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Abstract

People increasingly use social media to report emergencies,
seek help or share information during disasters, which makes
social networks an important tool for disaster management.
To meet these time-critical needs, we present a weakly su-
pervised approach for rapidly building high-quality classi-
fiers that label each individual Twitter message with fine-
grained event categories. Most importantly, we propose a
novel method to create high-quality labeled data in a timely
manner that automatically clusters tweets containing an event
keyword and asks a domain expert to disambiguate event
word senses and label clusters quickly. In addition, to pro-
cess extremely noisy and often rather short user-generated
messages, we enrich tweet representations using preceding
context tweets and reply tweets in building event recogni-
tion classifiers. The evaluation on two hurricanes, Harvey and
Florence, shows that using only 1-2 person-hours of human
supervision, the rapidly trained weakly supervised classifiers
outperform supervised classifiers trained using more than ten
thousand annotated tweets created in over 50 person-hours.

Introduction

Due to its convenience, people increasingly use social media
to report emergencies, provide real-time situation updates,
offer or seek help or share information during disasters. Dur-
ing the devastating hurricane Harvey for example, the lo-
cal authorities and disaster responders as well as the general
public had frequently employed Twitter for real-time event
sensing, facilitating evacuation operations, or finding vic-
tims in need of help. Considering the large volume of social
media messages, it is necessary to achieve automatic recog-
nition of life-threatening events based on individual mes-
sages for improving the use of social media during disasters.
This task is arguably more challenging than the well-studied
collection-based event detection task on social media that
often relies on detecting a burst of words over a collection
of messages, especially considering the unique challenges of
social media texts being extremely noisy and short.

∗Work was done while Shiva Saravanan was a local high school
student and an intern in the NLP lab at Texas A&M University.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Examples of three senses of the word “dead”

To facilitate disaster management, especially during the
time-critical disaster response phase, it is vital to build event
recognizers rapidly. However, the typical supervised learn-
ing paradigm requires a carefully labeled dataset that is nor-
mally created by asking human annotators to go through
a large number of data instances and label them one by
one, and the data labeling procedure usually takes days at
least. For fast deployment, we propose a novel data labeling
method and an overall weakly supervised learning approach
that quickly builds reliable fine-grained event recognizers.

Specifically, to quickly label data, we explore the idea of
identifying several high-quality event keywords and popu-
lating the keywords in a large unlabeled tweet collection.
But, we quickly realize that it is essentially impossible to
find an event keyword that is not ambiguous and has only
one meaning in social media. Taking the word “dead” for
example, in addition to the meaning of “losing life”, “dead”
is also frequently used to refer to phones being out of power
or a TV series “walking dead”, with example tweets shown
in Figure 1. It is a challenging problem because current au-
tomatic word sense disambiguation systems only achieve
mediocre performance and may not work well on tweets
with little in-domain training data, especially considering
that many word senses appearing in tweets may even not ap-
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pear in conventional sense inventories at all, e.g., the word
“dead” referring to the TV series “walking dead”.

Luckily, we observe that tweets adopting one common
sense of an event keyword often share content words and
can be easily grouped together. This observation is consis-
tent with previous research on unsupervised word sense dis-
ambiguation (Yarowsky 1995; Navigli and Lapata 2010).
Therefore, we first cluster keyword identified noisy tweets
using an automatic clustering algorithm and rank tweet clus-
ters based on the number of tweets in each cluster. Next,
we conduct manual Word Sense Disambiguation (WSD) by
simply asking a domain expert to quickly go through the top-
ranked clusters and judge whether each tweet cluster show
the pertinent meaning of an event keyword, based on an in-
spection of five example tweets randomly sampled from a
cluster. The domain expert is instructed to stop once 20 per-
tinent clusters have been identified. In this way, we signifi-
cantly improved the quality of keyword identified tweets, re-
quiring only 1-2 person-hours of manual cluster inspection
time. Note that this is the only step in the overall weakly
supervised approach that requires human supervision.

