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Abstract

On-demand ride-pooling (e.g., UberPool, LyftLine, Grab-
Share) has recently become popular because of its ability to
lower costs for passengers while simultaneously increasing
revenue for drivers and aggregation companies (e.g., Uber).
Unlike in Taxi on Demand (ToD) services – where a ve-
hicle is assigned one passenger at a time – in on-demand
ride-pooling, each vehicle must simultaneously serve mul-
tiple passengers with heterogeneous origin and destination
pairs without violating any quality constraints. To ensure near
real-time response, existing solutions to the real-time ride-
pooling problem are myopic in that they optimise the ob-
jective (e.g., maximise the number of passengers served) for
the current time step without considering the effect such an
assignment could have on assignments in future time steps.
However, considering the future effects of an assignment that
also has to consider what combinations of passenger requests
can be assigned to vehicles adds a layer of combinatorial
complexity to the already challenging problem of consider-
ing future effects in the ToD case.
A popular approach that addresses the limitations of myopic
assignments in ToD problems is Approximate Dynamic Pro-
gramming (ADP). Existing ADP methods for ToD can only
handle Linear Program (LP) based assignments, however, as
the value update relies on dual values from the LP. The as-
signment problem in ride pooling requires an Integer Lin-
ear Program (ILP) that has bad LP relaxations. Therefore,
our key technical contribution is in providing a general ADP
method that can learn from the ILP based assignment found
in ride-pooling. Additionally, we handle the extra combina-
torial complexity from combinations of passenger requests
by using a Neural Network based approximate value function
and show a connection to Deep Reinforcement Learning that
allows us to learn this value-function with increased stability
and sample-efficiency. We show that our approach easily out-
performs leading approaches for on-demand ride-pooling on
a real-world dataset by up to 16%, a significant improvement
in city-scale transportation problems.

1 Introduction

On-demand ride-pooling, exemplified by UberPool, Lyft-
Line, GrabShare, etc., has become hugely popular in major
cities with 20% of all Uber trips coming from their ride-
pool offering UberPool (Heath 2016; Gessner 2019). Apart
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from reducing emissions and traffic congestion compared to
Taxi/car on-Demand (ToD) services (e.g., UberX, Lyft), it
benefits all the stakeholders involved: (a) Individual passen-
gers have reduced costs as these are shared by overlapping
passengers; (b) Vehicles make more money per trip as mul-
tiple passengers (or passenger groups) are present; (c) For
the centralized entity (like Uber, Lyft etc.) more customer
requests can be satisfied with the same number of vehicles.

Underlying these on-demand ride-pooling services is the
Ride-Pool Matching Problem (RMP) (Alonso-Mora et al.
2017; Bei and Zhang 2018; Lowalekar, Varakantham, and
Jaillet 2019). The objective in the RMP is to assign groups of
user requests to vehicles that can serve them, online, subject
to predefined quality constraints (e.g., the detour delay for
a customer cannot be more than 10 minutes) in such a way
that a quality metric is maximised (e.g., revenue). The RMP
reduces to the taxi/car-on-demand (ToD) problem when the
capacity, i.e., the maximum number of simultaneous passen-
gers (with different origin and destination pairs) that can be
served by a vehicle, is 1. In this paper, we consider the most
general version of the RMP, in which batches of requests are
assigned to vehicles of arbitrary capacity, and present a solu-
tion that can scale to practical use-cases involving thousands
of locations and vehicles.

Past research in solving RMP problems can be catego-
rized along four threads. Past work along the first thread
employs traditional planning approaches to model the RMP
as an optimisation problem (Ropke and Cordeau 2009;
Ritzinger, Puchinger, and Hartl 2016; Parragh, Doerner, and
Hartl 2008). The problem with this class of approaches
is that they don’t scale to on-demand city-scale scenarios.
The second thread consists of approaches that make the
best greedy assignments (Ma, Zheng, and Wolfson 2013;
Tong et al. 2018; Huang et al. 2014; Lowalekar, Varakan-
tham, and Jaillet 2019; Alonso-Mora et al. 2017). While
these scale well, they are myopic and, as a result, do not
consider the impact of a given assignment on future assign-
ments. The third thread, consists of approaches that use Re-
inforcement Learning (RL) to address the myopia associ-
ated with approaches from the second category for the ToD
problem (Xu et al. 2018; Lin et al. 2018; Li et al. 2019;
Wang et al. 2018; Verma et al. 2017). Past RL work for the
ToD problem cannot be extended to solve the RMP, however,
because it relies heavily on the assumption that vehicles can
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only serve one passenger at a time.
Lastly, there has been work in operations research that

