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Abstract

Massive electronic health records (EHRs) enable the success
of learning accurate patient representations to support various
predictive health applications. In contrast, doctor represen-
tation was not well studied despite that doctors play pivotal
roles in healthcare. How to construct the right doctor rep-
resentations? How to use doctor representation to solve im-
portant health analytic problems? In this work, we study the
problem on clinical trial recruitment, which is about iden-
tifying the right doctors to help conduct the trials based on
the trial description and patient EHR data of those doctors.
We propose Doctor2Vec which simultaneously learns 1) doc-
tor representations from EHR data and 2) trial representa-
tions from the description and categorical information about
the trials. In particular, Doctor2Vec utilizes a dynamic mem-
ory network where the doctor’s experience with patients are
stored in the memory bank and the network will dynamically
assign weights based on the trial representation via an at-
tention mechanism. Validated on large real-world trials and
EHR data including 2,609 trials, 25K doctors and 430K pa-
tients, Doctor2Vec demonstrated improved performance over
the best baseline by up to 8.7% in PR-AUC. We also demon-
strated that the Doctor2Vec embedding can be transferred
to benefit data insufficiency settings including trial recruit-
ment in less populated/newly explored country with 13.7%
improvement or for rare diseases with 8.1% improvement in
PR-AUC.

Introduction

The rapid growth of electronic health record (EHR) data and
other health data enables the training of complex deep learn-
ing models to learn patient representations for disease diag-
nosis (Choi et al. 2018; 2016; Xiao, Choi, and Sun 2018),
risk prediction (Xiao et al. 2018), patient subtyping (Baytas
et al. 2017; Che et al. 2017), and medication recommenda-
tion (Shang et al. 2019b; 2019a). However, almost all exist-
ing works focus on modeling patients. Deep neural networks
for doctor representation learning are lacking.

Doctors play pivotal roles in connecting patients and treat-
ments, including recruiting patients into clinical trials for
drug development and treating and caring for their patients.
Thus an effective doctor representation will better support
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a wider range of health analytic tasks. For example, iden-
tifying the right doctors to conduct the trials site selec-
tion so as to improve the chance of completion of the tri-
als (Hurtado-Chong et al. 2017) and doctor recommendation
for patients (Xu et al. 2018).

In this work, we focus on studying the clinical trial
recruitment problem using doctor representation learning.
Current standard practice calculates the median enrollment
rate 1 for a therapeutic area as the predicted enrollment suc-
cess rate for all participating doctors, which is often in-
accurate. In addition, some develop a multi-step manual
matching process for site selection which is labor-intensive
(Hurtado-Chong et al. 2017; Potter et al. 2011). Recently,
deep neural networks were applied on site selection tasks
via static medical concept embedding using only frequent
medical codes and simple term matching to trials (Gligorije-
vic et al. 2019). Despite the success, two challenges remain
open.

1. Existing works do not capture the time-evolving patterns
of doctors experience and expertise encoded in EHR data
of patients that the doctor have seen;

2. Existing works learn a static doctor representation. How-
ever, in practice given a trial for a particular disease,
the doctor’s experience of relevant diseases are more im-
portant. Hence the doctor representation should change
based on the corresponding trial representation.

To fill the gap, we propose Doctor2Vec which simulta-
neously learns 1) doctor representations from longitudinal
patient EHR data and 2) trial embedding from the multi-
modal trial description. In particular, Doctor2Vec leverages
a dynamic memory network where the representations of pa-
tients seen by the doctor are stored as memory while trial
embedding serves as queries for retrieving from the mem-
ory. Doctor2Vec has the following contributions.

1. Patient embedding as a memory for dynamic doctor
representation learning. We represent doctors’ evolving
experience based on the representations from the doctors’
patients. The patient representations are stored as a mem-
ory for dynamic doctor representation extraction.