Next, we use the rapidly created labeled data to train a
recurrent neural net classifier and learn to recognize fine-
grained event categories for individual Twitter messages.
But tweets are often rather short, and it is difficult to make
event predictions solely based on the content of a tweet it-
self. Instead, we use preceding context tweets posted by
the same user as well as replies from other users, together
with the target tweet, in a multi-channel neural net to pre-
dict the right event category. The observation is that the con-
text tweets as well as reply tweets can both provide essential
clues for inferring the topic of the target tweet. For instance,
the upper example of Figure 2 shows that the two preced-
ing tweets from the same user indicate the third tweet is ask-
ing about the location for evacuation; and the lower example
shows that based on the reply tweet messages, we can infer
the first tweet is regarding water release of reservoir even
having no external knowledge about Addicks/Barker.

Finally, we further improve the multi-channel neural net
classifier by applying it to label tweets and using the newly
labeled tweets to augment the training set and retrain the
classifier. The whole process goes for several iterations. The
evaluation on two hurricane datasets, hurricane Harvey and
Florence, shows that the rapidly trained weakly supervised
systems1 using the novel data labeling method outperforms
the supervised learning approach requiring thousands of
carefully annotated tweets created in over 50 person-hours.

Related Work

Previous research for Twitter event detection mostly focuses
on unsupervised statistical approaches, which can be catego-
rized into three main streams. 1) Identifying burst topics. For
example, inspired by congestion control algorithms, Twit-
Info (Marcus et al. 2011) used a weighted moving average
and variance model to detect peaks of terms in Twitter data

1Our system is available at https://github.com/wenlinyao/
AAAI20-EventRecognitionForDisaster.

Figure 2: Examples with context and reply tweets

to track an event. 2) Probabilistic topic modeling. For ex-
ample, Latent Event and Category Model (LECM) (Zhou,
Chen, and He 2015; Cai et al. 2015) modeled each tweet as
a joint distribution over a range of features (e.g., text, image,
named entities, time, location, etc.). 3) Unsupervised clus-
tering approaches. New tweets are determined to merge into
an existing cluster or form a new cluster based on a thresh-
old of similarity (Becker, Naaman, and Gravano 2011), and
events are summarized from clusters using metrics such as
popularity, freshness and confidence scores.

Our event recognition approach is closely related to su-
pervised classification approaches for Twitter event detec-
tion (Zhang et al. 2019). Different classification methods,
Naive Bayes (Sankaranarayanan et al. 2009), Support Vec-
tor Machines (Sakaki, Okazaki, and Matsuo 2010), Deci-
sion Trees (Popescu, Pennacchiotti, and Paranjpe 2011),
and Neural Networks (Caragea, Silvescu, and Tapia 2016;
Nguyen et al. 2017) have been used to train event recog-
nizers using human annotated Twitter messages. However,
annotating a large number of Twitter messages for a new
disaster is time-consuming, and systems trained using old
labeled data may be biased to only detect information spe-
cific to one historical disaster (e.g., local road names, local
authorities, etc.). In contrast, the weakly supervised classi-
fication approach we propose does not require slow brewed
training instances annotated one by one, and can quickly la-
bel data and train event recognizers from scratch for a newly
happened disaster.

Event Categories and Event Keywords

Disaster management generally consists of four phases -
mitigation, preparedness, response, and recovery. We focus
on identifying events during the response phase of disasters,
which is arguably the most crucial and time-critical part of
emergency management. Based on an existing event ontol-
ogy for hurricanes (Huang and Xiao 2015), we identified
nine types of events, including three types of human activity
events and six types of built environment related events, as
briefly described below.
Human activities. 1) Preventative measure (PRE). People
look for shelters or process evacuation; Any flood-proof pro-
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Figure 3: Overview of the Weakly-supervised Learning System

cesses (e.g., building waterproof facilities, etc.). 2) Help and
rescue (RES). People provide, receive, or seek face to face
help in disastrous environments, including indirect help such
as donating money, supply, and providing services. 3) Casu-
alty (CAS). Disaster-caused death, injury, hurt, etc.

