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Abstract

Machine learning is increasingly becoming a powerful tool
to make decisions in a wide variety of applications, such as
medical diagnosis and autonomous driving. Privacy concerns
related to the training data and unfair behaviors of some deci-
sions with regard to certain attributes (e.g., sex, race) are be-
coming more critical. Thus, constructing a fair machine learn-
ing model while simultaneously providing privacy protection
becomes a challenging problem. In this paper, we focus on
the design of classification model with fairness and differen-
tial privacy guarantees by jointly combining functional mech-
anism and decision boundary fairness. In order to enforce ε-
differential privacy and fairness, we leverage the functional
mechanism to add different amounts of Laplace noise re-
garding different attributes to the polynomial coefficients of
the objective function in consideration of fairness constraint.
We further propose an utility-enhancement scheme, called re-
laxed functional mechanism by adding Gaussian noise in-
stead of Laplace noise, hence achieving (ε, δ)-differential
privacy. Based on the relaxed functional mechanism, we
can design (ε, δ)-differentially private and fair classification
model. Moreover, our theoretical analysis and empirical re-
sults demonstrate that our two approaches achieve both fair-
ness and differential privacy while preserving good utility and
outperform the state-of-the-art algorithms.

Introduction

In this big data era, machine learning has been becoming a
powerful technique for automated and data-driven decision
making processes in various domains, such as spam filtering,
credit ratings, housing allocation, and so on. However, as the
success of machine learning mainly rely on a vast amount of
individual data (e.g., financial transactions, tax payments),
there are growing concerns about the potential for privacy
leakage and unfairness in training and deploying machine
learning algorithms (Fredrikson, Jha, and Ristenpart 2015;
Datta, Tschantz, and Datta 2015). Thus, the problem of fair-
ness and privacy in machine learning has attracted consider-
able attention.

Fairness-aware learning has received growing attentions
in the machine learning field due to the social inequities and
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unfair behaviors observed in classification models. For ex-
ample, a classification model of automated job hiring system
is more likely to hire candidates from certain racial or gen-
der groups (Giang 2018; Wachter-Boettcher 2018). Hence,
substantial effort has centered on developing algorithmic
methods for designing fair classification models and bal-
ancing the trade-off between accuracy and fairness, mainly
including two groups: pre/post-processing methods (Dwork
et al. 2012; Feldman et al. 2015; Hardt et al. 2016) and in-
processing methods (Kamishima, Akaho, and Sakuma 2011;
Zafar et al. 2017b). Pre/post-processing methods achieve
fairness by directly changing values of the sensitive at-
tributes or class labels in the training data. As pointed out
in (Zafar et al. 2017b), pre/post-processing methods treat the
learning algorithm as a black box, which can result in unpre-
dictable loss of the classification utility. Thus, in-processing
methods, which introduce fairness constraints or regulariza-
tion terms to the objective function to remove the discrimi-
natory effect of classifiers, have been shown a great success.

At the same time, differential privacy (Dwork and Roth
2014) has emerged as the de facto standard for measuring
the privacy leakage associated with algorithms on sensitive
databases, which has recently received considerable atten-
tions by large-scale corporations such as Google (Erlings-
son, Pihur, and Korolova 2014) and Microsoft (Ding, Kulka-
rni, and Yekhanin 2017), etc. Generally speaking, differ-
ential privacy ensures that there is no statistical difference
to the output of a randomized algorithm whether a single
individual opts in to, or out of its input. A large class of
mechanisms has been proposed to ensure differential pri-
vacy. For instance, the Laplace mechanism is employed by
introducing random noise drawn from the Laplace distribu-
tion to the output of queries such that the adversary will not
be able to confirm a single individual is in the input with
high confidence (Dwork et al. 2006b). To design private
machine learning models, more complicated perturbation
mechanisms have been proposed like objective perturbation
(Chaudhuri, Monteleoni, and Sarwate 2011) and functional
mechanism (Zhang et al. 2012), which inject random noise
into the objective function rather than model parameters.