uses the Approximate Dynamic Programming (ADP) frame-
work to solve the ToD problem (Powell 2007) and a spe-
cial case of a capacity-2 RMP (Yu and Shen 2019). In ADP,
matching is performed using a learned value function that
estimates the future value of performing a certain matching.
There are two major reasons for why past ADP approaches
for solving the ToD problem cannot immediately be applied
to the RMP, however. Firstly, the value function approxima-
tion in past work is linear and its update relies heavily on
the assumption that matching can be modelled as a Linear
Program (LP); this does not hold for the RMP with arbitrary
vehicle capacities. Secondly, in the RMP, passengers may be
assigned to a partially filled vehicle at each time step. This
results in a complex state space for each vehicle that is com-
binatorial (combinations of requests already assigned) in the
vehicle capacity (more details in Section 4).

We make three key contributions in this paper. First,
we formulate the arbitrary capacity RMP problem as an
Approximate Dynamic Programming problem. Second, we
propose Neural ADP (NeurADP), a general ADP method
that can learn value functions (approximated using Neu-
ral Networks) from ILP based assignment problems. Fi-
nally, we bring together techniques from Deep Q-Networks
(DQN) (Mnih et al. 2015) to improve the stability and scal-
ability of NeurADP.

In the experiments, we compare our approach to two lead-
ing approaches for the RMP on a real-world dataset (NYYel-
lowTaxi 2016). Compared to a baseline approach proposed
by (Alonso-Mora et al. 2017), we show that our approach
serves up to 16% more seen requests across different pa-
rameter settings. This translates to a relative improvement
of 40% over the baseline.

2 Background: Approximate Dynamic

Programming (ADP)

ADP is a framework based on the Markov Decision Prob-
lem (MDP) model for tackling large multi-period stochastic
fleet optimisation problems (Powell 2007) such as ToD. The
problem is formulated using the tuple 〈S,A, ξ, T,O〉:
S: denotes the system state with st denoting the state of sys-

tem at decision epoch t.
A: denotes the set of all possible actions 1 (which satisfy the

constraints on the action space) with At denoting the set
of possible actions at decision epoch t. at ∈ At is used
to denote an action at decision epoch t.

ξ: denotes the exogenous information – the source of ran-
domness in the system. For instance, this would corre-
spond to demand in ToD problems. ξt denotes the ex-
ogenous information (e.g., demand) at time t.

T : denotes the transition function which describes how the
system state evolves over time.

O: denotes the objective function with ot(st, at) denoting
the value obtained on applying action at on state st.

1We use action and decision interchangeably in the paper.

In an MDP, system evolution happens as
(s0, a0, s1, a1, s2, ....). However, in an ADP, the evolution
happens as (s0, a0, s

a
0 , ξ1, s1, a1, s

a
1 , · · · , st, at, sat , · · · ),

where st denotes the pre-decision state at decision epoch t
and sat

2 denotes the post-decision state (Powell 2007). The
transition from state st to st+1 depends on the action vector
at and the exogenous information ξt+1. Therefore,

st+1 = T (st, at, ξt+1)

Using post-decision state, this transition can be written as

sat = T a(st, at); st+1 = T ξ(sat , ξt+1)

Let V (st) denotes the value of being in state st at decision
epoch t, then using Bellman equation we get

V (st) = max
at∈At

(O(st, at) + γE[V (st+1)|st, at, ξt+1])

where γ is the discount factor. Using post-decision state, this
expression can be broken down into two parts:

V (st) = max
at∈At

(O(st, at) + γV a(sat )) (1)

V a(sat ) = E[V (st+1)|sat , ξt+1] (2)

The advantage of this decomposition is that Equation 1 can
be solved using an LP in fleet optimisation problems. The
basic idea in any ADP algorithm is to define a value func-
tion approximation around post-decision state, V a(sat )) and
to update it by stepping forward through time using sample
realizations of exogenous information (i.e. demand in fleet
optimisation that is typically observed in data). Please refer
to Powell (Powell 2007) for more details.