Built environment. 4) Housing (HOU). Reporting emer-
gencies of a house, apartment, home, etc. 5) Utilities and
Supplies (UTI). Problems with heating, gas, water, power,
communication facility, food, grocery stores, etc. 6) Trans-
portation (TRA). The impact on the traffic, bus services,
or the closure of a road, airport, highway, etc. 7) Flood
control infrastructures (FCI). The impact on or damage to
the reservoir, bayou, canal, dam, etc. 8) Business, Work,
School (BWS). The changes of schedule, e.g., business
closed/open, school closed/open, etc. 9) Built-environment
hazards (HAZ). The damage or risks that may cause injury
or death related to the built environment, such as fire, explo-
sion, contamination, electric shock, debris, etc.

Meanwhile, the event ontology (Huang and Xiao 2015)
contains event keywords, and we selected at most five key-
words for each event category that are not specific to any
particular hurricane or location, e.g., keywords “evacuate”
and “shelter” for the category of Preventive measure (PRE),
and “help” and “rescue” for Help and rescue (RES), etc.

Our Approach

Figure 3 gives an overview of our weakly-supervised learn-
ing approach with three phases. In phase one, we quickly
create high-quality labeled data. Specifically, we conduct
clustering-assisted manual word sense disambiguation on
event keyword identified noisy tweets, to significantly clean
and improve the quality of automatically labeled tweets. In
phase two, we train a multi-channel BiLSTM classifier using
tweets together with their context tweets and reply tweets.
In phase three, we iteratively retrain the multi-channel clas-
sifier to further improve its event recognition performance.

Phase One: Rapid Data Labeling via Clustering
Assisted Manual Word Sense Disambiguation

For each event category, we first retrieve tweets containing
a predefined event keyword and then apply a clustering al-
gorithm to form tweet clusters. To facilitate manual word
sense disambiguation, we rank tweet clusters based on their
sizes (number of tweets) and then ask a domain expert to
judge whether a cluster (from largest to smallest) shows the
pertinent meaning of an event keyword by inspecting five
example tweets randomly sampled from the cluster. The an-
notator stops scrutiny once 20 pertinent clusters are identi-
fied for each event category2. After cleaning, around a third
to half of keyword identified tweets were removed. Specifi-
cally, 6.6K out of 15.2K keyword identified tweets and 5.8K
out of 17.5K keyword identified tweets were removed in the
Harvey and Florence datasets respectively.

Next, we describe the clustering algorithm used here,
the Speaker-Listener Label Propagation Algorithm (SLPA)
(Xie, Szymanski, and Liu 2011).

The Clustering Algorithm The SLPA algorithm is ini-
tially introduced to discover overlapping communities in so-
cial user networks, where one user may belong to multiple
communities. The basic idea of SLPA is to simulate peo-
ple’s behavior of spreading the most frequently discussed
topics among neighbors. We choose SLPA for two reasons.
First, SLPA is a self-adaptation model that can automati-
cally converge to the optimal number of communities, so
no pre-defined number of communities is needed. Second,
a tweet during natural disasters may mention more than one
event, which corresponds to one user belonging to multiple
communities. SLPA has been shown one of the best algo-
rithms for detecting overlapping communities (Xie, Kelley,
and Szymanski 2013).

Clustering with Graph Propagation: SLPA is essen-
tially an iterative algorithm. It first initializes each node as
a cluster by itself. In listener-speaker propagation iterations,

2If a cluster adopts a word sense that is irrelevant to any event
category, we assign the catch-all label “Other” to it and later use
tweets in such clusters as negative training instances.
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each node will be chosen in turn to be either a listener or a
speaker. Each time, a listener node accepts the label that is
the most popular among its neighbors and accumulates such
knowledge in the memory. And a speaker advocates one la-
bel based on the probability distribution updated in its mem-
ory. Finally, based on the memories, connected nodes shar-
ing a label with the probability over a threshold are grouped
together and form a community.

We modified the original SLPA to make it suitable for
clustering Twitter messages. Formally, given a set of tweets,
we construct an undirected graph G(V,E), where V repre-
sents all tweets and E represents weighted edges between
nodes. The weight of an edge e between two tweets u and v
is calculated based on content similarity of the two tweets.
In label propagation, we consider weighted voting to deter-
mine the cluster of a tweet.