1Enrollment rate of a doctor is the number of patients enrolled
by a doctor to the trial.
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2. Trial embedding as a query for improved doctor se-
lection. We learn hierarchical clinical trial embedding
where the unstructured trial descriptions were embedded
using BERT (Devlin et al. 2018). The trial embedding
serves as queries of the memory network and will at-
tend over patient representation and dynamically assign
weights based on the relevance of doctor experience and
trial representation to obtain the final context vector for
an optimized doctor representation for a specific trial.

We evaluated Doctor2Vec using large scale real-world EHR
and trial data for predicting trial enrollment rates of doctors.
Doctor2Vec demonstrated improved performance in site se-
lection task over the best baselines by up to 8.7% in PR-
AUC. We also demonstrated that the Doctor2Vec embedding
can be transferred to benefit data insufficiency settings in-
cluding trial recruitment in less populated/newly explored
countries or for rare diseases. Experimental results show
for the country transfer, Doctor2Vec achieved 13.7% rela-
tive improvement in PR-AUC over the best baseline. While
for embedding transfer to rare disease trials, Doctor2Vec
achieved 8.1% relative improvement in PR-AUC over the
best baseline.

Related Works

Deep Patient Representation Learning The collection of
massive EHR data has motivated the use of deep learning
for accurate patient representation learning and disease or
risk prediction (Xiao, Choi, and Sun 2018; Fu et al. 2019;
Baytas et al. 2017; Choi et al. 2018). In this work, we learn
hierarchical patient representation in a similar way as (Choi
et al. 2018). But our focus is to construct doctor representa-
tion based on the embedding of their patients.

Machine Learning Based Clinical Trial Recruitment
Previously clinical trial enrollment either relies on sim-
ple statistics (e.g., medium enrollment) or manual match-
ing (Hurtado-Chong et al. 2017). With the collection of clin-
ical trial data, there has been some effort on developing ma-
chine learning-based models for trial site selection. For ex-
ample, (van den Bor et al. 2017) applied LR with L1 reg-
ularization to determine a subset that is optimal for pre-
dicting site enrollment success. More recently, (Gligorije-
vic et al. 2019) learns static medical concept embedding and
matches them to features derived from trial terms for site se-
lection. However, no existing works learn trial embedding
from multi-modal trial data and automatically match them
to most relevant doctors.

Memory Augmented Neural Networks (MANN) have
shown initial success in NLP research areas such as question
answering (Weston, Chopra, and Bordes 2015; Sukhbaatar
et al. 2015; Miller et al. 2016; Kumar et al. 2016). Mem-
ory Networks (Weston, Chopra, and Bordes 2015) and Dif-
ferentiable Neural Computers (DNC) (Graves et al. 2016)
proposed to use external memory components to assist the
deep neural networks in remembering and storing things.
After that, various MANN based models have been pro-
posed such as (Sukhbaatar et al. 2015; Kumar et al. 2016;
Miller et al. 2016). In healthcare, memory networks can

be valuable due to their capacities in memorizing medi-
cal knowledge and patient history. DMNC (Le, Tran, and
Venkatesh 2018) proposed a MANN model for medication
combination recommendation task using EHR data alone. In
(Shang et al. 2019b), the authors use a memory component
to fuse multi-model graphs as a memory bank to facilitate
medication recommendation.

Method

Problem Formulation

Definition 1 (Doctor Records) For each doctor, the clin-
ical experience can be represented as a sequence of pa-
tients that the doctor has seen, denoted as C(m) =

{P(m)
1 ,P

(m)
2 , ·,P(m)

k } where m indicates the m-th doctor.
Here each patient can also be represented as a sequence
of multivariate observations P(k) = {v(k)

1 ,v
(k)
2 , ·,v(k)

T }
where k indicates the k-th patient and subscript 1, 2, . . . , T
indicates different visits for the k-th patient. Each visit v(k)

t
is the combination of diagnosis codes cd, medication codes
cm, and procedure codes cp. Medical codes cd, cp, cm ∈
0, 1|C| are represented as multi-hot vectors and |C| represent
the total size of the code sets. We also use the demographic
information available about doctors and patients available.
These static information are denoted as Docstatic which are
used with other features.