Thus, in this paper, we mainly focus on achieving classi-
fication models that simultaneously provide differential pri-
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vacy and fairness. As pointed out in recent study (Xu, Yuan,
and Wu 2019), achieving both requirements efficiently is
quite challenging, due to the different aims of differential
privacy and fairness. Differential privacy in a classification
model focuses on the individual level, i.e., differential pri-
vacy guarantees that the model output is independent of
whether any individual record presents or absents in the
dataset, while fairness in a classification model focuses on
the group level, i.e., fairness guarantees that the model pre-
dictions of the protected group (such as female group) are
same to those of the unprotected group (such as male group).
Lots of researches have emerged in achieving both privacy
protection and fairness. Specifically, in (Dwork et al. 2012),
Dwork et al. gave a new definition of fairness that is an
extended definition of differential privacy. In (Hajian et al.
2015), Hajian et al. imposed fairness and k-anonymity via
a pattern sanitization method. Moreover, Ekstrand et al. in
(Ekstrand, Joshaghani, and Mehrpouyan 2018) put forward
a set of questions about whether fairness are compatible with
privacy. However, only Xu et al. in (Xu, Yuan, and Wu 2019)
studied how to meet the requirements of both differential
privacy and fairness in classification models by combining
functional mechanism and decision boundary fairness to-
gether. Therefore, how to simultaneously meet the require-
ments of differential privacy and fairness in machine learn-
ing algorithms is under exploited.

In this paper, we propose Purely and Approximately
Differential private and Fair Classification algorithms,
called PDFC and ADFC, respectively, by incorporating
functional mechanism and decision boundary covariance, a
novel measure of decision boundary fairness. As shown in
(Kamiran and Calders 2012), due to the correlation between
input features (attributes), the discrimination of classifica-
tion still exists even if removing the protected attribute from
the dataset before training. Hence, different from (Xu, Yuan,
and Wu 2019), which adds same scale of noise in each at-
tribute, in PDFC, we consider a calibrated functional mech-
anism, i.e., injecting different amounts of Laplace noise re-
garding different attributes to the polynomial coefficients of
the constrained objective function to ensure ε-differential
privacy and reduce effects of discrimination. To further im-
prove the model accuracy, in ADFC, we propose a relaxed
functional mechanism by inserting Gaussian noise instead
of Laplace noise and leverage it to perturb coefficients of
the polynomial representation of the constrained objective
function to enforce (ε, δ)-differential privacy and fairness.
Our salient contributions are listed as follows.

• We propose two approaches PDFC and ADFC to learn
a logistic regression model with differential privacy and
fairness guarantees by applying functional mechanism
to a constrained objective function of logistic regression
that decision boundary fairness constraint is treated as a
penalty term and added to the original objective function.

• For PDFC, different magnitudes of Laplace noise regard-
ing different attributes are added to the polynomial coef-
ficients of the constrained objective function to enforce
ε-differential privacy and fairness.

• For ADFC, we further improve the model accuracy by

proposing the relaxed functional mechanism based on Ex-
tended Gaussian mechanism, and leverage it to introduce
Gaussian noise with different scales to perturb objective
function.

• Using real-world datasets, we show that the performance
of PDFC and ADFC significantly outperforms the base-
line algorithms while jointly providing differential pri-
vacy and fairness.

The rest of paper is organized as follows. We first give the
problem statement and background in differential privacy
and fairness. Next, we present our two approaches PDFC
and ADFC to achieve DP and fair classification. Finally, we
give the numerical experiments based on real-world datasets
and draw conclusion remarks. Due to the space limit, we
leave all the proofs in the supplemental materials.

Problem Statement

This paper considers a training dataset D that includes n tu-
ples t1, t2, · · · , tn. We also denote each tuple ti = (xi, yi)
where the feature vector xi contains d attributes, i.e., xi =
(xi1, xi2, · · · , xid), and yi is the corresponding label. With-

out loss of generality, we assume
√∑d

j=1 x
2
ij ≤ 1 where

xij ≥ 0, and yi ∈ {0, 1} for binary classification tasks.
The objective is to construct a binary classification model
ρ(x, w) with model parameters w = (w1, w2, · · · , wd) that
taken x as input, can output the prediction ŷ, by minimizing
the empirical loss on the training dataset D over the param-
eter space w of ρ.

In general, we have the following optimization problem.

w∗ = argmin
w

f(D , w) = argmin
w

n∑
i=1

f(ti, w) (1)

where f is the loss function. In this paper, we consider
logistic regression as the loss function, i.e., f(D , w) =∑n

i=1[log(1+exp(xT
i w))−yix

T
i w]. Thus, the classification

model has the form ρ(x, w∗) = exp(xTw∗)
1+exp(xTw∗) .

Although there is no need to share the dataset during the
training procedure, the risk of information leakage still ex-
ists when we release the classification model parameter w∗.
For example, the adversary may perform model inversion
attack (Fredrikson, Jha, and Ristenpart 2015) over the re-
lease model w∗ together with some background knowledge
about the training dataset to infer sensitive information in
the dataset.

