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Abstract

The automatic style translation of Chinese characters (CH-
Char) is a challenging problem. Different from English or
general artistic style transfer, Chinese characters contain a
large number of glyphs with the complicated content and
characteristic style. Early methods on CH-Char synthesis are
inefficient and require manual intervention. Recently some
GAN-based methods are proposed for font generation. The
supervised GAN-based methods require numerous image
pairs, which is difficult for many chirography styles. In ad-
dition, unsupervised methods often cause the blurred and in-
correct strokes. Therefore, in this work, we propose a three-
stage Generative Adversarial Network (GAN) architecture
for multi-chirography image translation, which is divided into
skeleton extraction, skeleton transformation and stroke ren-
dering with unpaired training data. Specifically, we first pro-
pose a fast skeleton extraction method (ENet). Secondly, we
utilize the extracted skeleton and the original image to train
a GAN model, RNet (a stroke rendering network), to learn
how to render the skeleton with stroke details in target style.
Finally, the pre-trained model RNet is employed to assist an-
other GAN model, TNet (a skeleton transformation network),
to learn to transform the skeleton structure on the unlabeled
skeleton set. We demonstrate the validity of our method on
two chirography datasets we established.

Introduction

Chinese characters (CH-Chars) are a complicated and an-
cient art with the carrier of Chinese culture, of which aes-
thetic value attracts calligraphy lovers to imitate the works
of famous calligraphers. To achieve visually-pleasing imi-
tation, amounts of time and repetitive training are neces-
sary. Unlike English, CH-Chars contain thousands of glyphs
and various chirography styles that have great differences in
the overall structure and stroke details. Therefore, automatic
multi-chirography style translation of CH-Chars from some
observed instances is a meaningful and challenging task.

Early researchs on CH-Char synthesis mainly include
the brush model-based methods(Wong and Ip 2000; Wu et
al. 2006), the rendering manuscript methods(Yu and Peng
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Figure 1: The overview of our method. The middle shows
the translation of ”yong” in our method. The top and bottom
show the ground truths of ”yong”. The color boxes mean the
corresponding stroke details during the process. To visually
distinguish different strokes, we utilize different colors to
mark the relevant strokes in the figure.

2005; Zhang, Wu, and Yu 2010) and the image assembly-
based methods(Xu et al. 2005; Du, Wu, and Xia 2016). How-
ever, these methods are inefficient and dedicated, requiring
manual intervention, which also lead to unrealistic results.

Recently, many deep learning-based methods (Gatys,
Ecker, and Bethge 2016; Li and Wand 2016; Johnson, Alahi,
and Fei-Fei 2016) achieve satisfactory results in texture fea-
tures transfer tasks such as photography to artwork, but
fail in large geometric variations. Moreover, a variety of
GAN-based methods, e.g. PixPix (Isola et al. 2017) and
CycleGAN (Zhu et al. 2017), offer the general-purpose so-
lution for image-to-image translation. Subsequently, some
font generation methods based on them are proposed, such
as zi2zi(Tian 2017), MC-GAN(Azadi et al. 2018), Calli-
GAN(Gao and Wu 2019) etc.

However, it is difficult and expensive to collect adequate
training pairs for the Pix2Pix-based methods in many cases,
e.g. calligraphy fonts, due to the damage and loss in the
long history and the complexity and diversity of CH-Chars.
Moreover, unlike the photo-to-artwork task, CH-Chars is
only black and white, so the subtle errors of skeleton and
stroke are obvious and unacceptable, while the CycleGAN-
based methods often cause falseness and blur. In order to
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improve the quality of details, SCFont(Jiang et al. 2019),
ReenactGAN(Wu et al. 2018), EverybodyDance(Chan et al.
2018), etc., divide the task into several subtasks according
to task character.

In this paper, we propose ChiroGAN, a novel framework
for multi-chirography Chinese character image translation
based on skeleton transformation and stroke rendering with
unpaired training data. We define the chirography style as
the skeleton structure and stroke style, because the skeleton
contains the basic information of character, such as the com-
position and position of strokes, writing direction, etc., while
the stroke style means the deformation of the skeleton, such
as the thickness, shape, writing strength, etc.

To address the aforementioned problems, we divide the
task into three stages showed in Fig.1. First, we improve
the skeletonization algorithm (ENet) based on mathematical
morphology(Jian-ping et al. 2005) by using convolution op-
erations to represent erosion and dilation, and apply it to the
images in the dataset. Then, we utilize a skeleton transfor-
mation network (TNet) to transfer the structure of the source
skeleton to the target style. Finally, the transformed skeleton
is rendered with the shape and details of the target style via
a stroke rendering network (RNet).