Definition 2 (Clinical Trial Data) Clinical trial data com-
prises of two data modalities: the trial descriptions in un-
structured text and the categorical features such as trial
phase, primary indication, primary outcome, secondary out-
come, and study type. We denote each clinical trial as a com-
bination of text data and categorical data.

Q(cat)(l) = {f (l)1 , f
(l)
2 , ·, f (l)v }

Q(l) = [Q(cat)(l);Q(text)(l)]

where l ∈ {1, 2, ·, ·, L} is the index of clinical trials, fi is the
representation for the categorical trial features, and v is the
number of categorical features in a trial.

Table 1: Notations used in Doctor2Vec.
Symbol Definition and description

D Set of unique diagnosis codes
P Set of unique procedure codes
M Set of unique medication codes

C(m) Notation for a doctor
P

(m)
k Notation for a patient for m-th doctor

v
(k)
t the t-th visit of Patient k

Q(l) The l-th clinical trial
Q(cat)(l) Categorical features of the l-th clinical trial
Q(text)(l) Text features of the l-th clinical trial

If (k) Final patient representation
Docemb Vector representation of a Doctor
Docstatic Static features of a Doctor
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Figure 1: The Doctor2Vec Framework. (1) Hierarchical patient embedding: We obtain patient embeddings ht(k) from patient
visits using a Bi-LSTM with attention module. Unstructured text and categorical data are modeled using MLP and BERT
respectively. (2) Multimodal clinical trial information embedding: The obtained clinical trial embeddings Qemb(l) are fused
together to form the query vector for the memory network.(3) Memory network module: This query vector to used to attend
over the memory bank is obtained from combination of patient embeddings. The attentional vector is used to obtain the final
doctor embedding . We combine the doctor embedding Docemb with clinical trial embedding Qemb(l) and static information
about the doctors Docstatic to predict the enrollment rate of the clinical trial (output).

Doctor2Vec Framework

As illustrated in Fig. 1, Doctor2Vec includes the following
components: hierarchical patient embedding, multimodal
clinical trial information embedding, a memory network
module for dynamical doctor information retrieval, and a
memory output module for generating the current time doc-
tor representation. This doctor representation is used with
clinical trial representation to predict the enrollment rate of
the clinical trial. Next, we will first introduce these modules
and then provide details of training and inference.

Hierarchical Patient Embedding As discussed before, a
doctor has seen a set of patients during his/her medical prac-
tice. We model that the doctor’s experience and expertise
by the function over the embeddings of their patients’ EHR
data. If a patient has seen two doctors, the corresponding
portion of the EHR data will be modeled as two separate
patients for both doctors, respectively.

To learn patient representation, motivated by (Choi et al.
2018), we leverage the inherent multilevel structure of EHR
data to learn patient embedding hierarchically. The hierar-
chical structure includes the patients on the top, followed
by visits the patient experiences over time, then at the leaf
level the set of diagnosis, procedure, and medication codes
recorded for each visit. Here given clinical visits of a pa-
tient, denoted as v(k)

t , we firstly pass these visits through a
multi-layer perception (MLP) to get visit embedding h

(k)
t as

follows.
h
(k)
t = Wembv

(k)
t (1)

Without ambiguity, we will ignore the patient index (k) for
brevity. Next to learn a patient embedding based on a se-

quence of visit embeddings, we pass visit embedding hk to a
bi-directional long short-term memory (bi-LSTM) networks
and then add an attention layer on top of the bi-LSTM to
attend on important visits.

g1,g2, ...gt = bi-LSTM(h1,h2, ...,ht) (2)

et = wT
α gt + bα (3)

α1, α2, ..αt = softmax(e1, e2, ..et) (4)

Then we obtain final patient context vector I(k) by summing
over attended visit representations as given by Eq. 5.

I(k) =
∑

αt · ht (5)

Here I(1) . . . I(k) are patient representations that will be fed
into dynamic doctor memory bank as memory vectors.

