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Abstract

The recent advances in computer-assisted learning systems
and the availability of open educational resources today
promise a pathway to providing cost-efficient high-quality
education to large masses of learners. One of the most am-
bitious use cases of computer-assisted learning is to build a
lifelong learning recommendation system. Unlike short-term
courses, lifelong learning presents unique challenges, requir-
ing sophisticated recommendation models that account for
a wide range of factors such as background knowledge of
learners or novelty of the material while effectively main-
taining knowledge states of masses of learners for signifi-
cantly longer periods of time (ideally, a lifetime). This work
presents the foundations towards building a dynamic, scalable
and transparent recommendation system for education, mod-
elling learner’s knowledge from implicit data in the form of
engagement with open educational resources. We i) use a text
ontology based on Wikipedia to automatically extract knowl-
edge components of educational resources and, ii) propose a
set of online Bayesian strategies inspired by the well-known
areas of item response theory and knowledge tracing. Our
proposal, TrueLearn, focuses on recommendations for which
the learner has enough background knowledge (so they are
able to understand and learn from the material), and the ma-
terial has enough novelty that would help the learner improve
their knowledge about the subject and keep them engaged.
We further construct a large open educational video lectures
dataset and test the performance of the proposed algorithms,
which show clear promise towards building an effective edu-
cational recommendation system.

Introduction
One-on-one tutoring has shown learning gains of the order
of two standard deviations (Corbett 2001). Machine learn-
ing now promises to provide such benefits of high quality
personalised teaching to anyone in the world in a cost ef-
fective manner (Piech et al. 2015). Meanwhile, Open Ed-
ucational Resources (OERs), defined as teaching, learning
and research material available in the public domain or pub-
lished under an open license (UNESCO 2019), are growing
at a very fast pace. This work is scoped at creating a person-
alisation model to identify and recommend the most suitable
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educational materials, assisting learners on their personal
learning pathway to achieve impactful learning outcomes.

Personalised learning systems usually consist of two com-
ponents (Lan, Studer, and Baraniuk 2014): (i) learning ana-
lytics, that capture the dynamic learner’s knowledge state
and (ii) content analytics, that extract characteristics of the
learning resource, such as knowledge components covered
and resource quality/difficulty. In the context of learning an-
alytics, the assessment and learning science communities
aim to assess learner’s knowledge at a specific time point
(e.g. during a test). Historically, content analytics have been
provided by human experts. Although expert labelling ap-
pears to be sensible, the rapid growth of educational re-
sources demands for scalable and automatic annotation.

While excelling on the personalisation front, there are
other features that the ideal educational recommendation
system should have. We design our system with these fea-
tures in mind: (i) Cross-Modality and (ii) Cross-linguality
are vital to identifying and recommending educational re-
sources across different modalities and languages. (iii)
Transparency empowers the learners by building trust while
supporting the learner’s metacognition processes such as
planning, monitoring and reflection (e.g. Open Learner
Models (Bull and Kay 2016)). (iv) Scalability ensures that
a high quality learning experience can be provided to large
masses of learners over long periods of time. (v) Data effi-
ciency enables the system to use all available data efficiently
(e.g. learning from implicit engagement rather than sourcing
explicit feedback).

This paper proposes a family of Bayesian strategies aimed
at providing educational recommendations to learners using
learner’s implicit engagement with OERs. To do so, we use
an ontology based on Wikipedia to extract content analytics
from the text representation of educational resources. Our
objective is to develop an adaptive and scalable system that
can recommend suitably complex material and is transparent
to learners. Our approach differs from previous work in sev-
eral ways: (i) It can be applied in situations where explicit
feedback about the learner’s knowledge is unavailable, as
tends to be the case in informal lifelong learning; and (ii) we
focus on recovering learner’s knowledge, as opposed to pre-
vious work on recommender systems which mostly focuses
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on leveraging user interests. We test the different models and
assumptions using a VideoLectures.net dataset composed of
18,933 learners and 248,643 view log entries, with promis-
ing results.

Related Work

Modelling learners and resources is of fundamental impor-
tance to all adaptive educational systems. Most literature in
the adaptive educational systems domain focuses on estimat-
ing learner’s knowledge based on test answers, modelling
the learner at a static point in time and assessing a limited
set of skills (in most cases, individual skills). However, for
lifelong learning, a wider range of skills has to be modelled
over long spans of time and prior research in this area is
surprisingly scarce. We review in this section content and
learning analytics, focusing for the latter on Item Response
Theory (IRT) and Knowledge Tracing (KT), from which we
draw inspiration.