3 Ride-pool Matching Problem (RMP)

In this problem, we consider a fleet of vehicles/resources R
with random initial locations, travelling on a predefined road
network G. Passengers that want to travel from one location
to another send requests to a central entity that collects these
requests over a time-window called the decision epoch Δ.
The goal of the RMP is to match these collected requests
U t to empty or partially filled vehicles that can serve them
such that an objective O is maximised subject to constraints
on the delay D. These delay constraints D are important be-
cause customers are only willing to trade being delayed in
exchange for a reduced fare up to a point. In this paper, we
consider the objective O to be the number of requests served.

We provide a formal definition for the RMP using the tu-
ple 〈G,U ,R,D,Δ,O〉:
G: (L, E) is a weighted graph representing the road net-

work. Along the lines of (Alonso-Mora et al. 2017), L
denotes the set of street intersections and E defines the
adjacency of these intersections. Here, the weights cor-
respond to the travel time for a road segment. We assume
that vehicles only pick up and drop people off at intersec-
tions.

2Here a is just used to indicate that it is post decision state and
it does not correspond to any specific action.
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Figure 1: Schematic outlining our overall approach. We start with a hypothetical G, U and R in (A). The grid represents a
road network. The blue people and circles correspond to user requests and the nearest street intersection that they’re mapped
to respectively. The blue dotted lines represent the shortest path between the pick-up and drop-off points of a request. The red
and green triangles correspond to existing pick-up/drop-off points for the red and green vehicles respectively. The dotted lines
describe their current trajectory. In (B) we map the requests and their combinations to vehicles that can serve them under the
constraints defined by D to create feasible actions using the approach presented in (Alonso-Mora et al. 2017). In (C), we score
each of these feasible actions using our Neural Network Value Function. In (D), we create a mapping of requests to vehicles
that maximises the sum of scores generated in (C) using the Integer Linear Program (ILP) in Table 1. In (E), we use this final
mapping to update the score function (Section 4). In (F), we simulate the motion of vehicles until the next epoch either based
on their current trajectories or a re-balancing strategy. This process then repeats for the next decision epoch.

U : denotes the set of user requests. U = ×t Ut is the combi-
nation of requests that we observe at each decision epoch
t. Each request uj

t ∈ Ut is represented by the tuple:〈
ojt , e

j
t , t

〉
, where ojt , e

j
t ∈ L denote the origin and des-

tination and t denotes the arrival epoch of the request.

R: denotes the set of resources/vehicles. Each element i ∈
R is represented by the tuple

〈
ci, pi, Li

〉
. ci denotes the

capacity of the vehicle, i.e., the maximum number of pas-
sengers it can carry simultaneously, pi its current posi-
tion and Li the ordered list of locations that the vehi-
cle should visit next to satisfy the requests currently as-
signed to it.

D: {τ, λ} denotes the set of constraints on delay. τ denotes
the maximum allowed pick-up delay which is the differ-
ence between the arrival time of a request and the time
at which a vehicle picks the user up. λ denotes the max-
imum allowed detour delay which is the difference be-
tween the time at which the user arrived at their desti-
nation in a shared cab and the time at which they would
have arrived if they had taken a single-passenger cab.

Δ: denotes the decision epoch duration.
O: represents the objective, with Oi

t denoting the value ob-
tained by serving request i at decision epoch t. The goal
of the online assignment problem is to maximize the
overall objective over a given time horizon, T .

4 NeurADP: Neural Approximate Dynamic

Programming

Figure 1 represents the overall framework used for solv-
ing the RMP. As shown in the figure, the framework exe-
cutes 6 steps at each decision epoch to assign incoming user
requests to available vehicles. Existing myopic approaches
only execute steps (A), (B), (D) and (F). The crucial steps
(C) and (E) help in maximising the expected long-term value
of serving a request rather than its immediate value. To learn
this long-term value, we model the RMP problem using
ADP and use deep neural networks to learn the value func-
tions of post-decision states.

In this section, we first indicate key challenges that pre-
clude direct application of existing ADP methods. We next
provide the ADP model for the RMP problem and describe
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our contributions in using neural function approximations
for scalable and effective policies in RMP.