The Similarity Measure: Determining similarities be-
tween nodes is important for clustering algorithms. How-
ever, Twitter messages are informal and often contain mean-
ingless words, therefore, we aim to first select impor-
tant words before calculating content similarities between
tweets. Recently, (Conneau et al. 2017) proposed an ap-
proach for learning universal sentence representations us-
ing the Stanford Natural Language Inference (SNLI) dataset
(Bowman et al. 2015) and demonstrated its effectiveness in
reasoning about semantic relations between sentences. We
notice that Twitter messages and SNLI data have two com-
mon characteristics: short sentences in a casual language.
Hence, we apply their learned sentence representation con-
structor to tweets for identifying important words.

Specifically, for a given tweet with T words
{wt}t=1,2,...,T , we applied the pre-trained Bi-directional
LSTMs (Conneau et al. 2017) to compute T hidden vectors,
{ht}t=1,2,...,T , one per word. Next, for each dimension,
we determine the maximum value over all the hidden
vectors {ht}t=1,2,...,T . The importance score for a word
wt is calculated as the number of dimensions where its
hidden vector ht has the maximum value divided by the
total number of dimensions. Then, we select words having
importance scores ≥ the average importance score (1.0 /
the number of words) as important words. For example, in
the following tweet, the bolded words are selected: It has
started a fundraiser for hurricane Harvey recovery efforts
in Houston, you can donate here.

We calculate the similarity score between two tweets by
considering only selected words shared by two tweets. Em-
pirically, we found this similarity measure performs better
than the straightforward cosine similarity measure consider-
ing all words. Specifically, the similarity score between two
tweets u and v is the number of common words / (length of
u × length of v). To construct the tweet graph, we create
an edge between two tweets when they share two or more
selected words and the edge weight is their similarity score.

Phase Two: Multi-channel Tweet Classification

The most unique characteristic of social media is the net-
work structure which not only connects users (e.g., friend
network or follower network), but also makes Twitter mes-
sages connected. Therefore, we exploit other related tweets

Figure 4: BiLSTM Classifier using Context and Reply En-
riched Representation

for enhancing the representation of a target tweet. In particu-
lar, we found the immediately preceding context tweets and
reply tweets useful.

First, the past tweets written by the same user provide
additional evidence for an event recognition system to in-
fer the event topic of the current tweet. Interestingly, we
observe that the event topic engaging a user’s attention is
usually consistent within a small time window, as shown in
the upper example of Figure 2 where the two relevant con-
text tweets are within 2 minutes. We further observe that
the topic relatedness between the target tweet and context
tweets decreases quickly over time. In our experiments, we
only consider a relatively small number of context tweets,
specifically five of the preceding tweets. In addition, we as-
sign a weight to a context tweet as wi = 0.8mi , where mi is
the time distance (in minutes) between the ith context tweet
and the target tweet.

Second, reply tweets usually provide information that is
hidden in the original tweet, as shown in the lower example
of Figure 2. But compared to regular Twitter posts, replies
are much noisier. To select the most informative reply tweets
for a given target tweet, we rank replies according to the
number of common words they share with the target tweet
and pick a small number of them from the top, specifically
at most five replies.

Figure 4 shows the overall structure of the classifier.

R1 = ΦT (tw
target)

R2 =
1∑
wi

N∑

i=1

wi · ΦC(tw
context
i )

R3 =
1

M

M∑

i=1

ΦR(tw
reply
i )

Rall = [R1, R2, R3]

(1)

Specifically, we apply three separate BiLSTM encoders
(Graves and Schmidhuber 2005) with max-pooling (Col-
lobert and Weston 2008) to obtain sentence embeddings for
the target tweet, context tweets and reply tweets (i.e., ΦT ,
ΦC , ΦR). Then, the final enriched representation of the tar-
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get tweet (Rall) is the concatenation of the target tweet em-
bedding (R1), weighted average of context tweet embed-
dings (R2), and unweighted average of reply tweet embed-
dings (R3).