Furthermore, if labels in the training dataset are associ-
ated with a protected attribute zi (note that we denote xi as
unprotected attributes), like gender, the classifier may be bi-
ased, i.e., P (ŷi = 1|zi = 0) �= P (ŷi = 1|zi = 1), where
we assume the protected attribute zi ∈ {0, 1}. According to
(Pedreshi, Ruggieri, and Turini 2008), even if the protected
attribute is not used to build the classification model, this
unfair behavior may happen when the protected attribute is
correlated with other unprotected attributes.

Therefore, in this paper, our objective is to learn a binary
classification model, which is able to guarantee differential
privacy and fairness while preserving good model utility.
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Background

In this section, we first introduce some background knowl-
edge of differential privacy, which helps us to build private
classification models. Then we present fairness definition,
which helps us to enforce classification fairness.

Differential Privacy

Differential privacy is introduced to guarantee that the abil-
ity of an adversary to obtain additional information about
any individual is independent of whether any individual
record presents or absents in the dataset.
Definition 1 (ε-Differential Privacy). A randomized Mech-
anism A is enforced by ε-differential privacy, if for any two
neighboring datasets D ,D ′ ∈ D, i.e., differing at most
one single data sample, and for any possible output s in
the output space of A, it holds that Pr(A(D) = s) ≤
eε Pr(A(D ′) = s).

The privacy parameter ε controls the strength of the pri-
vacy guarantee. A smaller value indicates a stronger privacy
protection. Though differential privacy provides very strong
guarantee, in some cases it may be too strong to have a good
data utility. We then introduce a relaxation, (ε,δ)-differential
privacy, that has been proposed in (Dwork et al. 2006a).
Definition 2 ((ε,δ)-Differential Privacy). A randomized
Mechanism A is enforced by (ε,δ)-differential privacy, if
for any two neighboring datasets D ,D ′ ∈ D differing at
most one single data item, and for any possible output s
in the output space of A, it holds that Pr(A(D) = s) ≤
eεPr(A(D ′) = s) + δ.

Laplace mechanism (Dwork and Roth 2014) and Ex-
tended Gaussian mechanism (Phan et al. 2019) are common
techniques for achieving differential privacy, both of which
add random noise calibrated to the sensitivity of the query
function q.
Theorem 1 (Laplace Mechanism). Given any function q :
Xn → R

d, the Laplace mechanism defined by

ML(D , q, ε) = q(D) + (Y1,Y2, · · · ,Yd)

preserves ε-differential privacy, where Yi are i.i.d. random
variables drawn from Lap(Δ1q/ε) and l1-sensitivity of the
query q is Δ1q = supD,D′ ‖q(D)− q(D ′)‖1 taken over all
neighboring datasets D and D ′.
Theorem 2 (Extended Gaussian Mechanism). Given any
function q : Xn → R

d and for any ε > 0, δ ∈ (0, 1), the
Extended Gaussian mechanism defined by

MG(D , q, ε) = q(D) + (Y1,Y2, · · · ,Yd)

preserves (ε, δ)-differential privacy, where Yi are i.i.d
drawn from a Gaussian distribution N (0, σ2Id) with σ ≥
√
2Δ2q

2ε (

√
log(

√
2
π

1
δ )+

√
log(

√
2
π

1
δ ) + ε) and l2-sensitivity

of the query q is Δ2q = supD,D′ ‖q(D) − q(D ′)‖2 taken
over all neighboring datasets D and D ′.

Functional Mechanism. Functional mechanism, intro-
duced by (Zhang et al. 2012), as an extension of the Laplace

mechanism is designed for regression analysis. To preserve
ε-differential privacy, functional mechanism injects differ-
entially private noise into the objective function f(D , w)
and then publishs a noisy model parameter ŵ derived from
minimizing the perturbed objective function f̂(D , w) rather
than the original one. As a result of the objective function
being a complex function of w, in functional mechanism,
f(D , w) is represented in polynomial forms trough Taylor
Expansion. The model parameter w is a vector consisting of
several values w1, w2, · · · , wd. We denote φ(w) as a prod-
uct of w1, w2, · · · , wd, namely, φ(w) = wc1

1 wc2
2 · · ·wcd

d for
some c1, c2, · · · , cd ∈ N. We also denote Φj(j ∈ N) as
the set of all products of w1, w2, · · · , wd with degree j, i.e.,
Φj = {wc1

1 wc2
2 · · ·wcd

d |∑d
l=1 cl = j}.