Multimodal Trial Information Embedding Clinical Tri-
als are conducted to evaluate a specific drug or procedure.
We use public and private information about clinical trials.
Here we obtained clinical trial descriptions from publicly
available clinical trial database clinicaltrials.gov. The col-
lected trial description comprises multiple data modalities,
including unstructured text and categorical features. In this
module, we employ a multi-modal method to embed them
in a shared space.
1. Unstructured Text. Each trial has a text description for

inclusion and exclusion criteria which describe the re-
quirements and restrictions for recruiting to the trial. For
unstructured text, we applied the BERT (Devlin et al.
2018) model. BERT builds on the Transformer (Vaswani
et al. 2017) architecture and improves the pre-training
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using a masked language model for bidirectional repre-
sentation. Essentially BERT model is a stack of Trans-
former blocks. Each transformer block is a combination
of self-attention block and feedforward layer. Pretrain-
ing: We use the same pre-training techniques as in (De-
vlin et al. 2018) (1) Masked Language Model: This mod-
eling task consists of masking 15% of the input tokens
and using the model to predict the masked tokens. This is
trained with cross entropy loss. (2) Next sentence predic-
tion task: In this task two sentences are fed to BERT. The
model outputs a binary prediction of whether these two
sentences are in consecutive order. The final pre-training
objective function based on the two tasks is the sum
of the log-likelihood of the masked tokens and the log-
likelihood of the binary variable indicating whether two
sentences are consecutive. We pretrained a BERT model
using MIMIC text data (Johnson et al. 2017) to extract
embeddings for each word and combine the word embed-
dings to obtain the final text embeddings. In order to pre-
train BERT on text corpus, we first obtain preprocessed
data as required by BERT which includes tokenization,
indexing and masking. The procedure is formulated as
below. Denote unstructured text associated with each trial
as Q(text)

(l), the embedding Q(text)emb is given by
Eq. 6. We average over embeddings obtained from each
word to compute the final embedding for the entire doc-
ument.

Q(text)emb = BERT(Q(text)
(l)
) (6)

2. Categorical Features. The categorical features of each
clinical trial include the geographic location of the trial,
hospital system, primary and secondary therapeutic area,
pharmaceutical company information, phase of the trial,
condition or disease, objectives of the trial, intervention
model, etc. More details of the categorical features in the
Appendix. The dimensions of these categorical variables
ranged from 18 to 1456. For these features, we first en-
code them using one-hot vectors and then pass the one-
hot vectors through multi-layer perception (MLP) layer.
This can be expressed as below. Denote the categorical
features as Q(cat)

(l), the categorical feature embedding
is obtained as in Eq. 7.

Q(cat)emb = WcQ(cat)
(l)

+ bc (7)

After obtaining embeddings from both types of clinical
trial data, we fuse the embeddings from categorical data
Q(cat)emb and text data Q(text)emb to obtain the fi-
nal embedding Qemb(l). We fuse these two embeddings
weighted multiplicative fashion as in Eq. 8.

Qemb(l) = (WciQ(cat)emb + bci)�
(WtiQ(text)emb + bti) (8)

where � is element-wise multiplication. The clinical trial
embeddings Qemb(l) will be fed into dynamic doctor mem-
ory network as the query to extract related patient represen-
tation memory.

Dynamic Doctor Memory Networks Since each doctor
sees a diverse set of patients, doctor representation should
be dynamically constructed for a given trial as opposed to
a static embedding vector staying the same for all trials.
The way we achieved that is by a dynamic memory network
where patients are stored as memory vectors of the doctor.
Then using a trial embedding as a query, we fetch the rele-
vant patient vectors from the memory bank and dynamically
assemble a doctor representation for this trial.

Inspired by (Weston, Chopra, and Bordes 2015), four
memory components I, G, O, R are proposed which mimics
the architecture of modern computer in storing and process-
ing information.
1. Input Memory Representation. This layer converts the

patient representations to the input representation. We
pass all the patient representations through a dense layer
to obtain the input representations.