On top of Rall, we apply a feedforward neural net to di-
rectly map Rall to 10 classes (9 event categories + Other).
We optimizes a multi-label one-versus-all loss based on
max-entropy, considering that one tweet may belong to mul-
tiple event categories. To deal with imbalanced distribu-
tions of event categories, we re-scale the prediction loss
of each class (proportional to 1

ClassSize ) so that smaller
classes are weighted more heavily in the final loss function.
For all BiLSTM encoders, we use one hidden-layer of 300
units, pre-trained GloVe (Pennington, Socher, and Manning
2014) word embeddings of 300 dimensions, Adam opti-
mizer (Kingma and Ba 2014) with a learning rate of 0.0001.

In training, to compete with positive training instances
(tweets labeled with any event category), we randomly sam-
ple unlabeled tweets equal to the sum of labeled tweets in
size and use them as negative training instances (the cate-
gory Other), to reflect the fact that there are generally more
tweets reporting no event.

Phase Three: Improve Coverage with
Bootstrapping Learning

After the first two phases, we have labeled tweets by con-
ducting time-efficient clustering-assisted WSD on event
keyword identified tweets and have used these quickly la-
beled tweets to train the multi-channel event recognizer.
However, all the labeled tweets yielded in phase 1 contain a
predefined event keyword, while many event categories may
have cases that do not contain a keyword. Therefore, we fur-
ther exploit bootstrapping learning and iteratively improve
the coverage of the multi-channel classifier.

Specifically, we apply the initial multi-channel classifier
on unlabeled tweets and label new tweets for each event
category. Newly labeled tweets together with their context
tweets and replies are used to retrain the model. To enforce
the classifier to look at new content words other than event
keywords, we randomly cover 20% of keywords occurrences
in every training epoch, inspired by (Srivastava et al. 2014).
In order to combat semantic drifts (McIntosh and Curran
2009) in bootstrapping learning, we initially apply a high
confidence score for selecting newly labeled tweets used to
retrain the classifier and lower the confidence score grad-
ually. Specifically, the confidence score was initially set at
0.9 and lowered by 0.1 each time when the number of se-
lected tweets is less than 100. The bootstrapping process
stops when the confidence score decreases to 0.53.

Experiments and Results

Data Sets

We apply the approach to datasets for two hurricanes, Har-
vey (the primary dataset) and Florence (the second dataset).

3In our experiment, the bootstrapping process stopped after
9 iterations, and each iteration took around 10 minutes using a
NVIDIA’s GeForce GTX 1080 GPU.

Hurricane Harvey struck the Houston metropolitan area and
Southeast Texas in 2017, and ranks as the second costli-
est hurricane ($125 billion in damage) on record for the
United States (National Hurricane Center 2017). Hurricane
Florence also caused severe damage (more than $24 bil-
lion) in the North and South Carolina in 2018. To retrieve
tweets in affected areas, we consider two constraints in twit-
ter crawling using GNIP API (Twitter 2019): 1) a tweet has
the geo-location within affected areas (Houston or major
cities in Carolinas) or 2) the author of a tweet has his/her
profile located in affected areas. Since we aim to recognize
original tweet messages reporting events for disaster man-
agement purposes, we only consider original tweets as target
tweets for classifications across all the experiments and we
ignore retweets and reply tweets.

To create the official evaluation data (details in the next
section), we exhaustively annotated all the tweets posted
from 1:00 to 2:00 pm, August 28, 2017 for Harvey and from
1:00 to 1:30 pm, September 17, 2018 for Florence, both
among the most impacted time periods for the two hurri-
canes. For training both our systems and the baseline sys-
tems, we used around 65k and 69.8k unlabeled tweets for
Harvey and Florence respectively that were posted 12 hours
(half a day) preceding the test time period and are therefore
strictly separated from the tweets used for evaluation.