Departure From Past Work

Approximate Dynamic Programming has been used to
model many different transportation problems such as
fleet management (Simao et al. 2009), ambulance alloca-
tion (Maxwell et al. 2010) etc. While we also model our
RMP problem using ADP, we cannot use the solutions from
past work for the following reasons:

1. Non-trivial generation of feasible actions: In using ADP
to solve the ToD problem, the action for a single empty
vehicle is to match a single request. Computing the fea-
sible set of requests for a vehicle is a straightforward and
the best action for all vehicles together can then be com-
puted by solving a Linear Program (LP). In the case of the
RMP, multiple requests can be assigned to a single empty
or partially filled vehicle. Generating the set of feasible
actions, in this case, is complex and real-time solutions
to this problem have been the key challenge in literature
on myopic solutions to ride-pooling. In this paper, we use
the approach proposed by (Alonso-Mora et al. 2017) to
generate feasible actions for a single vehicle (Section 4)
and then use an Integer Linear Program (ILP) to choose
the best action (Table 1) over all vehicles.

2. Inability to use LP-duals to update the value function:
Past work in ADP for ToD (Simao et al. 2009) uses the
dual values of the matching LP to update the parameters
of their value function approximation. However, choos-
ing the best action in the RMP requires solving an In-
teger Linear Program (ILP) that has bad LP-relaxations.
As a result, we cannot use duals to update our value func-
tion. Instead, we show the connection between ADP and
Reinforcement Learning (RL), and use the more general
Bellman update used in RL to update the value function
(Section 4).

3. Curse of Dimensionality: Past work in ADP for trans-
portation problems addresses the curse of dimensionality
by considering the value function to be dependent on a
small set of hand-crafted attributes (e.g., aggregated num-
ber of vehicles in each location) rather than on the states
of a large number of vehicles. Hand-crafting of state at-
tributes is domain-specific and is incredibly challenging
for a complex problem like RMP, where aggregation of
vehicles is not a feasible attribute (as each vehicle can
have different number of passengers going to multiple
different locations). Instead, we use a Neural Network
based value function to automatically learn a compact
low dimensional representation of the large state space.

4. Incorporating Neural Network value functions into the
optimisation problem: Past work in ADP for ToD uses
linear or piece-wise linear value function approximations
that allow for the value function to be easily integrated
into the matching LP. Non-linear value functions (such as
neural networks) cannot be integrated in this way, how-
ever, as they would make the overall optimisation pro-
gram non-linear. In Section 4), we address this issue by

using a two-step decomposition of the value function that
allows it to be efficiently integrated into the ILP as con-
stants.

5. Challenges of learning a Neural Network value func-
tion: In Deep Reinforcement Learning literature (Mnih
et al. 2015), it has been shown that naive approaches to
approximating Neural Network value functions are un-
stable. Additionally, training them requires millions of
samples. To address this, we propose a combination of
methodological and practical solutions in Section 4.

The combination of using a Neural Network value function
(instead of linear approximations) and updating it with a
more general Bellman update (instead of LP-duals) repre-
sents a general alternative to past ADP approaches that we
term Neural ADP (NeurADP).

Approximate Dynamic Programming Model for
the RMP

We model the RMP by instantiating the tuple in Section 2.

S: The state of the system is represented as st = (rt, ut)
where rt is the state of all vehicles and ut is contains all
the requests waiting to be served. A vehicle r ∈ R at
decision epoch t is described by a vector rit = (pi, t, Li)
which represents its current trajectory. Specifically, it
captures the current location (pi), time(t) and an ordered
list of future locations (along with the cut-off time by
which each must be visited) that the vehicle has to visit
(Li) to satisfy the currently assigned requests. Each user
request j at decision epoch t is represented using vector
uj
t = (oj , ej) which captures its origin and destination.

A: For each vehicle, the action is to assign a group of users
from the set Ut to it. These actions should satisfy:

1. Constraints at the vehicle level - satisfying delay
constraints D and vehicle capacity constraints

2. Constraints at the system level - Each request is as-
signed to at most one vehicle.

Handling exponential action space: To reduce the
complexity, feasible actions are generated in two steps.
In the first step, we handle vehicle-level constraints by
generating a set of feasible actions (groups of users) for
each vehicle. To do this efficiently, we first generate an
RTV (Request, Trip, Vehicle) graph using the algorithm
by Alonso et.al. (Alonso-Mora et al. 2017). Along with
feasible actions, this generation process also provides
the routes that the vehicle should take to complete each
action. We use F i

t to denote the set of feasible actions
generated for vehicle i at decision epoch t.