According to the Stone-Weierstrass Theorem (Rudin and
others 1964), any continuous and differentiable function can
always be expressed as a polynomial form. Therefore, the
objective function f(D , w) can be written as follows

f(D , w) =

n∑
i=1

J∑
j=0

∑
φ∈Φj

λφtiφ(w), (2)

where λφti represents the coefficient of φ(w) in polynomial.
To preserve ε-differential privacy, the objective function

f(D , w) is perturbed by adding Laplace noise into the poly-
nomial coefficients, i.e., λφ =

∑n
i=1 λφti + Lap(Δ1/ε),

where Δ1 = 2maxt
∑J

j=1

∑
φ∈Φj

‖λφt‖1. And then the
model parameter ŵ is obtained by minimizing the noisy ob-
jective function f̂(D , w). The sensitivity of logistic regres-
sion is given in the following lemma
Lemma 1 (l1-Sensitivity of Logistic Regression).
Let f(D , w) and f(D ′, w) be the logistic regres-
sion on two neighboring datasets D and D ′, respec-
tively, and denote their polynomial representations
as f(D , w) =

∑n
i=1

∑J
j=1

∑
φ∈Φj

λφtiφ(w) and

f(D ′, w) =
∑n

i=1

∑J
j=1

∑
φ∈Φj

λφt′iφ(w). Then, we
have the following inequality

Δ1 =

2∑
j=1

∑
φ∈Φj

‖
∑
ti∈D

λφti −
∑
t′i∈D′

λφt′i‖1

≤ 2max
t

2∑
j=1

∑
φ∈Φj

‖λφt‖1 ≤ d2

4
+ d,

where ti, t′i or t is an arbitrary tuple.

Classification Fairness

The goal of classification fairness is to find a classifier that
minimizes the empirical loss while guaranteeing certain fair-
ness requirements. Many fairness definitions have been pro-
posed for in the literature including mistreatment parity (Za-
far et al. 2017a), demographic parity (Pedreshi, Ruggieri,
and Turini 2008), etc.

Demographic parity, the most widely-used fairness defini-
tion in the classification fairness domain, requires the deci-
sion made by the classifier is not dependent on the protected
attribute z, for instance, sex or race.
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Definition 3. (Demographic Parity in a Classifier) Given
a classification model ŷ = ρ(x, w) and a labeled dataset D ,
the property of demographic parity in a classifier is defined
by Pr(ŷ = 1|z = 1) = Pr(ŷ = 1|z = 0) where z ∈ {0, 1}
is the protected attribute.

Moreover, demographic parity is quantified in terms of
the risk difference (RD) (Pedreschi, Ruggieri, and Turini
2012), i.e., the difference of the positive decision made in
between the protected group and unprotected group. Thus,
the risk difference produced by a classifier is defined as
RD = |Pr(ŷ = 1|z = 1)− Pr(ŷ = 1|z = 0)|.

One of the in-processing methods, called decision bound-
ary fairness (Zafar et al. 2017b), to ensure classification fair-
ness is to find a model parameter w that minimizes the loss
function f(D , w) under a fairness constraint. Thus, the fair
classification problem is formulated as follows,

minimize f(D , w)

subject to g(D , w) ≤ τ, g(D , w) ≥ −τ, (3)

where g(D , w) is a constraint term, and τ is the threshold.
For instance, Zafar et al. (Zafar et al. 2017b) have proposed
to adopt the decision boundary covariance to define the fair-
ness constraint, i.e.,

g(D , w) = E[(z − z̄)d(x, w)]− E[z − z̄]d(x, w)

∝
n∑

i=1

(zi − z̄)d(xi, w), (4)

where {d(xi, w)}ni=1 is decision boundary, z̄ is the average
of the protected attribute and E[z − z̄] = 0. For logistic re-
gression classification models, the decision boundary is de-
fined by xTw. The decision boundary covariance (4) then
reduces to g(D , w) =

∑n
i=1(zi − z̄)xT

i w.

Differentially Private and Fair Classification

In this section, we first present our approach PDFC to
achieve fair logistic regression with ε-differentially private
guarantee. Then we propose a relaxed functional mecha-
nism by injecting Gaussian noise instead of Laplace noise
to provide (ε, δ)-differential privacy. By leveraging the re-
laxed functional mechanism, we will show that our second
approach ADFC can jointly provide (ε, δ)-differential pri-
vacy and fairness.