Content Analytics: Knowledge Components

Content representations play a key role in recommending
relevant materials to learners. In education, this entails ex-
tracting atomic units of learnable concepts that are contained
in a learning resource. We refer to these concepts as Knowl-
edge Components (KCs) that can be learned and mastered.
However, KC extraction is challenging and expert labelling
is the most commonly used approach. Although automated
techniques have been proposed (Lindsey, Khajah, and Mozer
2014), these usually rely on partial expert labelling or the use
of unsupervised learning approaches, which are complex to
tune. Recent advances in deep learning have also led to the
proposal of deep models that learn latent KCs (Piech et al.
2015). However, these deep representations make the inter-
pretability of the learner’s models and the resource repre-
sentations more challenging. Wikification, an entity linking
recent approach, looks promising towards automatically ex-
tracting explainable KCs. Wikification identifies Wikipedia
concepts present in the resource by connecting natural text
to Wikipedia articles via entity linking (Brank, Leban, and
Grobelnik 2017). This approach avoids expensive expert la-
belling while providing an ontology of domain-agnostic hu-
manly interpretable KCs. However, Wikipedia KCs may not
be as accurate as those carefully crafted by education ex-
perts.

Item Response Theory (IRT) and Matchmaking

IRT (Rasch 1960) focuses on designing, analysing and scor-
ing ability tests by modelling learner’s knowledge and ques-
tion difficulty. However, IRT does not consider changes in
knowledge over time. The simplest model, known as Rasch
model (Rasch 1960), proposes to compute the probability of
scoring a correct answer as a function of the learner’s skill
θ� and the difficulty of the question/resource dr:

P (correct answer|θ�, dr) = f(θ� − dr), (1)

where f is usually a logistic function. This idea has been ex-
tended to algorithms such as Elo (Elo 1978), to rank chess

players based on their game outcomes, where instead of hav-
ing learners and resources, two players compete. The well-
known TrueSkill algorithm (Herbrich, Minka, and Graepel
2007) improves this skill learning setting using a Bayesian
approach, allowing teams of players to compete and adding
a dynamic component to update player skills over time. Pre-
vious work has proposed the use of Elo-based algorithms
for modelling learners (Pelánek et al. 2017), because of its
similarity to the Rasch model and its computationally light
online version. More recent works such as Knowledge Trac-
ing Machines, that have a direct relationship with IRT have
shown that it can outperform state-of-the-art deep learning
models such as Deep Knowledge Tracing in some cases (Vie
and Kashima 2019).

Knowledge Tracing (KT)

KT (Corbett and Anderson 1994) is one of the most
widespread models used in intelligent tutoring systems, the
main difference with IRT being that question difficulty is
not considered. It aims to estimate knowledge acquisition as
a function of practice opportunities. Numerous variants of
KT are emerging, e.g. enabling individualisation (Yudelson,
Koedinger, and Gordon 2013). More recently, Deep Knowl-
edge Tracing (Piech et al. 2015) has shown improvement
over KT. However, the challenges in interpretability of the
learned KCs can be seen as a major drawback of deep KT.

Educational Recommender Systems

Although conventional recommendation approaches (e.g.
collaborative filtering) have been proposed for education
(Bobadilla et al. 2009), educational recommenders have as-
sociated unique challenges, These challenges stem from the
objective of bringing learners closer to their goals in the
most effective way and specifically comprise: i) Identifying
learners interests and learning goals, as these can signifi-
cantly affect their motivation (Salehi, Nakhai Kamalabadi,
and Ghaznavi Ghoushchi 2014); ii) identifying the dynamic
background knowledge of learners, the topics covered in a
resource and the prerequisites necessary for benefiting from
a learning material; iii) recommending novel and impactful
materials to learners and planning learning trajectories suit-
able for learners; and iv) accounting for how different re-
source quality factors impact how engaging an educational
resource may be to the general population (Guo, Kim, and
Rubin 2014).

In the recent years, hybrid approaches (Garcı́a et al. 2009;
Salehi, Nakhai Kamalabadi, and Ghaznavi Ghoushchi 2014)
and deep learning methods (Jiang, Pardos, and Wei 2019)
have been proposed to improve educational recommenda-
tion systems, incorporating additional handcrafted informa-
tion such as learning trajectories and goals (Bauman and
Tuzhilin 2018). However, much still remains to be done.
Most of these approaches rely on manually handcrafting
learning trajectories, which is highly domain specific and
hard to scale. Moreover, hybrid approaches do not address
novelty and deep learning methods suffer from a lack of
transparency of the learned representations. These chal-
lenges motivate the development of accurate, scalable, sim-
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ple, and transparent educational recommendation systems,
which is our aim with this work.