If (k) = WiI(k) + bi (9)

2. Generalization. Typically generalization can be referred
to as the process of updating memory representation for
the memory bank. In our case, we use the patient rep-
resentations to initialize the memory representation Md

which is the combination of all the patient representa-
tions. We then apply an LSTM layer to update the mem-
ory via multiple iterations.

Md = LSTM(If (1), · · · , If (k)) (10)

3. Output. In this step, the final output memory represen-
tation is generated. We calculate the relevance between
trial embedding Qemb(l) and doctor embedding Md to
obtain A(k) as the attention vector over patient represen-
tations.

A(k) = softmax[Qemb(l)
TMd] (11)

4. Response. In this step, we obtain the final Docemb us-
ing the patient embeddings and attention weights over the
patients.

Docemb =
∑

A(k)If (k) (12)

We use the doctor representation which is composed
of patients and the clinical trial representation to obtain
a final context vector. Besides dynamic doctor embedding
Docemb, we also include static information about doctors
in the final embedding such as their educational history,
length of practice, length of practice into the feature vec-
tor. The resulting final embedding vectors are then fed into a
fully connected layer and passed through a softmax to obtain
class labels.

Y = Softmax([Docemb;Qemb(l);Docstatic]) (13)

where the input to Softmax are concatenation of dy-
namic doctor embedding Docemb, trial query embedding
Qemb(l) and static doctor embedding Docstatic.

The enrollment rate category is obtained by binning the
continuous enrollment rate. We divide the continuous en-
rollment scores into five discrete classes ranging at 0 ∼ 0.2,
0.2 ∼ 0.4, 0.4 ∼ 0.6. 0.6 ∼ 0.8, 0.8 ∼ 1.0. The 5 enroll-
ment categories are used labels for classification.
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Training and Inference

During training, We train our models by minimizing the
cross entropy loss to optimize Wemb, Wc, Wi, weight ma-
trices of Bi-LSTM. We denote the network parameters by θc
which is updated by optimizing for the loss function.

L = − 1

N

∑
(yilog(ŷi) + (1− yi)

T log(1− ŷi)) (14)

In the inference phase, we use calibrated threshold value
for obtaining predicted labels from the predicted probabil-
ity values where we obtain the probability values from the
final layer of the network as mentioned in Eq. 13. Our
Doctor2Vec model is summarized in Algorithm 1.

Algorithm 1: Model Training for Doctor2Vec
Input: Training dataset, input (C,Q) and target Y;

epochs Nepoch

Output: Trained model for enrollment rate prediction
with parameter θc

1 Initialization;
2 for i = 1, . . . , Nepoch do
3 foreach mini-batch in the training set do
4 Obtain hk(m) using MLP in Eq. 1 ;
5 Compute I(k) using BiLSTM and Attn. Eq. 5;
6 Compute Qemb using combination of MLP and

BERT by trial embedding;
7 If (k) is obtained from I(k) ;
8 A(k) is generated from inner product of Qemb

and If (k)
9 Compute Doctor representation Docemb in Eq.

12;
10 Combine Docemb,Qemb(l)Docstatic for the

final prediction Eq. 13;
11 Calculate prediction loss L using Eq. 14;;
12 Update parameters according to the gradient of

L;
13 end

14 end

Experiment

We designed experiments to answer the following questions.
Q1: Does Doctor2Vec have better performance in predicting
clinical trial enrollment to support site selection?
Q2: Can Doctor2Vec embedding perform in transfer learn-
ing setting for trials across countries or across diseases?

Implementation We implemented Doctor2Vec 2 with Py-
Torch 1.0 (Paszke et al. 2017). For training the model, we
used Adam (Kingma and Ba 2014a) with the mini-batch
of 128 samples. The training was performed on a machine
equipped with an Ubuntu 16.04 with 128GB memory and
Nvidia Tesla P100 GPU.