Purely DP and Fair Classification

In order to meet the requirements of ε-differential privacy
and fairness, motivated by (Xu, Yuan, and Wu 2019), we
consider to combine the functional mechanism and decision
boundary fairness. We first consider to transform the con-
strained optimization problem (3) into unconstrained prob-
lem by treating the fairness constraint as a penalty term,
where the fairness constraints are shifted to the original
objective function f(D , w). Then, we have the new ob-
jective function f̃D(w) defined as f̃(D , w) = f(D , w) +
α1|g(D , w)−τ |, where we consider α1 as a hyperparameter
to optimize the trade-off between model utility and fairness.
For convenience of discussion, we set τ = 0 and choose

suitable values to make α1 = 1. Note that our theoretical
results still hold if we choose other values of α1 and τ . By
equation (4), we have

f̃(D , w) =
n∑

i=1

[log(1 + exp(xT
i w))− yix

T
i w]

+

∣∣∣∣∣
n∑

i=1

(zi − z̄)xT
i w

∣∣∣∣∣ . (5)

To apply functional mechanism, we first write the approxi-
mate objective function f̄(D , w) based on (2) as follows.

f̄(D , w) =
n∑

i=1

2∑
j=0

f
(j)
1 (0)

j!
(xT

i w)
j −

(
n∑

i=1

yix
T
i

)
w

+

∣∣∣∣∣
n∑

i=1

(zi − z̄)xT
i w

∣∣∣∣∣
=

n∑
i=1

2∑
j=0

∑
φ∈Φj

λ̄φtiφ(w), (6)

where λ̄φti denotes the coefficient of φ(w) in the polynomial
of f̄(ti, w) and f1(·) = log(1 + exp (·)).

The attributes involving in the dataset may not be inde-
pendent from each other, which means some unprotected
attributes in x are quite correlated with the protected at-
tribute z. For instance, the protected attribute, like gender,
may be correlated with the attribute, marital status. Thus, to
reduce the discrimination between the protected attribute z
and the labels y, it is important to weaken the correlation
between these most correlated attributes and protected at-
tribute z. However, it is often impossible to determine the
degree of relation between an unprotected attribute and the
protected attribute. Therefore, we randomly select an unpro-
tected attribute xs and leverage functional mechanism to add
noise with large scale to the corresponding polynomial co-
efficients of the monomials involving ws. Interestingly, this
approach not only helps to reduce the correlation between
attributes xs and z, but also improve the privacy on attribute
xs to prevent model inversion attacks, as shown in (Wang,
Si, and Wu 2015).

The key steps of PDFC are outlined in Algorithm 1. We
first set two different privacy budgets, εs and εn, for attribute
xs and the rest of attributes {x \ xs}. Before injecting noise
to the coefficients, all coefficients φ should be separated
into two groups Φs and Φn by considering whether ws in-
volves in the corresponding monomials (i.e., whether their
the coefficients contain attribute xs). We then add Laplace
noises drawn from Lap(Δ1/εs) and Lap(Δ1/εn) to the co-
efficients of φ ∈ Φs and φ ∈ Φn respectively to reconstruct
the differentially private objective function f̂(D , w), where
Δ1 can be found in Lemma 2. Finally, the differentially pri-
vate model parameter ŵ is obtained by minimizing f̂(D , w).
Note that ŵ also ensures classification fairness due to the ob-
jective function involving fairness constraint.
Lemma 2. Let D and D ′ be any two neighboring datasets
differing in at most one tuple. Let f̄(D , w) and f̄(D ′, w) be
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Algorithm 1 Purely DP and Fair Classification (PDFC)

1: Input: Dataset D ; The objective function f(D , w); The
fairness constraint g(D , w); The privacy budget εs for
unprotected attribute xs; The privacy budget εn for other
unprotected attributes {x \ xs}; l1-sensitivity Δ1.

2: Output: ŵ, ε.
3: Set the approximate function f̄(D , w) by equation (6).
4: Set two sets Φs = {}, Φn = {}.
5: for 1 ≤ j ≤ 2 do
6: for each φ ∈ Φj do
7: if φ includes ws for a particular attribute xs

then
8: Put φ into Φs.
9: else

10: Put φ into Φn.
11: end if
12: end for
13: end for
14: for 1 ≤ j ≤ 2 do
15: for each φ ∈ Φj do
16: if φ ∈ Φs then

17: Set λ̂φ =
∑n

i=1 λ̄φti + Lap(Δ1/(εs)).
18: else
19: Set λ̂φ =

∑n
i=1 λ̄φti + Lap(Δ1/(εn)).