Modelling Implicit Educational Engagement
Implicit feedback has been used for building recommender
systems for nearly two decades with great success (Oard
and Kim 1998; Jannach, Lerche, and Zanker 2018), as an
alternative to explicit ratings, which have a high cogni-
tive load on users and are generally sparse. For videos,
normalised watch time is commonly used as an implicit
proxy for engagement (Covington, Adams, and Sargin 2016;
Guo, Kim, and Rubin 2014), shown to increase the likeli-
hood of achieving better learning outcomes (Pardos et al.
2014; Carini, Kuh, and Klein 2006; Ramesh et al. 2014;
Lan et al. 2017). We identify several factors (Bulathwela et
al. 2020) in the learning science literature that influence en-
gagement: i) background knowledge (Yudelson, Koedinger,
and Gordon 2013), ii) novelty of the material (Drachsler,
Hummel, and Koper 2008), iii) learners interests or learning
goals (Salehi, Nakhai Kamalabadi, and Ghaznavi Ghoushchi
2014) and iv) marginal engagement or quality (Lane 2010;
Bulathwela, Yilmaz, and Shawe-Taylor 2019) of learning re-
sources. This paper focuses on i) and ii), as a first step to-
wards building an integrative recommendation system that
accounts for all four.

We first present two relatively naı̈ve baselines for model-
ing engagement. Secondly, we describe how we adapt two
approaches from the literature, namely TrueSkill and KT.
Then, we propose an extension of TrueSkill, defining educa-
tional engagement as a function of background knowledge
and novelty. This is, the proposed system recommends re-
sources for which the learner has the necessary background
knowledge but there is novelty. To be able to handle large-
scale scenarios, our work focuses on online learning solu-
tions that are massively parallelisable, prioritising models
that can be run per learner, for simplicity and transparency.

Problem Formulation and Assumptions

Consider a learning environment in which a learner � inter-
acts with a set of educational resources S� ⊂ {r1, . . . , rQ}
over a period of T = (1, . . . , t) time steps, Q being the total
of resources in the system. A resource ri is characterised by
a set of top KCs or topics Kri ⊂ {1, . . . , N} (N being the
total of KCs considered by the system) and the depth of cov-
erage dri of those. The key idea is to model the probability of
engagement et�,ri ∈ {1,−1} between learner � and resource
ri at time t as a function of the learner skill θt� and resource
representation dri for the top KCs covered Kri . According
to Bayes rule the posterior distribution is proportional to:
P (θt�|et�,ri ,Kri , dri) ∝ P (et�,ri |θt�,Kri , dri) · P (θt�). (2)
Figure 1 shows the intuition behind different hypothesis

for modelling one single learner skill. Hypothesis i) shows
the assumption made in IRT and KT (both focused on test
scoring). This is, if the learner answers correctly to a test, the
skill must exceed the difficulty of the question. The bound-
ary of θ� − dr is shown using a dotted line in all cases. Hy-
pothesis ii) shows the analogue for engagement (as a func-
tion of knowledge), i.e. if the learner is engaged, they have

enough background to make use of the resource and vice
versa. However, we hypothesize that this is very restrictive
and that no assumption can be made from the non-engaged
cases (the learner might not be engaged for a myriad of rea-
sons, e.g. the learner being advanced in a topic and find-
ing the resource too easy, in which case we can not say
that they lack the necessary background). This idea that we
can only learn background knowledge from positive engage-
ment is shown in hypothesis iii) and is a common assump-
tion when learning from implicit feedback (Jannach, Lerche,
and Zanker 2018). The last plot (hypothesis iv)) shows the
combination of knowledge and novelty: if the learner is en-
gaged, they must have the appropriate background and the
content must also be novel to them (i.e. neither too easy nor
too difficult). We introduce ε as the engagement margin.

Naı̈ve Baselines for Engagement

Since learning from engagement with educational resources
is a novel research area we could not find suitable base-
lines to compare against. Our first contribution is to pro-
pose two relatively naı̈ve baselines: i) persistence, which as-
sumes a static behaviour for all users P (et�,·) = P (et−1

�,· ),
where (·) indicates any resource, i.e. if the learner is en-
gaged, they will remain engaged and vice versa; ii) ma-
jority of user engagement, which predicts future engage-
ment based solely on mean past engagement of users, i.e.
P (et�,·) = 1

n ·∑t−1
i=1 P (ei�,·). The persistence baseline as-

sumes a common model for both learners and resources.
The majority baseline assumes differences between users,
and disregards resource differences.

Modelling Knowledge

Our second contribution is to extend the most well-known
approaches for modelling skills/knowledge: TrueSkill (Her-
brich, Minka, and Graepel 2007) and KT (Corbett and An-
derson 1994). Our proposed model, TrueLearn, is inspired
by TrueSkill with regard to representing and learning skills.
We use TrueSkill as the foundation for TrueLearn because
we observe that it could predict engagement better than KT
in preliminary experiments.