2Code: https://github.com/sidsearch/Doctor2vec

Data Source We obtained patient and trial information
from the following three data sources.
1. We extracted trial data from IQVIA’s real-world patient

and clinical trial database, which can be accessed by
request 3. It contains 2609 clinical trials formed dur-
ing 2014 and 2019. This dataset includes 25894 doctors
across 28 countries. It includes both unstructured eligi-
bility criteria and categorical features including the ge-
ographic location of the trial, hospital system, primary,
secondary therapeutic areas, drug names, etc. The data
also includes outcome measures such as the trial enroll-
ment rate. In ground truth, the distribution of the enroll-
ment categories are 12%, 33%, 37%, 12%, 6% respec-
tively for 0 ∼ 0.2, 0.2 ∼ 0.4, 0.4 ∼ 0.6. 0.6 ∼ 0.8,
0.8 ∼ 1.0 bins of enrollment score.

2. We also obtained real world patient claims dataset from
Database 1. This dataset contains a longitudinal treatment
history from 430,239 patients over 7 years. In addition to
medical codes about diagnosis, procedure, medication, it
also includes information about doctors such as specialty,
education, hospital location, geographical location.

3. We also extract clinical trial descriptions from pub-
licly available clinical trial database clinicaltrials.gov. We
match the trial information with our Database 1 on NCT
ID which is a universal clinical trial ID.

Enrollment Rate Enrollment rate for each investigator is
defined as

Enrollment Rate =
# sub. randomized − # sub. discontinued

enrollment window

After obtaining the enrollment numbers, we perform a
min-max normalization step to obtain normalized enroll-
ment rate which is between 0 and 1. In this normalization
step, we only consider the investigators associated with each
clinical trial.

Table 2: Data Statistics
# of clinical trials 2,609
# of doctors 25,894
# of doctor-trial pair(samples) 102,487
# of patients 430,239
Avg # of Dx codes per visit 4.23
Max # of Dx codes per visit 56
Avg # of Procedure codes per visit 1.23
Max # of Procedure codes per visit 18
Avg # of Med codes per visit 9.36

Baselines We consider the following baselines.
1. Median Enrollment (Median). Current industry standard

that considers the median enrollment rate for each thera-
peutic area as estimated rate for all trials in that area.

2. Logistic Regression (LR). We combine the medica-
tion,diagnosis and procedure codes along with the clin-
ical trial information to create feature vectors, and then
apply LR to predict the enrollment rate category.
3https://www.iqvia.com/insights/the-iqvia-institute
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3. Random Forest (RF) (Breiman 2001). We combine the
medication, diagnosis and procedure codes along with
the clinical trial information to create feature vectors and
then pass it to RF to predict the enrollment rate category.

4. AdaBoost (Schapire 1999). We combine the medica-
tion,diagnosis and procedure codes along with the clin-
ical trial information to create feature vectors and then
apply AdaBoost classifier to predict the enrollment rate
categories.

5. Multi-layer Perceptron (MLP). We use MLP to process
doctor features. In this case, we obtain the doctor features
by converting all the visit vectors associated with a doc-
tor to a count vector of different diagnosis, medication,
procedure codes. We convert categorical information of
clinical trials to multi-hot vectors and obtain TF-IDF fea-
tures from text information of clinical trials.

6. Long Short-Term Memory Networks (LSTM) (Hochre-
iter and Schmidhuber 1997). We process all the tempo-
rally ordered visit vectors associated with a doctor us-
ing an LSTM. The embedding obtained from LSTM is
concatenated with embedding obtained from categorical
and text information of clinical trials to predict enroll-
ment rate.

7. DeepMatch (Gligorijevic et al. 2019) In this model, the
features for the doctors are obtained by collecting the top
50 most frequent medical codes and passed through an
MLP layer to obtain an embedding vector. This embed-
ding is concatenated with embedding obtained from cat-
egorical and text information of clinical trials via MLP
and TF-IDF to finally predict enrollment rate.

Evaluation Metrics To evaluate the performance of en-
rollment prediction , We used PR-AUC as the metric for the
classification task, and the coefficient of determination (R2)
score for the regression task. Details of the metrics are pro-
vided in appendix.