20: end if
21: end for
22: end for
23: Let f̂(D , w) =

∑2
j=1

∑
φ∈Φj

λ̂φφ(w).

24: Compute ŵ = argminw f̂(D , w).
25: Compute ε = εs/d+ εn(d− 1)/d.
26: return: ŵ, ε.

the approximate objective function on D and D ′, then we
have the following inequality,

Δ1 =

2∑
j=1

∑
φ∈Φj

‖
n∑

i=1

λ̄φti −
n∑

i=1

λ̄φt′i‖1 ≤ d2

4
+ 3d.

The following theorem shows the privacy guarantee of
PDFC.

Theorem 3. The output model parameter ŵ in PDFC (Al-
gorithm 1) preserves ε-differential privacy, where ε = 1

dεs+
d−1
d εn.

Approximately DP and Fair Classification

We now focus on using the relaxed version of ε-differential
privacy, i.e., (ε, δ)-differential privacy to further improve the
utility of differentially private and fair logistic regression.
Hence, in order to satisfy (ε, δ)-differential privacy, we pro-
pose the relaxed functional mechanism by making use of
Extended Gaussian mechanism. As shown in Theorem 2,
before applying Extended Gaussian mechanism, we first cal-
culate the sensitivity of a query function, i.e., the objective
function of logistic regression f(D , w) =

∑n
i=1[log(1 +

exp(xT
i w))− yix

T
i w], given in the following lemma.

Algorithm 2 Relaxed Functional Mechanism

1: Input: Dataset D ; The objective function f(D , w) =∑n
i=1

∑J
j=1

∑
φ∈Φj

λφtiφ(w); The privacy parameters
ε, δ.

2: Output: ŵ
3: Set Δ2 according Lemma 3.
4: for 1 ≤ j ≤ J do
5: for each φ ∈ Φj do

6: Set λφ =
∑n

i=1 λφti +N (0, σ2), where σ =
√
2Δ2

2ε (

√
log(

√
2
π

1
δ ) +

√
log(

√
2
π

1
δ ) + ε).

7: end for
8: end for
9: Let f̂(D , w) =

∑J
j=1

∑
φ∈Φj

λφφ(w).

10: Compute ŵ = argminw f̂(D , w).
11: return: ŵ.

Lemma 3 (l2-Sensitivity of Logistic Regression). For
polynomial representations of logistic regression, two
f(D , w) and f(D ′, w) given in Lemma 1, we have the fol-
lowing inequality

Δ2 = ‖A1 − A2‖2 ≤
√

d2

16
+ d,

where we denote A1 = {∑n
i=1 λφti}φ∈∪J

j=1Φj
and A2 ={∑n

i=1 λφt′i

}
φ∈∪J

j=1Φj
as the set of polynomial coefficients

of f(D , w) and f(D ′, w). And we denote ti or t′i as an ar-
bitrary tuple.

We then perturb f(D , w) by injecting Gaussian noise

drawn from N (0, σ2) with σ =
√
2Δ2

2ε (

√
log(

√
2
π

1
δ ) +√

log(
√

2
π

1
δ ) + ε) into its polynomial coefficients, and ob-

tain the differentially private model parameter ŵ by mini-
mizing the noisy function f̂(D , w), as shown in Algorithm
2. Finally, we provide a privacy guarantee of proposed re-
laxed functional mechanism by the following theorem.
Theorem 4. The relaxed functional mechanism in Algo-
rithm 2 guarantees (ε, δ)-differential privacy.

Our second approach called, ADFC, applies the re-
laxed functional mechanism into the objective function
with decision boundary fairness constraint to enforce (ε, δ)-
differential privacy and fairness. As shown in Algorithm 3,
we first derive the polynomial representation f̄(D , w) ac-
cording to (6), and employ random Gaussian noise to per-
turb the objective function f̄(D , w), i.e., injecting Gaussian
noise into its polynomial coefficients. Furthermore, we also
allocate differential privacy parameters, (εs, δs) and (εn, δn)
for a particular unprotected attribute xs and the rest of un-
protected attributes {x \ xs} to improve the privacy on at-
tribute xs and reduce the correlation between attributes xs

and z. Hence, we add random noise drawn from N (0, σ2
s)

to polynomial coefficients of φ ∈ Φs. For polynomial coef-
ficients in Φn, we inject noise drawn from N (0, σ2

n).
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Algorithm 3 Approximately DP and Fair Classification
(ADFC)

1: Input: Dataset D ; The objective function f(D , w);
The fairness constraint g(D , w); The privacy parame-
ters εs, δs for unprotected attribute xs; The privacy pa-
rameters εn, δn for other unprotected attributes {x\xs}.