In TrueSkill, each player � is assumed to have an unknown
real skill θt� ∈ R, exhibiting a performance pt� drawn accord-
ing to p(pt�|θt�) = N (pt�; θ

t
�, β

2) with fixed variance β2. The
outcome of the game ytjz between two players �j and �z (in
our case learner � and resource ri) is modelled as:

P (pt�j > pt�z |θt�j , θt�z ) := Φ

(
θt�j − θt�z√

2β

)
, (3)

where Φ is the cumulative density of a zero-mean unit vari-
ance Gaussian. To adapt TrueSkill, we consider four ap-
proaches. The first two, referred to as Vanilla TrueSkill and
Vanilla TrueSkill Video, represent the original TrueSkill al-
gorithm and model a single skill for the learner θ� and the
depth of the resource dri as two players competing. The en-
gagement label is used as the outcome of the game, mean-
ing that if the learner is engaged, the skill of the learner is
equal or larger than the depth of the resource P (et�,ri) =
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Figure 1: Graphical representation of different assumptions that can be made when modelling learner’s knowledge. The methods
tested in this paper are set to test these four hypotheses.

P (pt� > pri). The main difference between Vanilla TrueSkill
and Vanilla TrueSkill Video is that the former considers the
basic atomic unit of knowledge to be a fragment of a video
(as the rest of approaches in this work), whereas the video
version learns only one skill for the whole resource. This
partitioning of lectures into multiple fragments was done to
capture knowledge acquisition in a finer grain level, which
means that for all methods tested in this paper (with excep-
tion of Vanilla TrueSkill Video) a fragment of the lecture is
considered as a resource dri . The comparison with the video
version, although not completely fair, was intended to test
the assumption that the topics within a lecture are likely to
be correlated and can be treated as one.

As opposed to the Vanilla TrueSkill versions, we wish to
model multiple skills for a learner: θ� = (θ�,1, . . . , θ�,N ).
TrueSkill also allows for teams, assuming that the perfor-
mance of a team is the sum of the individual performance
of its players. The third version of TrueSkill that we con-
sider (our first novel proposal, TrueLearn dynamic-depth)
is based on two teams playing, where both the learner and
resource are represented as a ”team of skills”:

pt� =
∑

h∈Kri

θt�,h, pri =
∑

h∈Kri

dri,h. (4)

Knowledge components Kz thus define teams. We consider
this approach rather than assuming that each individual skill
has to win over its associated KC depth because we observed
that most KCs represent related topics. A similar approach
using Elo system and knowledge for only one skill was con-
sidered in (Pelánek et al. 2017). For the fourth model (named
TrueLearn fixed-depth), we use a similar approach but fix
one branch to the observed knowledge depth, using text co-
sine similarity defined in the next section.

Unlike TrueSkill, KT uses Bernoulli variables to model
skills θt�,h ∼ Bernoulli(πt

�,h), assuming that a learner
� would have either mastered a skill or not (represented by
probability πt

�,h). Since the objective of KT is not to model
learning but to capture the state of mastery at given time, KT
considers that once a learner has mastered a skill it cannot be
unlearnt. For the extension of KT (named Multi skill KT),
we also consider multiple skills. Skills are initialised using

a Bernoulli(0.5) prior, assuming that the latent skill is
equally likely to be mastered than not. A noise factor is also
included (similarly to β in TrueSkill). This reformulation is
inspired by (Bishop, Winn, and Diethe 2015).

Figure 2 shows a representation of the factor graphs used
for these three models, together with TrueLearn, covered in
the next section. A factor graph is a bi-partite graph con-
sisting of variable and factor nodes, shown respectively with
circles and squares. Gray filled circles represent observed
variables. Message passing is used for inference, where mes-
sages are approximated as well as possible through mo-
ment matching. Since our aim is to report skill estimates in
real-time after learner’s activity, we use an online learning
scheme referred to as density filtering for all models, where
the posterior distribution is used as the prior distribution for
the next time instant. The models presented here are used to
test hypotheses ii) and iii) in Figure 1.