F i
t = {f i | f i ∈ ∪ci

c′=1 [U ]c
′
, P ickUpDelay(f i, i) ≤ τ,

DetourDelay(f i, i) ≤ λ}
To ensure that system-level constraints are satisfied, we

solve an ILP that considers all vehicles and requests to-
gether. Let ai,ft denote that vehicle i takes action f at
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AssignmentILP(t):

max
∑
i

∑
f∈Fi

t

oi,ft ∗ ai,ft + V i(T i,a(ri,at , f)) ∗ ai,ft

subject to Constraints (3) - (5)
(6)

Table 1: Optimization Formulation for assignment of vehi-
cles to feasible actions

decision epoch t. Then, the decision variables ai,ft need
to satisfy following constraints:

∑
f∈Fi

t

ai,ft = 1 ::: ∀i ∈ R (3)

∑
i∈R

∑
f∈Fi

t ;j∈f

ai,ft ≤ 1 ::: ∀j ∈ Ut (4)

ai,ft ∈ {0, 1} ::: ∀i, f (5)

Constraint (3) ensures that each vehicle is assigned a sin-
gle action and constraint (4) ensures that each request is
a part of, at most, one action. Together, they ensure that
a request can be mapped to at most one vehicle.
We use At denote the set of all actions that satisfy both
individual and system-level constraints at time t and
at ∈ At to denote a feasible action in this set3.

ξ: As in previous work, exogenous information ξt repre-
sents the user demand that arrives between time t − 1
and t.

T : The transition function T a defines how the vehicle state
changes after taking an action. In the case of the RMP, all
user requests that are not assigned are lost (Alonso-Mora
et al. 2017). Therefore, the user demand component of
post-decision state will be empty, i.e., ua

t = φ.

T a(st, at) = rat (7)

Here, rat denotes the post decision state of the vehicles.
We use T i,a(sit, a

i
t) = ri,at to denote the transition of in-

dividual vehicles. At each decision epoch, based on the
actions taken, (pi, t, Li) ∀i are updated and are captured
in ri,at . Each vehicle has a fixed path corresponding to
each action and as a result the transition above is deter-
ministic.

O: When vehicle i takes a feasible action f at decision
epoch t, its contribution to the objective is oi,ft . For the
objective of maximizing the number of requests served,
oi,ft is the number of requests that are part of a feasible
action f (0 for the null action aφ). The objective function
at time t is as follows:

ot(st, at) =
∑
i∈R

∑
f∈Fi

t

oi,ft ∗ ai,ft

3At every time step, we augment At with a null action aφ. This
allows a vehicle to continue along its trajectory without being as-
signed a passenger.

Algorithm 1: NeurADP (N,T )
1: Initialize: replay memory M , Neural value func-

tion
V (with random weights θ)

2: for each episode 1 ≤ n < N do
3: Initialize the state sn0 by randomly positioning

vehicles.
4: Choose a sample path ξn

5: for each step 0 ≤ t ≤ T do
6: Compute the feasible action set Ft based on

snt .
7: Solve the ILP in Table 1 to get best action

ant .
(Add the Gaussian noise for exploration.)

8: Store (rnt ,Ft) as an experience in M .
9: if t % updateFrequency == 0 then

10: Sample a random mini-batch of experi-
ences from M

11: for each experience e do
12: Solve the ILP in Table 1 with the

information from experience e to get the
objective value ye

13: for each vehicle i do
14: Perform a gradient descent step on

(ye,i − V (ri,nt ))2 with respect to
the network parameters θ

15: Update: sa,nt = T a(snt , a
n
t ), snt+1 =

T ξ(sa,nt , ξnt+1)

Value Function Decomposition

Non-linear value functions, unlike their linear counterparts,
cannot be directly integrated into the matching ILP. One way
to incorporate them is to evaluate the value function for all
possible post-decision states and then add these values as
constants. However, the number of post-decision states is
exponential in the number of resources/vehicles.