2: Output: ŵ, ε and δ.
3: Set the approximate function f̄(D , w) by equation (6).
4: Set two sets Φs = {}, Φn = {}.
5: for 1 ≤ j ≤ 2 do
6: for each φ ∈ Φj do
7: if φ includes ws for a particular attribute xs

then
8: Put φ into Φs.
9: else

10: Put φ into Φn.
11: end if
12: end for
13: end for
14: Set l2-sensitivity Δ′

2 by Lemma 4.
15: for 1 ≤ j ≤ 2 do
16: for each φ ∈ Φj do
17: if φ ∈ Φs then

18: Set λ̂φ =
∑n

i=1 λ̄φti + N (0, σ2
s),

where σs =
√
2Δ′

2

2εs
(

√
log(

√
2
π

1
δs
) +√

log(
√

2
π

1
δs
) + εs).

19: else
20: Set λ̂φ =

∑n
i=1 λ̄φti + N (0, σ2

n),

where σn =
√
2Δ′

2

2εn
(

√
log(

√
2
π

1
δn
) +√

log(
√

2
π

1
δn
) + εn).

21: end if
22: end for
23: end for
24: Let f̂(D , w) =

∑2
j=1

∑
φ∈Φj

λ̂φφ(w).

25: Compute ŵ = argminw f̂(D , w).
26: Compute ε = 1

dεs+
d−1
d εn and δ = 1−(1−δs)(1−δn).

27: return: ŵ, ε and δ.

Lemma 4. Let D and D ′ be any two neighboring datasets
differing in at most one tuple. Let f̄(D , w) and f̄(D ′, w) be
the approximate objective function on D and D ′, then we
have the following inequality,

Δ′
2 = ‖A ′

1 − A ′
2‖2 ≤

√
d2

16
+ 9d.

where we denote A ′
1 =

{∑n
i=1 λ̄φti

}
φ∈∪2

j=1Φj
and A ′

2 ={∑n
i=1 λ̄φt′i

}
φ∈∪2

j=1Φj
as the set of polynomial coefficients

of f̄(D , w) and f̄(D ′, w). And we denote ti or t′i as an ar-
bitrary tuple.

Finally, by minimizing the differentially private objective

Figure 1: Compare accuracy under different privacy budgets
on US. (δ = 10−3)

Figure 2: Compare accuracy under different values of δ on
US.

function f̂(D , w), we derive the model parameter ŵ, which
achieves differential privacy and fairness at the same time.
We now show that ADFC satisfies (ε, δ)-differential privacy
in the following theroem.

Theorem 5. The output model parameter ŵ in ADFC (Al-
gorithm 3) guarantees (ε, δ)-differential privacy, where ε =
1
dεs +

d−1
d εn and δ = 1− (1− δs)(1− δn).

Performance Evaluation

Simulation Setup

Data preprocessing We evaluate the performance on two
datasets, Adult dataset and US dataset. The Adult dataset
from UCI Machine Learning Repository (Dheeru and
Karra Taniskidou 2017) contains information about 13 dif-
ferent features (e.g., work-class, education, race, age, sex,
and so on) of 48,842 individuals. The label is to predict
whether the annual income of those individuals is above 50K
or not. The US dataset is from Integrated Public Use Micro-
data Series (Center 2018) and consists of 370,000 records of
census microdata, which includes features like age, sex, ed-
ucation, family size, etc. The goal is to predict whether the
income is over 25K a year. In both datasets, we consider sex
as a binary protected attribute.

Baseline algorithms In our experiments, we compare our
approaches, PDFC, and ADFC against several baseline algo-
rithms, namely, LR and PFLR*. LR is a logistic regression
model. PFLR* (Xu, Yuan, and Wu 2019) is a differentially
private and fair logistic regression model that injects Laplace
noise with shifted mean to the objective function of logistic
regression with fairness constraint. Moreover, we compare
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Figure 3: Compare accuracy under different privacy budgets on Adult (δ = 10−3).

our relaxed functional mechanism against the original func-
tional mechanism proposed in (Zhang et al. 2012) and No-
Privacy, which is the original functional mechanism without
injecting any noise to the polynomial coefficients.