Experiment Setup and Evaluation Strategies We split
our data into train, test, validation split with 70:20:10 ra-
tio. We also ensured that the clinical trails are unique
and no overlap in train, test, validation split. We used
Adam (Kingma and Ba 2014b) optimizer at learning rate
0.001 with learning rate decay. We fix the best model on
evaluation set within 200 epochs and report the performance
in test set. Details about reproducibility including hyperpa-
rameters are provided in Appendix.

Q1: Doctor2Vec achieved the best predictive
performance in clinical trial enrollment prediction

We conducted experiments for both classification (e.g., pre-
dict enrollment rate category) and regression (e.g., predict
actual rate) tasks. Results are provided in Table 3. From the
results, we observe that Doctor2Vec achieved the best per-
formance in both settings.

For category classification, Doctor2Vec has 8.7% rela-
tive improvement in PR-AUC over the best baseline LSTM.
Among the baselines, the Median method performs the

Table 3: Doctor2Vec achieves the best performance on both
metrics in predicting actual enrollment rate (regression task)
and rate categories (classification task) compared to state-
of-the-art baselines. Results of ten independent runs.

PR-AUC R2 Score
Median 0.571± 0.014 0.54± 0.072
LR 0.672± 0.041 0.314± 0.082
RF 0.731± 0.034 0.618± 0.034
AdaBoost 0.747± 0.002 0.684± 0.146
MLP 0.761± 0.019 0.762± 0.049
LSTM 0.792± 0.034 0.780± 0.621
DeepMatch 0.735± 0.068 0.821± 0.073
Doctor2Vec 0.861± 0.021 0.841± 0.072

worst, indicating the population level information is not ac-
curate enough for each individual trial. Tree based mod-
els such as RF and Adaboost performs better than Median
enrollment and LR, which can be attributed to the large
number of features they leverage as well as their ability
of distilling complex features. MLP performs better than
tree based models due to having adequate number of lay-
ers for better capturing information and ability control over-
fitting. The LSTM network further improves over MLP since
it is able to extract the temporal information present from
the visits of patients. Compared with these approaches, the
DeepMatch models achieved much lower PR-AUC since the
model leverages the 50 most frequent codes for medical con-
cept embedding, thus missing many important information
of the doctors.

In actual rate prediction task, Doctor2Vec gains 2.4% rel-
ative improvement in R2 over best baseline DeepMatch. As
for the baselines, the LR model performs the worst, indicat-
ing linear models cannot capture the complex and temporal
information in the data. Median enrollment is worse than
most baselines but better than LR since for some more com-
mon diseases median enrollment can be a good predictor.
Again, MLP and LSTM work better than tree-based models
due to they can better capture complex features. DeepMatch
in the regression settings tends to perform better than MLP
and LSTM, which can be attributed to the majority of actual
scores being in the range of [0.4-0.65] leading to improved
performance.

Q2: Doctor2Vec can perform well in trial
recruitment prediction even across countries and
across diseases

One major challenge for clinical trial recruitment is when
conducting trials in a less populated country or a country that
is newly explored, or building a trial for a rare disease, the
recruitment rate is often hard to estimate since there is not
enough historical data to refer to. In this section we design
two experiments to explore whether the embedding learned
by Doctor2Vec will be useful in order to benefit the afore-
mentioned data insufficiency settings.

1. Trained on United States data and transfer to a less pop-
ulated/newly explored country;
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2. Trained on common diseases and transfer to rare/low
prevalence diseases.

For the first experiment, we trained Doctor2Vec on 1443
clinical trials in the United states during the time 2014-2019
and test on 47 clinical trials in South Africa during the time
2014-2019. We perform the same model transfer for all base-
lines. Results are provided in Table 4.

For the second experiment, we test the model on 38 clini-
cal trials for drugs about idiopathic pulmonary fibrosis (IPF,
a rare lung disease ) and inflammatory bowel disease(IBD,
a low prevalence chronic inflammatory bowel disease). The
model was trained on 2569 clinical trials from the rest of the
available diseases. We perform the same model transfer for
all baselines. Results are provided in Table 5.

Table 4: Doctor2Vec achieves the best performance when we
transfer the model trained on US data to predict trial enroll-
ment in South Africa.