To address this, we propose a two-step decomposition
of our overall value function that converts it into a linear
combination over individual value functions associated with
each vehicle4:

• Decomposing joint value function based on individual
vehicles’ value functions: We use the fact that we have re-
wards associated with each vehicle to decompose the joint
value function for all vehicles’ rewards into a sum over
the value function for each vehicle’s rewards. The proof
for this is straightforward and follows along the lines of
(Russell and Zimdars 2003).

V (rat ) =
∑
i

V i(rat )

• Approximation of individual vehicles’ value functions:
We make the assumption that the long-term reward of

4As mentioned in equation (7), the post-decision state only de-
pends on the vehicle state. Therefore, V (sat ) = V (rat ).
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a given vehicle is not significantly affected by the spe-
cific actions another vehicle makes in the current decision
epoch. This makes sense because the long-term reward of
a given vehicle is affected by the interaction between its
trajectory and that of the other vehicles and, at a macro
level, these do not change significantly in a single epoch.
This assumption allows us to use the pre-decision, rather
than post-decision, state of other vehicles.

V i(rat ) = V i(
〈
ri,at , r-i,a

t

〉
) ≈ V i(

〈
ri,at , r-i

t

〉
)

Here, -i refers to all vehicles that are not vehicle i. This
step is crucial because the second term in the equation
above r-i

t can now be seen as a constant that does not de-
pend on the exponential post-decision state of all vehicles.

Therefore, the overall value function can be rewritten as:

V (rat ) =
∑
i

V i(
〈
ri,at , r-i

t

〉
)

We evaluate these individual V i values for all possible
ri,at and then integrate the overall value function into the
ILP in Table 1 as a linear function over these individual val-
ues. This reduces the number of evaluations of the non-linear
value function from exponential to linear in the number of
vehicles.

Value Function Estimation for NeurADP

To estimate the value function V over the post-decision
state, we use the Bellman equation (decomposed in the ADP
as equation (1) and (2)) to iteratively update the parameters
of the function approximation. In past work (Simao et al.
2009), the parameters of a linear (or piece-wise linear) value
function were updated in the direction of the gradient pro-
vided by the dual values at every step. Hence, the LP-duals
removed the need to explicitly calculate the gradients in the
case of a linear function approximation.

Given that we use a neural network function approxima-
tion and require an ILP (rather than an LP), we cannot use
this approach. Instead, we use standard symbolic differenti-
ation libraries (Abadi et al. 2015) to explicitly calculate the
gradients associated with individual parameters. We then up-
date these parameters by trying to minimise the L2 distance
between a one-step estimate of the return (from the Bell-
man equation) and the current estimate of the value func-
tion (Mnih et al. 2015), as shown in Algorithm 1.

Overcoming challenges in Neural Network Value
Function Estimation

In this section, we describe how we mitigate the stability
and scalability challenges associated with learning neural
network value functions through a combination of method-
ological and practical methods.

Improving stability of Bellman updates: It has been
shown in Deep Reinforcement Learning (DRL) literature
that using standard on-policy methods to update Neural Net-
work (NN) based value function approximations can lead to
instability (Mnih et al. 2015). This is because the NN expects

the input samples to be independently distributed while con-
secutive states in RL and ADP are highly correlated. To ad-
dress these challenges, we propose using off-policy updates.
To do this, we save the current state and feasible action set
for each vehicle ∀i (sit,F i

t ) during sample collection. Then,
offline, we score the feasible actions using the value func-
tion and use the ILP create the best matching. Finally, we
update the value function of the saved post-decision state
with that of the generated next post-decision state. This is
different from experience replay in standard Q-Learning be-
cause the state and transition functions are partly known to
us and choosing the best action, in our case, involves solv-
ing an ILP. In addition to off-policy updates, we use standard
approaches in DRL like using a target network and Double
Q-Learning (Van Hasselt, Guez, and Silver 2016).

Addressing the data scarcity: Neural Networks typically
require millions of data points to be effective, even on sim-
ple arcade games (Mnih et al. 2015). In our approach, we
address this challenge in 3 ways:

• Practically, we see that in the RMP, the biggest bottleneck
in speed is in generating feasible actions. To address this,
as noted above, we directly store the set of feasible actions
instead of recomputing them for each update.

• Secondly, we use the same Neural Network for the value
function associated with each of the individual vehicles.
This means that a single experience leads to multiple up-
dates, one for each vehicle.