Evaluation The utility of algorithms is measured by
Accuracy, defined as follows,

Accuracy =
Number of correct predictions

Total number of predictions made
,

which demonstrates the quality of a classifier. The fairness
of classification models is qualified by risk difference (RD)

RD = |Pr(ŷ = 1|z = 1)− Pr(ŷ = 1|z = 0)|,
where z is the protected attribute. We consider a random 80-
20 training-testing split and conduct 10 independent runs
of algorithms. We then record the mean values and stan-
dard deviation values of Accuracy and RD on the testing
dataset. For the parameters of differential privacy, we con-
sider ε = {10−2, 10−1.5, 10−1, 100, 100.5, 101}, and δ =
{10−3, 10−4, 10−5, 10−6, 10−7}.

Results and Analysis

In Figure 1, we show the accuracy of each algorithm, func-
tional mechanism, relaxed functional mechanism and No-
Privacy, as a function of the privacy budget with fixed δ =
10−3. We can see that the accuracy of No-Privacy remains
unchanged for all values of ε, as it does not provide any dif-
ferential privacy guarantee. Our relaxed functional mecha-
nism exhibits quite higher accuracy than functional mech-
anism in high privacy regime, and the accuracy of relaxed
functional mechanism is the same as No-Privacy baseline
when ε > 10−1. Figure 2 studies the accuracy of each al-
gorithm under different values of δ with fixed ε = 10−2.
Relaxed functional mechanism incurs lower accuracy when
δ decreases, as a smaller δ requires a larger scale of noise
to be injected in the objective function. But the accuracy of
functional mechanism remains considerably lower than re-
laxed functional mechanism in all cases.

Figure 3a studies the accuracy comparison among
PFLR*, LR, PDFC and ADFC on Adult dataset with the
particular unprotected attribute xs denoted by marital status.

We can observe that ADFC continuously achieves better ac-
curacy than PFLR* in all privacy regime, and PDFC only
outperforms PFLR* when ε is small. We also evaluate the
effect of choosing different attributes as xs by performing
experiments on Adult dataset. As shown in Figure 3b and
Figure 3c, choosing different attributes, marital status, age,
relation and race, has different effects on the accuracy of
PDFC and ADFC. However, PDFC and ADFC still outper-
form PFLR* under varying values of ε. As expected, as the
value of ε increases, the accuracy of each algorithm becomes
higher in above three figures.

Table 1 shows how different privacy budgets affect the
risk difference of LR, PFLR*, PDFC and ADFC on two
datasets. Note that we consider the attribute xs as race on
Adult dataset, and work on US dataset. It is clear that PDFC
and ADFC produce less risk difference compared to PFLR*
in most cases of ε. The key reason is that adding differ-
ent amounts of noise regarding different attributes indeed
reduces the correlation between unprotected attributes and
protected attributes.

Table 1: Risk difference with different privacy budgets ε on
two datasets (δ = 10−3).

Data ε LR PFLR* PDFC ADFC

Adult

0.01 0.187± 0.049 0.045± 0.095 0.048± 0.108 0.146± 0.131
0.1 0.187± 0.049 0.004± 0.009 0.005± 0.022 0.068± 0.028
1 0.187± 0.049 0.022± 0.088 0.002± 0.011 0.045± 0.027
10 0.187± 0.049 0.003± 0.001 0.035± 0.041 0.019± 0.003

US

0.01 0.191± 0.014 0.037± 0.038 0.003± 0.034 0.004± 0.007
0.1 0.191± 0.014 0.078± 0.021 0.001± 0.006 0.008± 0.003
1 0.191± 0.014 0.069± 0.007 0.022± 0.047 0.031± 0.004
10 0.191± 0.014 0.067± 0.003 0.022± 0.031 0.045± 0.002

Conclusion

In this paper, we have introduced two approaches, PDFC
and ADFC, to address the discrimination and privacy con-
cerns in logistic regression classification. Different from ex-
isting techniques, in both approaches, we consider leverag-
ing functional mechanism to the objective function with de-
cision boundary fairness constraints, and adding noise with
different magnitudes into the coefficients of different at-
tributes to further reduce the discrimination and improve the
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privacy protection. Moreover, for ADFC, we utilize the pro-
posed relaxed functional mechanism that is built upon Ex-
tended Gaussian mechanism, to further improve the model
accuracy. By performing extensive empirical comparisons
with state-of-the-art methods for differentially private and
fair classification, we demonstrated the effectiveness of pro-
posed approaches.
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