Human Annotations for Evaluation

In order to obtain high-quality evaluation data, we trained
two annotators and refined annotation guidelines for sev-
eral rounds. A tweet is annotated with an event category if it
directly discusses events of the defined category, including
sharing information and expressing opinions. A tweet may
receive multiple labels if it discusses more than one event
and the events are of different types. If one tweet does not
discuss any event of an interested type, we label it as Other.

We first asked the two annotators to annotate a common
set of 600 tweets from the Harvey set and they achieved a
substantial kappa score of 0.67 (Cohen 1968). We then split
the remaining annotations evenly between the two annota-
tors. The distributions of annotated tweets are shown in Ta-
ble 1.4 Consistent across the two considered hurricane dis-
asters, tweets describing interested events cover only around
one quarter of all posted tweets and their distributions over
the event categories are highly imbalanced.

Unsupervised Baseline Systems

Keyword matching: labels a tweet with an event category
if the tweet contains any keyword in the event category. A
tweet may be assigned to multiple event categories if the
tweet contains keywords from more than one event category.
Topic modeling Approaches: Probabilistic topic modeling
approaches have been commonly used to identify latent top-
ics from a collection of documents. We assign each topic to
an event category if the top ten words of a topic ranked by
word probabilities contain any keyword of the category. A

4A small number of tweets were annotated with more than one
event category, 290 (11%) and 57 (6%) tweets for Harvey and Flo-
rence datasets respectively.
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Category PRE RES CAS HOU UTI TRA FCI BWS HAZ Other Sum
Harvey (Aug.28 1:00-2:00 pm)

Amount 374 1092 43 142 270 225 73 501 30 9165 11782
Percentage 3.2% 9.3% 0.4% 1.2% 2.3% 1.9% 0.6% 4.3% 0.3% 77.8% 100%

Florence (Sept.17 1:00-1:30 pm)
Amount 69 490 120 28 146 85 8 80 23 3031 4059
Percentage 1.7% 12.1% 3% 0.7% 3.6% 2.1% 0.2% 2% 0.6% 74.7% 100%

Table 1: Annotation: Number of Tweets in Each Event Category

Row Method PRE RES CAS HOU UTI TRA FCI BWS HAZ Macro Average
1 Keyword Matching 73.9 56.6 26.2 36.4 54.3 38.0 54.4 55.5 43.1 51.1/52.5/51.8
2 LDA 39.4 41.3 4.9 8.5 19.8 28.8 40.4 17.7 25.5 19.6/42.6/26.8
3 Guided LDA 43.4 45.8 10.1 8.6 21.1 40.7 53.4 20.4 24.5 25.1/45.2/32.3
4 SLPA 61.4 61.3 18.9 23.1 36.4 36.2 56.5 44.4 23.3 39.6/48.1/43.4

Seed with Keyword Identified Tweets with no Cleaning

5 Basic Classifier 82.6 63.8 18.8 36.9 60.2 36.8 61.7 61.0 45.5 50.3/60.5/54.9
6 + bootstrapping 82.6 64.1 20.1 37.3 60.6 36.5 62.8 60.6 45.7 50.2/61.2/55.3
7 Multi-channel Classifier 84.3 68.6 22.1 37.1 60.5 40.5 62.3 62.1 45.7 50.5/64.1/56.5
8 + bootstrapping 84.1 69.1 22.6 36.4 59.6 42.1 63.1 60.4 46.4 49.4/65.8/56.4

Seed with Keyword Identified Tweets Cleaned by Clustering-assisted WSD

9 Basic Classifier 82.6 68.4 34.4 45.1 65.8 56.4 63.3 68.4 49.0 68.3/57.2/62.3
10 + bootstrapping 83.5 68.8 36.9 45.0 65.8 58.4 66.7 68.5 51.9 67.1/59.9/63.3
11 Multi-channel Classifier 82.8 68.0 36.7 47.6 65.1 57.2 63.3 67.8 56.5 72.5/57.0/63.8
12 + bootstrapping 83.9 67.8 36.7 45.7 66.1 61.3 74.8 69.1 57.7 70.1/61.6/65.5