• Finally, we use Prioritised Experience Replay (Schaul et
al. 2015) to reuse existing experiences more effectively.

Practical simplifications: Finally, based on our domain
knowledge, we introduce a set of practical simplifications
that makes learning tractable:

• Instead of using one-hot representations for discrete lo-
cations, we create a low-dimensional embedding for each
location by solving the proxy-problem of trying to esti-
mate the travel times between these locations.

• During training, we perform exploration by adding Gaus-
sian noise to the predicted Vi values (Plappert et al. 2017).
This allows us to more delicately control the amount of
randomness introduced into the training process than the
standard ε-greedy strategy.

• We don’t use the pre-decision state of all the other vehi-
cles to calculate the value function for a given vehicle (as
suggested in Section 4). Instead, we aggregate this infor-
mation into the count of the number of nearby vehicles
and provide this to the network, instead.

The specifics of the neural network architecture and training
can be found in the supplementary file.

5 Experiments

The goal of the experiments is to compare the performance
of our NeurADP approach to leading approaches for solv-
ing the RMP on a real-world dataset(NYYellowTaxi 2016)
across different RMP parameter values. The metric we use
to compare them is the service rate, i.e., the percentage of
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Figure 2: The three graphs benchmark our performance across 3 sets of parameter values - ci, τ and |R| respectively (from left
to right). In each case, we start with the prototypical configuration of τ = 300 seconds, ci = 4 and |R| = 1000 and vary the
chosen parameter.

Figure 3: The graph compares the number of requests served
as a function of time. The bold lines represent a moving av-
erage of the actual values (represented by the lighter lines).
This graph corresponds to the configuration λ = 300sec, ci
= 10 and |R| = 1000 on 4 April 2016

total requests served. Similar to (Alonso-Mora et al. 2017;
Lowalekar, Varakantham, and Jaillet 2019), we vary the fol-
lowing parameters: the maximum allowed waiting time τ
from 120 seconds to 420 seconds, the number of vehicles
|R| from 1000 to 3000 and the capacity ci from 2 to 10. The
value of maximum allowable detour delay λ is taken as 2∗τ .
The decision epoch duration Δ is taken as 60 seconds.

We compare NeurADP against the following algorithms:
• ZAC – ZAC algorithm by (Lowalekar, Varakantham, and

Jaillet 2019).
• TBF-Complete – Implementation of (Alonso-Mora et al.

2017) taken from (Lowalekar, Varakantham, and Jaillet
2019).

• TBF-Heuristic (Baseline) – This is our implementation
of Alonso et.al.’s (Alonso-Mora et al. 2017) approach 5.
To disentangle the source of improvement in our ap-

proach, we introduce TBF-Heuristic which we refer to as the
baseline. This uses a fast insertion method, that mirrors the

5Please refer to supplementary file for a complete list of differ-
ences in the implementation.

implementation in NeurADP, to generate feasible actions.
This is important because training requires a lot of samples
and the key bottleneck in generating samples is the gener-
ation of feasible actions. While this process is completely
parallelisable in theory, our limited academic computing re-
sources do not allow us to leverage this. Therefore, com-
paring against this baseline allows us to measure the impact
using future information has on solution quality.
Setup: The experiments are conducted by taking the de-
mand distribution from the publicly available New York Yel-
low Taxi Dataset (NYYellowTaxi 2016). The experimental
setup is similar to the setup used by (Alonso-Mora et al.
2017; Lowalekar, Varakantham, and Jaillet 2019). Street in-
tersections are used as the set of locations L. They are iden-
tified by taking the street network of the city from open-
streetmap using osmnx with ’drive’ network type (Boe-
ing 2017). Nodes that do not have outgoing edges are re-
moved, i.e., we take the largest strongly connected compo-
nent of the network. The resulting network has 4373 loca-
tions (street intersections) and 9540 edges. Similar to ear-
lier work (Alonso-Mora et al. 2017), we only consider the
street network of Manhattan as a majority (∼75%) of re-
quests have both pickup and drop-off locations within it.

The real-world dataset contains data about past customer
requests for taxis at different times of the day and different
days of the week. From this dataset, we take the following
fields: (1) Pickup and drop-off locations (latitude and longi-
tude coordinates) - These locations are mapped to the nearest
street intersection. (2) Pickup time - This time is converted
to appropriate decision epoch based on the value of Δ. The
travel time on each road segment of the street network is
taken as the daily mean travel time estimate computed using
the method proposed in (Santi et al. 2014). The dataset con-
tains on an average 322714 requests in a day (on weekdays)
and 19820 requests during peak hour.