TrueLearn: Extending Knowledge with Novelty

TrueLearn Novelty additionally introduces novelty, defined
as the degree to which a resource contains new information
for the learner. Engagement outcomes et�,ri between learner
� and resource ri are determined in this case as:

et�,ri :=

{
+1 if|pt� − pri | ≤ εt�−1 otherwise,

}
(5)

where the parameter εt� > 0 is referred to as the engagement
margin and is learner dependent. This represents the idea
that both the learner and resource must be found in a similar
knowledge state for the learner to be engaged (hypothesis iv)
in Figure 1). This engagement margin εt� is set counting the
fraction of engaged outcomes for a learner and relating the
margin to the probability of engagement by:

P (et�,·) = Φ

(
εt�√|Kri |β

)
− Φ

(
−εt�√|Kri |β

)
. (6)

The model is shown in Figure 2. Here, we learn learner’s
knowledge from positive and negative engagement. The
function represented by the factor graph is the joint distri-
bution p(θt�, p

t
�, pri |et�,ri ,Kri , dri), given by the product of
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Figure 2: Factor graph for Multi skill KT, Vanilla TrueSkill and different versions of the TrueLearn model. Plates represent
groups of variables (N Wikipedia topics).

all the functions associated with each factor. The posterior
p(θt�|et�,ri ,Kri , dri) is computed from the joint distribution
integrating the performances pt� and pri . For recommenda-
tions, a resource ri can be ranked using P (et�,ri).

Dynamics So far all models assume a stationary data dis-
tribution and hence in the limit of infinite observations,
learning would come to a halt. Like in TrueSkill, we con-
sider a Gaussian drift over skills between time steps given
by p(θt�|θt−1

� ) = N (θt�; θ
t−1
� , τ2). This is introduced as an

additive variance component in the subsequent prior and is
crucial for lifelong learning. For Multi skill KT, we increase
the uncertainty by moving π� in the direction of 0.5 prob-
ability in steps of τ . However, our results show no change
when adding this dynamic factor. We hypothesize that this
is because most user sessions in our dataset are relatively
short (e.g. there are only 20 users with more than 200 events
and these events contain a wide range of topics covered).

Processing OERs: Wikifier and Dataset

We set high importance to leveraging cross-modal and cross-
lingual capabilities, as these are vital to processing all types
of open educational resources in the real-world. We choose
text as a generic form of raw representation for resources as
the majority of modalities (videos, audio, books, web pages,
etc.) can be easily converted to text. From text we extract
KCs, together with the coverage depth.

Knowledge Representation

Extracting the knowledge components present in an edu-
cational resource is a non-trivial task. We use an ontology
based on Wikipedia to represent KCs, where each Wikipedia

page is considered as an independent and atomic unit of
knowledge (i.e. a KC). Specifically, we use Wikifier1, an en-
tity linking technique that annotates resources with relevant
Wikipedia concepts (Brank, Leban, and Grobelnik 2017).
Wikifier identifies Wikipedia concepts that are associated
with a document and ranks them. A graph that represents se-
mantic relatedness between the Wikipedia concepts is gener-
ated from the document and it is used for ranking concepts.
It shows improved results upon several state-of-the-art en-
tity linking and disambiguation approaches in a battery of
datasets. We rather treat Wikifier as a state-of-the-art entity
linking tool and consider improving or testing it out of the
scope of this work. The algorithm uses two main statistics
that are computed for each Wikipedia topic associated with
the resource: (i) the PageRank score, that represents the au-
thority of a topic within the resource (Brin and Page 1998))
and (ii) the cosine similarity between the Wikipedia page
of the topic and the resource. We use cosine similarity as a
proxy for the depth of knowledge covered in the resource.
A combination of PageRank and cosine similarity is used
to rank the top most relevant Wikipedia topics associated to
a resource. Each Wikipedia topic is defined as a learnable
KC. We also divide resources into what we call learnable
units (fragments). A resource is then composed of different
fragments. We believe this is meaningful for two reasons:
(i) it enables recommending fine-grained resource fragments
suited for the learner’s learning path, rather than only whole
resources, and (ii) because in many cases the learner might
not consume the resource entirely (e.g. a book), and we
may want to learn exactly from the different fragments con-
sumed.

1www.wikifier.org
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Dataset

We use data from a popular OER repository to evaluate the
performance of the models. The data source consists of users
watching video lectures from VideoLectures.Net2. The lec-
tures are also accompanied with transcriptions and multi-
ple translations provided by the TransLectures project3. We
use the English transcription of the lecture (or the English
translation where the resource is non-English) to annotate
the lecture with relevant KCs using Wikifier. We divide the
lecture text into multiple fragments of approximately 5,000
characters (equivalent roughly to 5 minutes of lecture). The
choice of video partitioning is motivated by several reasons.
The first one is a technical limitation on the number of char-
acters supported by Wikifier. However, we also believe that
these partitions allow us to use finer-grain engagement user
signals, where our algorithm learns from the specific parti-
tions that the user watched (and the topics covered in those).
At the moment we use fixed-length partitioning, but in fu-
ture work, we aim to use more sensible video partitioning,
that comes from the actual topics covered. Using improved
partitioning based on topics (as opposed to fixed-length) is
likely to further improve the performance of our model.