13 Supervised Classifier 80.8 72.2 48.0 45.3 56.3 67.9 65.9 71.2 45.3 73.2/53.6/61.9

Table 2: Experimental Results on Hurricane Harvey: F1-score for each event category and macro-average Precision/Recall/F1-
score (%) over all categories.

topic may be assigned to multiple event categories if its top
ten words contain keywords from more than one category.
Given a new tweet, we infer its topics and assign the event
labels of the most significant topic. We implement two topic
modeling approaches. LDA (Latent Dirichlet Allocation)
(Blei, Ng, and Jordan 2003) assumes a document can be rep-
resented as a mixture over latent topics, where each topic is a
probabilistic distribution over words. Guided LDA (Jagar-
lamudi, Daumé III, and Udupa 2012) is a stronger version
of LDA, that incorporates our predefined event keywords to
guide the topic discovery process. For fair comparisons, we
also apply important words selection used in our system for
LDA and GuidedLDA5. Note that both approaches require
pre-defining the number of topics, which is hard to estimate,
we set this hyper-parameter as 100 in our experiments.
SLPA: We also apply the adapted SLPA clustering algo-
rithm to form clusters and assign each cluster to an event
category if the top ten words in a cluster ranked by word fre-
quencies contain any keyword of the category. Given a new
tweet, we identify its neighbor tweets using the same simi-
larity measure we used for clustering in phase one and label
the tweet with the majority event label over its neighbors.

Results on Hurricane Harvey
Table 2 shows the experimental results. The first section
shows performance of baseline systems. Among the four
baselines, the simple keyword matching approach (row 1)
performs the best, and the clustering algorithm SLPA (row
4) outperforms both LDA-based approaches (row 2 & 3).
The event recognition performance of these mostly unsuper-
vised systems is consistently low, presumably due to their
incapability to resolve severe lexical ambiguities in tweets.

5We also tried LDA and Guided LDA without important words
selection which yields a much worse performance.
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Figure 5: Learning curve of 10-fold cross validation

The second section of Table 2 shows results of four clas-
sifiers that directly use keyword identified noisy tweets with
no cleaning for training. Row 5 shows the results of the ba-
sic classifier considering the target tweet only. Row 7 shows
the results of the multi-channel classifier that further con-
siders contexts and replies, which yields a small recall gain
compared to row 5. Row 6 & 8 show the results of the two
classifiers after applying bootstrapping learning, which fur-
ther improves the recall a bit. However, the precision of all
the four classifiers is around 50% similar to the keyword
matching baseline and consistently unsatisfactory.

The third section of Table 2 shows results of the same
set of classifiers but using clustering-assisted WSD cleaned
tweets for training. Compared to its counterpart trained us-
ing noisy tweets (row 5), the precision of the basic classifier
(row 9) improves significantly by 18%. With a small drop
on recall, the overall F-score improves by 7.4%. The multi-
channel classifier (row 11) further improves the precision
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Macro Average
Keywords 43.7/46.9/45.3

with no Cleaning

Basic Classifier 40.8/47.9/44.1
+ bootstrapping 39.8/52.8/45.4
Multi-channel Classifier 43.1/48.7/45.8
+ bootstrapping 41.2/52.6/46.2

with Clustering-assisted WSD

Basic Classifier 67.8/49.6/57.3
+ bootstrapping 63.4/54.9/58.8
Multi-channel Classifier 70.3/50.2/58.5
+ bootstrapping 65.1/55.1/59.7

Supervised Classifier 57.8/40.9/47.9

Table 3: Experimental Results on Hurricane Florence
(Precision/Recall/F1-score %)