We evaluate the approaches over 24 hours on different
days starting at midnight and take the average value over
5 weekdays (4 - 8 April 2016) by running them with a single
instance of initial random location of taxis 6. NeurADP is

6All experiments are run on 24 core - 2.4GHz Intel Xeon
E5-2650 processor and 256GB RAM. The algorithms are im-
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trained using the data for 8 weekdays (23 March - 1 April
2016) and it is validated on 22 March 2016. For the experi-
mental analysis, we consider that all vehicles have identical
capacities.
Results: We now compare the results of our approach, Neu-
rADP, against past approaches. Figure 2 shows the com-
parison of service rate between NeurADP and existing ap-
proaches. As shown in the figure, NeurADP consistently
beats all existing approaches across different parameters.
Here are the key observations:

• Effect of changing the tolerance to delay, τ : Neu-
rADP obtains a 16.07% improvement over the baseline
approach for τ = 120 seconds. The difference between
the baseline and NeurADP decreases as τ increases. The
lower value of τ makes it difficult for vehicles to accept
new requests while satisfying the constraints for already
accepted requests. Therefore, it is more important to con-
sider future requests while making current assignments
when τ is lower, leading to a larger improvement.

• Effect of changing the capacity, ci: NeurADP obtains a
14.03% gain over baseline for capacity 10. The difference
between the baseline and NeurADP increases as the ca-
pacity increases. This is because, for higher capacity ve-
hicles, there is a larger scope for improvement if the future
impact of making an assignment is taken into account.

• Effect of changing the number of vehicles, |R|: The dif-
ference between the baseline and NeurADP decreases as
the number of vehicles increase. This is because, in the
presence of a large number of vehicles, there will always
be a vehicle that can serve the request. As a result, the
quality of assignments plays a smaller role.

For the specific case of τ = 120, NeurADP does not out-
perform ZAC and TBF-Complete because they use a more
complex feasible action generation which allows them to
leverage complex combinations of requests and their order-
ing. This becomes important as the delay constraints be-
come stricter. If NeurADP is implemented with the complete
search for feasible action generation, we expect it to outper-
form ZAC and TBF in this case as well.

We further analyse the improvements obtained by Neu-
rADP over baseline by comparing the number of requests
served by both approaches at each decision epoch. Figure 3
shows the total number of requests available and the num-
ber of requests served by the baseline and our approach
NeurADP at different decision epochs. As shown in the fig-
ure, initially at night time when the demand is low both ap-
proaches serve all available demand. During the transition
period from low demand to high demand period, the base-
line algorithm starts to greedily serve the available requests
without considering future requests. On the other hand, Neu-
rADP ignores some requests during this time to serve more
requests in future. This allows NeurADP to serve more re-
quests during peak time.

plemented in python and optimisation models are solved using
CPLEX 12.8. The setup, code and supplementary file are available
at https://github.com/sanketkshah/NeurADP-for-Ride-Pooling.

The approach can be executed in real-time settings. The
average time taken to compute each batch assignment using
NeurADP is less than 60 seconds (for all cases) 7.

These results indicate that using our approach can help
ride-pooling platforms to better meet customer demand.

6 Conclusion

On-demand ride-pooling has become quite popular in trans-
portation (through services like UberPool, LyftLine, etc.),
food delivery (through services like FoodPanda, Deliveroo,
etc.) and in logistics. This is a challenging problem as we
have to assign each (empty or partially filled) vehicle to a
group of requests. Due to the difficulty of making such as-
signments online, most existing work has focussed on my-
opic assignments that do not consider the future impact of
assignments. Through a novel combination of approaches
from ADP, ride-sharing and Deep Reinforcement Learn-
ing, we provide an offline-online approach that trains of-
fline on past data and provides online assignments in real-
time. Our approach, NeurADP improves the state of art by
up to 16% on a real dataset. To put this result in perspec-
tive, typically, an improvement of 1% is considered a signif-
icant improvement on ToD for an entire city (Xu et al. 2018;
Lowalekar, Varakantham, and Jaillet 2019).
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