Once the fragments are wikified, we rank the topics using
a linear combination of pagerank and cosine similarity (fur-
ther details in the next section) and use the top k ranked top-
ics along with the associated cosine similarity as our feature
set. We define binary engagement et�,ri between a learner �
and a resource ri as 1 if the learner watched at least 75%
of the fragment of 5000 characters, and -1 otherwise. This
is because we hypothesise that the learner must have con-
sumed approximately the whole fragment to learn signifi-
cantly from it. Note that user view logs are of learners ac-
tively accessing videos, i.e. when engagement is negative the
learner has accessed the material but left without spending a
significant amount of time on it.

The source dataset consisted of 25,697 lectures as of
February 2018 that were categorised into 21 subjects,
e.g. Data Science, Computer Science, Arts, Physics, etc.
However, as VideoLectures.net has a heavy presence of
Computer Science and Data Science lectures, we restricted
the dataset to lectures categorised under Computer Science
or Data Science categories only. To create the dataset, we ex-
tracted the transcripts of the videos and their viewers’ view
logs. A total of 402,350 view log entries were found between
December 8, 2016 and February 17, 2018. These video lec-
tures are long videos that run for 36 minutes on average and
hence discuss a large number of KCs in a single lecture.

We create three distinct datasets, based on the number of
learners and top k topics selected. The first two datasets
(20 learners-10 topics and 20 learners-5
topics) are created using the 20 most active users and
10 and 5 top topics respectively. These 20 users are asso-
ciated with 6,613 unique view log entries from 400 different
lectures. The third dataset (All learners-5 topics)
consists of events from all users and is composed of 248,643
view log entries distributed among 18,933 users interacting

2www.videolectures.net
3www.translectures.eu

with 3,884 different lectures. The 5 highest ranked KCs are
used for this dataset. The dataset with 10 topics has 10,524
unique KCs while the other two datasets (20 users and all
users) with top 5 ranked topics have 7,948 unique KCs.

Experiments

In this section we present the results obtained for the differ-
ent datasets presented in the previous section. The experi-
ments are set to validate: i) the use of KT against IRT in-
spired models (and thus the use of Gaussian and Bernoulli
variables), ii) the different components that we propose to
predict engagement (knowledge and novelty) and iii) the
number of top k topics used to characterise a fragment.

Validating Wikifier: The authors of Wikifier proposed a
linear combination of Pagerank and cosine similarity to rank
relevant topics for a document. In our work, we identified
the best linear combination using a grid search on training
data with the Multi skill KT model and F1 score. The lin-
ear combination is used strictly for ranking the most rel-
evant Wikipedia topics. Once the top topics are identified,
only the cosine similarity is used as a proxy for knowledge
depth. Cosine similarity, being the inner product of bag-of-
words (TF-IDF) representations of the document and the
Wikipedia page of topic, is an intuitive proxy for depth of
topic related knowledge covered in a resource.

Analysing the results Wikifier (Brank, Leban, and Grobel-
nik 2017) produced for several lectures we hypothesized that
neither pagerank nor cosine similarity alone could be used
to reliably rank the KCs associated to a resource. Pagerank
seemed to be fine-grained and prone to transcript errors. Co-
sine similarity, on the other hand, resulted in very general
topics, such as ’Science’, ’Data’ or ’Time’. We firstly exper-
imented with a linear combination of these two and manu-
ally validated the superior accuracy obtained. Such a linear
combination was also proposed by the authors in (Brank,
Leban, and Grobelnik 2017), however they did not report
improvements. We then proceed to test different weights for
the linear combination using Multi skill KT and F1. In order
to find the linear weights, we executed a grid search where
values between [0, 1] were assigned to the weights before
training. We concluded that the best results were obtained
by weighting pagerank by 0.4 and cosine by 0.6.

Experimental design and evaluation metrics Given that
we aim to build an online system, we test the different mod-
els using a sequential experimental design, where engage-
ment of fragment t is predicted using fragments 1 to t−1. We
also use a one hold-out validation approach for hyperparam-
eter tuning where hyperparameters are learned on 70% of the
learners and the model is evaluated on the remaining 30%
with the best hyperparameter combination. Note that we
both learn and predict the engagement per fragment. Since
engagement is binary, predictions for each fragment can be
assembled into a confusion matrix, from which we compute
well-known binary classification metrics such as accuracy,
precision, recall and F1-measure. We average these met-
rics per learner and weight each learner according to their
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Table 1: Weighted average test performance for accuracy, precision, recall and F1. Models labelled with (�) are trained with
positive and negative engagement. Models labelled with (∗) learn multiple skill parameters, one per Wikipedia page.

