 2 that the simpler LSTM mod-
els (LSTM and 2-layer LSTM) perform on par with the
LSTM with multi-task setup (LSTM-MTL). However, the
variants that explicitly incorporate specifics from the infor-
mal writing bring further improvements, with the LSTM-
MTL+ELMo,IPA,POS model being the best overall (with
the exception of California Fire dataset). Between the
LSTM-MLT+ELMO and LSTM-MLT+IPA,POS variants,
the LSTM-MLT+ELMO variant gives better results over-
all. We can also observe that the concatenation of the GloVe
embeddings with the contextual ELMo embeddings capture
better the context of the tweet as compared to the LSTM-
MTL model.

Error Analysis and Prediction Quality

To gain insights into the hashtag predictions made by the
best performing model, LSTM-MTL+ELMo,IPA,POS, Fig-
ure 4 shows the predictions on several tweets from our test
data, by comparison with the gold-standard annotations. The
agreement between model predictions and gold-standard is
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shown in blue. Predicted hashtags that are not in the gold-
standard are marked with red, while gold-standard annota-
tions that are not in the set of predicted hashtags are marked
with yellow. As can be seen, the agreement between model
predictions and gold-standard is very high. Interestingly our
model can predict certain named entities such as ‘Hispanic
Federation’ and ’‘ataan,’ which were beyond the lexicon, but
it also misses some other named entities such as ‘valenzuela
city’, and ‘UST Hospital’. Overall we can see that the cho-
sen model that capture informal writing is able to make good
hashtag predictions for new disasters.

The models described here can be integrated into systems
that can help response organizations to have a real time map
of a disaster - what is happening on the ground, which could
display both the physical disaster and the spikes of intense
activity in the proximity to the disaster. In time, such AI-
based systems could have a strong social impact with great
benefits to those affected by disasters, and could pinpoint the
joy of having survived a falling tree, the horror of a bridge
washing out, or the fear of looters in action. Responders will
be able to use such a system to provide real time alerts of the
status of the disaster and of the affected population.

Conclusion

In this paper, we introduced a new disaster-related dataset
of tweets that were annotated with hashtags using a semi-
automated lexicon-based approach. This is the first large-
scale dataset constructed for identifying relevant and topi-
cally informative hashtags for disaster tweets. We believe
that our dataset will foster research in this domain, will
enable the design of deep learning models, and will help
response organizations to make better use of social media
data contributed by individuals affected by disasters, and
will contribute to better decision-making during disasters
when resources are limited. In addition to introducing a new
dataset, we built an LSTM-MTL model and explored its
variants to capture informal writing in social media. The
results show that taking informal writing into account im-
proves the F1-score of LSTM-MTL by up to 2%. This opens
up directions for future investigation for more explicitly cap-
turing informal writing into the modeling. Also, incorporat-
ing domain knowledge into the models would be expected to
improve performance further. In the near future, we wish to
bring more attention to building a multilingual setup. Hierar-
chical multiclass classification with fine and coarse grained
labels enabled by our dataset would also be an interesting
future direction.
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