PR-AUC R2 Score
Median 0.524± 0.032 0.420± 0.039
LR 0.601± 0.023 0.279± 0.014
RF 0.661± 0.038 0.552± 0.048
AdaBoost 0.672± 0.01 0.581± 0.039
LSTM 0.758± 0.013 0.721± 0.025
DeepMatch 0.703± 0.087 0.756± 0.031
Doctor2Vec 0.862± 0.003 0.817± 0.025

Table 5: Doctor2Vec achieves the best performance when we
transfer the model trained on common disease trials to rare
and low prevalence disease trials.

PR-AUC R2 Score
Median 0.413± 0.013 0.387± 0.001
LR 0.521± 0.021 0.225± 0.028
RF 0.610± 0.019 0.517± 0.032
AdaBoost 0.623± 0.002 0.548± 0.046
LSTM 0.725± 0.002 0.623± 0.038
DeepMatch 0.638± 0.021 0.678± 0.049
Doctor2Vec 0.784± 0.032 0.716± 0.014

For both settings, Doctor2Vec performs much better
than state-of-the-art baselines. For the country transfer,
Doctor2Vec achieved 13.7% relative improvement in PR-
AUC over best baseline LSTM and 8.1% relative improve-
ment in R2 over best baseline DeepMatch. While for em-
bedding transfer to rare disease trials, Doctor2Vec achieved
8.1% relative improvement in PR-AUC over the best base-
line LSTM and 5.6% relative improvement in R2 over best
baseline DeepMatch.

For country transfer, we also examine the R2 scores.
Based on the R2 values, the DeepMatch model and LSTM
model accounts for 69.2% and 67.3% of the variance in
the data, respectively. While our Doctor2Vec accounts for
83.6% of the variance. This shows our model and the pre-
diction fit more to the real observation.

Case Study

We present case studies to demonstrate the effectiveness of
the proposed Doctor2Vec model.

Phase I trial for Gemcitabine plus Cisplatin This phase
I trial is a combination cancer therapy. A doctor in the US
who has worked in internal medicine during the past 3 years
has run the trial. The actual enrollment rate is 0.72. The
rate estimation provided by the best baseline LSTM is 0.57.
While the estimated rate from Doctor2Vec is 0.69, which is
much closer to the ground truth. The reason for Doctor2Vec
to perform more accurately is the internal medicine doctor
has a broader coverage of diseases. Baseline models con-
sider all these diseases that the doctor treated when mea-
suring the match between the doctor and the trial. While
Doctor2Vec was able to focus more on the patients who had
cancer diagnosis instead of all patients which leads to im-
proved prediction.

Phase II trial for Alzheimer’s Disase This phase II trial
is about an amyloid drug for treating Alzheimer’s patients.
A doctor in the US who has treated cancer during the past 4
years runs the trial and has a trial enrollment rate at 0.62. The
estimated rate from the best baseline LSTM model is 0.45.
Doctor2Vec predicts the enrollment rate will be 0.58, which
is much closer to the ground truth. For this case, Doctor2Vec
is more accurate because Doctor2Vec is able to learn bet-
ter doctor representations for this doctor by focusing on the
neurological disease patients compared to other disease type
patients seen by the doctor.

Conclusion

In this work, we proposed Doctor2Vec, a doctor represen-
tation learning based on both patient representations from
longitudinal patient EHR data and trial embedding from the
multimodal trial description. Doctor2Vec leverages a dy-
namic memory network where the representations of pa-
tients seen by the doctor are stored as memory while trial
embedding serves as queries for retrieving the memory.
Evaluated on real world patient and trial data, we demon-
strated via trial enrollment prediction tasks that Doctor2Vec
can learn accurate doctor embeddings and greatly outper-
form state-of-the-art baselines. We also show by additional
experiments that the Doctor2Vec embedding can also be
transferred to benefit the data insufficient setting (e.g., model
transfer to less populated/newly explored country or from
common disease to rare disease) that is highly valuable yet
extremely challenging for clinical trials.
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