20 learners-5 topics 20 learners-10 topics All learners-5 topics
Algorithm Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1

Naı̈ve persistence (�) .808 .818 .819 .819 .808 .818 .819 .819 .766 .629 .625 .625
Naı̈ve majority (�) .821 .775 .842 .794 .821 .775 .842 .794 .771 .559 .633 .583
Vanilla TrueSkill (�) .733 .569 .591 .574 .733 .569 .591 .574 .610 .541 .472 .480
Vanilla TrueSkill Video (�) .739 .734 .982 .814 .794 .720 .955 .792 .641 .608 .837 .679
Multi skill KT (�,∗) .722 .748 .753 .738 .714 .700 .580 .631 .498 .492 .188 .254
Multi skill KT (∗) .715 .746 .776 .745 .715 .701 .588 .638 .497 .491 .192 .256
TrueLearn dynamic-depth (�,∗) .753 .732 .880 .789 .790 .703 .753 .726 .454 .530 .431 .418
TrueLearn fixed-depth (�,∗) .808 .770 .815 .790 .841 .733 .794 .761 .736 .610 .558 .573
TrueLearn fixed-depth (∗) .735 .734 .984 .813 .759 .710 .987 .783 .719 .608 .686 .626
TrueLearn Novelty (�,∗) .793 .754 .923 .821 .828 .722 .875 .784 .649 .603 .835 .677

amount of activity in the system. Note that most learners
present an imbalanced setting, where they are mostly en-
gaged or disengaged. Because of this, we do not use Accu-
racy as the main metric, but rather focus on Precision, Recall
and F1. For all models each user is run separately, except for
the original TrueSkill, in which we also need to model the
difficulty of content and thus we require all users. Regard-
ing initial configurations and hyperparameters, we initialised
the initial mean skill of learners to 0 for all reformulations
of TrueSkill. We use grid search to find the suitable hyper-
parameters for the initial variance while keeping β constant
at 0.5. The search range for the initial variance was [0.1,
2]. For these models, initial hyper parameters are set in the
following manner. For the original TrueSkill setting (Vanilla
TrueSkill), we set the same hyperparameters used in (Her-
brich, Minka, and Graepel 2007). For the reformulations of
KT, we run a hyperparameter grid search for the probabil-
ity values of the noise factor in the range [0, 0.3]. We also
tested different combinations of τ (0.1, 0.05, 0.01), the hy-
perparameter controlling the dynamic factor. However, the
results did not changed for different settings. This suggests
that the dataset might still be relatively small and sparse for
this factor to have an impact. The algorithms were developed
in python, using MapReduce to parallelise the computation
per learner. The code for TrueLearn and all the baselines is
available online4.

Results

We compare the approaches presented in the methodology
to two naı̈ve models (persistence and majority). Persistence
assumes that the current state of engagement will prevail,
whereas majority uses the majority user engagement to de-
cide on future engagement. We use the dataset with the 20
most active learners to validate as well the number of top k
topics, running the same models both for 5 and 10 topics.
Table 1 shows the results, where highest performance for
each dataset is highlighted in bold face and the second best
in italic. Firstly, we can see that the naı̈ve persistence model
is very competitive. This is mainly because we are predict-

4https://github.com/sahanbull/TrueLearn

ing fragments, and persistence has an advantage in this case,
as it is usually more probable that if you are engaged, you
will stay engaged. However, note that the persistence will
perform trivially when recommending new resources. The
majority model is very competitive in terms of accuracy, as
was expected. However, due to the imbalanced design of the
problem we consider F1 to be a more suitable metric. The
algorithms labelled with � use both positive and negative
engagement labels. We run these to validate our hypothesis
that no assumption can be made about negative engagement
unless using an engagement margin (as shown in Figure 1).
Both types of models achieve very similar performance in
the case of Multi skill KT. In the case of TrueLearn fixed-
depth it is better not to use negative engagement. This goes
in line with our assumption. We also validate cosine simi-
larity as a proxy for knowledge depth, as TrueLearn fixed-
depth achieves better performance than TrueLearn dynamic-
depth, which is run for the whole dataset and infers the
latent knowledge depth. The results also show very simi-
lar or improved performance when using 5 topics, which is
why we use it for the dataset containing all learners (18,933
users). For F1, TrueLearn-based models beat the baselines in
most cases and achieve very promising performance, with
TrueLearn Novelty achieving the most competitive perfor-
mance. We thus validate the necessity of considering nov-
elty, matching the knowledge state of learners and resources.
Note that in this case, TrueLearn can make use of negative
engagement, given our assumption in Figure 1. Finally, Fig-
ure 3 compares how F1 score changes for individual learn-
ers with respect to number of events and topic sparsity. It
is evident that KT model struggles with learners that have
high topic sparsity (with F1 score of 0 for users with topic
sparsity > 4). However, this is not the case for TrueLearn
(similar results are obtained for other TrueLearn versions).