with an almost identical recall. Bootstrapping learning im-
proves the recall of both classifiers. The full system (row 12)
outperforms its counterpart trained using noisy tweets (row
8) by over 20% in precision and 9% in F-score. Meanwhile,
using a little supervision, the rapidly trained weakly super-
vised system greatly outperforms the unsupervised baseline
systems, yielding 20% (or more) and 15% (or more) of in-
creases in precision and F-score respectively.
Comparisons with Supervised Learning: We train and
evaluate a supervised classifier (multi-channel) using an-
notated tweets under the 10-fold cross validation setting.
The results of the supervised classifier are shown in the last
row of Table 2. Compared to the supervised classifier, the
weakly supervised approach yields a recall gain of 8% with a
slightly lower precision, and improves the overall F-score by
3.6%. Note that around 50 person-hours were needed to an-
notate over 11K tweets following the normal tweet-by-tweet
annotation process, while our data labeling method only re-
quired 1-2 person-hours for clustering-assisted WSD. Con-
sidering that a large number of tweets are time-consuming
to annotate, we conducted another group of experiments that
gradually add annotations in training to see how the size of
training data affects the performance. Specifically, under 10-
fold cross validation, we randomly sample a certain percent-
age of tweets from nine training folds as training data, rang-
ing from 0.1 to 0.9 in increments of 0.1. The learning curve
(Figure 5) is steep in the beginning and then levels out as
the remaining 70% of annotated tweets (around 7K tweets)
were continuously appended, which shows that the normal
annotation method may create many redundant annotations.

Results on Hurricane Florence
Table 3 shows the results. Similar to Hurricane Harvey,
clustering-assisted WSD clearly improves the precision of
the trained classifier for Hurricane Florence as well. En-
riching tweet representations and conducting bootstrapping
learning further improve the performance of the full system,
which clearly outperforms the supervised classifier.

Analysis

For Hurricane Harvey, we applied the full system to label
tweets posted right after the test hour. Figure 6 plots the
number of tweets detected for each hour. Overall, the clear

Figure 6: Curves for all the categories (Upper) and for Flood
Control Infrastructures only (Lower).

HAPPENING NOW: @hcfcd live update on Addicks
Reservoir and certain levees. Watch now on TV or here.
One of the dams they want to discharge is near me.

BREAKING: The levee at Columbia Lakes has been
breached! GET OUT NOW! PLEASE BE SAFE!
A bridge has collapsed at Greens Bayou. Be careful!

Figure 7: Example tweets sampled from two bursts

low point corresponds with the day-night shift. Taking a
closer look at the curve for the flood control infrastructure
category, we can see an obvious burst at 8 pm Aug.28, 2017,
triggered by an official update on water release of two major
reservoirs, as well as a burst at 10 am Aug.29, triggered by
the collapse of a bridge over Greens Bayou, with example
tweets shown in Figure 7.

Conclusion

We have presented a weakly supervised event recognition
system that can effectively recognize fine-grained event cat-
egories for individual tweet messages. We highlight the
novel clustering-assisted manual word sense disambiguation
data labeling method that is time-efficient and significantly
improves the quality of event keyword identified texts. The
evaluation on two hurricanes show the effectiveness and ro-
bustness of the overall approach. The weakly supervised sys-
tem can be easily adapted to other disaster types (e.g., earth-
quake, tsunami, etc.) with a relevant event ontology to sup-
port real-time disaster management.

Acknowledgments

We gratefully acknowledge support from National Science
Foundation via the awards IIS-1759537 and IIS-1755943.

Supplemental Material

Here is the full list of keywords used for each event cate-
gory (Section Event Categories and Event Keywords). Var-
ious word forms of the keywords are also considered, e.g.,
“evacuates, evacuated, evacuating” are also considered for
the keyword “evacuate”.
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1) Preventative measure (PRE): evacuate, evacuation, evac-
uee, shelter, refugee
2) Help and rescue (RES): rescue, boat, help, donate, guard
3) Casualty (CAS): die, dead, drown, injure, hurt
4) Housing (HOU): house, home, room, apt, apartment
5) Utilities and Supplies (UTI): power, electricity, gas, store,
food, supply
6) Transportation (TRA): airplane, plane, flight, airport,
“RoadTypes” (highway, freeway, road, avenue, ave, dr, rd,
st, hwy, fwy, blvd)
7) Flood control infrastructures (FCI): reservoir, bayou,
canal, dam, levee
8) Business Work School (BWS): office, school, closed,
open, work
9) Built-environment hazards (HAZ): fire, explosion, col-
lapse, poison, electrocute
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