Vanilla TrueSkill Video vs TrueLearn TrueLearn Nov-
elty is seen to achieve similar performance to Vanilla
TrueSkill Video, which considers only one skill for each
learner and resource. This is as opposed to Vanilla TrueSkill,
which models one skill per learner and resource fragment
and achieves significantly worse performance than both.
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Figure 3: F1 score of each learner with their associated topic
sparsity (x-axis) and number of events (y-axis). Each data
point represents a learner. Colours represent F1-Score.

More specifically, TrueLearn Novelty is better for the 20
most active users and Vanilla TrueSkill Video for the com-
plete dataset (which includes users with very few events).
We believe this might be because: i) Vanilla TrueSkill Video
can be thought as addressing how engaging resources are by
only modelling one skill for the whole resource, rather than
learner’s knowledge and ii) the sparsity of the representa-
tion in TrueLearn might play a role in its low performance
for users with few sessions. By analysing the results closely,
we validated that Vanilla TrueSkill Video has better perfor-
mance at the beginning of the user session, when very few
user data has been collected. However, when more data is
given, TrueLearn achieves better performance. To validate
this, we compared the mean F1 performance for the test set
of the 20 most active users at two different stages: i) the av-
erage performance over the first 100 events of a user session
and ii) the average performance over the last 100 events of a
user session. For i), Vanilla TrueSkill Video achieved 0.855
whereas TrueLearn Novelty 0.853, Vanilla TrueSkill Video
showing slightly better performance at the beginning of the
user session. For ii), Vanilla TrueSkill Video achieved 0.783
whereas TrueLearn Novelty 0.796, i.e. TrueLearn obtained
similar or better performance while providing interpretable
information about the knowledge state of the learner and be-
ing a more scalable solution that is run per learner (as op-
posed to a solution that needs to be run for the whole popu-
lation and set of resources).

Discussion on desired features Regarding the desired
features outlined in the introduction, we have proposed i)
a transparent learner representation, that represents knowl-
edge as a human interpretable multi-dimensional Gaussian
random variable in Wikipedia topic space, key to promote
self-reflection in learners (Bull and Kay 2016); ii) a scal-
able online model that is run per user; iii) the use of an
automatic content analytics toolbox that allows for cross-
modality and cross-linguality features and iv) a learning
strategy to make use of implicit signals in the form of
learner’s engagement for video lectures. In summary, Tru-
eLearn Novelty presents superior results to the rest of mod-
els, beating Vanilla TrueSkill Video in the long run while
maintaining a richer learner representation and being more
scalable.

Conclusions

This work sets the foundations towards building a lifelong
learning recommendation system for education. We present
three different approaches, inspired by Item Response The-
ory and Knowledge Tracing. Our proposed model (Tru-
eLearn) introduces the concept of novelty as a function of
learner engagement. In this framework, recommendation al-
gorithms need to focus on making recommendations for
which i) the learner has enough background knowledge so
they are able to understand and learn from the recommended
material, and ii) the material has enough novelty that would
help the learner to improve their knowledge about the sub-
ject. Our results using a very large dataset show the poten-
tial of such an approach. TrueLearn also embeds scalabil-
ity, transparency and data efficiency in the core of its de-
sign showing clear promise towards building an effective
lifelong learning recommendation system. While there has
been vast amount of work in context of recommendation,
recommendation in education has unique challenges, due to
which most existing recommendation algorithms tend not
to be directly applicable. Because of this, the list of future
work remains extensive. Concerning the model: i) We be-
lieve that the use of a hierarchical approach, that takes into
account Wikipedia link graph and category tree (i.e. depen-
dency and correlations between KCs), could significantly
improve the results by alleviating the sparsity of the KCs
selected by Wikifier. This might also allow for more refined
definitions of novelty. ii) The model could also be extended
to consider explicit learner’s feedback of the type ”too diffi-
cult” or ”too easy”. iii) The model could be combined with a
form of collaborative filtering to tackle learners with limited
number of sessions. Concerning the data and the validation:
i) We would like to validate our strategy for processing re-
sources in a cross-modal and cross-lingual environment, to
further strengthen our experimental analysis. ii) We plan to
set a user study to validate the recommendations of the sys-
tem and design a visualisation of the learner’s knowledge.
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