In this manner, the skeleton-image pairs automatically ex-
tracted in the first stage are leveraged to train RNet to ren-
der the stylistic and clear strokes on the skeleton. For TNet,
the correlation between skeletons in different styles can be
learned from unpaired skeleton style sets via CycleGAN-
based methods. We also propose to train TNet jointly with
the pre-trained RNet to compensate for the lack of labeled
information in training data, and further constrain the con-
sistency of content. Similar to StarGAN(Choi et al. 2018),
we develop a novel cGAN(Mirza and Osindero 2014) archi-
tecture to learn the translation of multi-chirography styles
with only a single model.

To sum up, our major contributions are as follows:
(1)We propose a novel stacked cGAN models for un-

paired multi-chirography Chinese character image transla-
tion based on skeleton transformation and stroke rendering.

(2)We improve the skeletonization algorithm based on
mathematical morphology such that the process can be
greatly accelerated via representing by the neural network.

(3)We build both standard font and real calligraphy
datasets, and compare our model with the baseline methods
on them to demonstrate the effectiveness of our method.

Related work

Chinese Character Synthesis

Chinese character synthesis is a long studied problem. The
brush model-based methods(Wong and Ip 2000; Wu et
al. 2006) allow users to manually create calligraphy by
modeling the realistic writing environment. The rendering
manuscript methods(Yu and Peng 2005; Zhang, Wu, and
Yu 2010) utilize the specific stroke texture patches to ren-
der the skeleton. The image-based methods(Xu et al. 2005;
Du, Wu, and Xia 2016) deform and assemble the corre-
sponding radicals and strokes in dataset to generate the tar-
get characters. However, these methods are slow and require

manual extraction and intervention.

Neural Style Transfer

(Gatys, Ecker, and Bethge 2016) first uses pre-trained con-
volutional neural network(CNN) to extract the content and
style features. Whereafter, (Johnson, Alahi, and Fei-Fei
2016) propose perceptive loss to end-to-end train style trans-
fer network while retaining the content. These methods have
a poor performance in geometric style transfer.

Image-to-Image Translation

Recently, a series of GANs(Goodfellow et al. 2014), e.g.
cGAN(Mirza and Osindero 2014), WGAN(Arjovsky, Chin-
tala, and Bottou 2017), Pix2Pix(Isola et al. 2017), Cycle-
GAN(Zhu et al. 2017), StarGAN(Choi et al. 2018) are
widely used in the field of image generation.

Like Pix2Pix, various supervised methods are proposed
for Chinese font style translation with thousands of train-
ing pairs, such as Rewrite(Tian 2016) and zi2zi(Tian 2017)
(font pairs), AE-GAN(Lyu et al. 2017) (feature pairs), and
SCFont(Jiang et al. 2019) (skeleton flow pairs and stroke se-
mantic map of OptSet). MC-GAN(Azadi et al. 2018) synthe-
sizes the 26 letters from a few examples by learning the cor-
relation between glyphs, but is not suitable for Chinese due
to numerous glyphs. CalliGAN(Gao and Wu 2019) achieves
unpaired chirography translation, but ghosting artifacts and
blur often appear in the results.

ReenactGAN(Wu et al. 2018) utilizes CycleGAN with a
PCA shape constrain loss to transfer facial movements and
expressions by boundary latent space, then uses Pix2Pix to
rebuild the target face. EverybodyDance(Chan et al. 2018)
represents the motion with pose stick figures, applys a rigid
normalization, and reconstructs the target appearance. For
our task, we achieve the non-rigid skeleton transformation
with TNet which is trained with pre-trained RNet and a con-
tent loss, and then apply RNet for stroke rendering.

Method

People distinguish CH-Chars by the combination of radi-
cals and the topology of strokes. We define that CH-Chars
with same content must contain same radicals with similar
strokes and layout. For example, the simplified and tradi-
tional characters are viewed as different contents. Moreover,
we divide the chirography style into the skeleton structure
(e.g. the aspect ratio, radical interval, stroke density) and the
stroke style (e.g. the thickness, inclination, writing strength,
the starting and ending shape). In our task, the content of
generated image ought to be similar to the original one and
the style is consistent with the target style sets.

Skeleton Extraction (ENet)

According to the definition, the skeleton should contain only
the information representing the content without redundant
stroke style. The skeletonization algorithm based on math-
ematical morphology(Jian-ping et al. 2005) leverages a set
of mask matrices to erode and dilate the binarized CH-char
images with the following equation:

X ⊗ {S} = ((...((X ⊗ E1)⊕D2)...)⊕D4)⊗ E8, (1)
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Figure 2: All networks in our model. We use different colors to represent different kinds of components in each network. We
define Conv as the convolution layer, IN as the instance normalization(Ulyanov, Vedaldi, and Lempitsky 2016), ConvBlock as
Conv-IN-ReLU, DeconvBlock as transposed Conv-IN-ReLU, ResBlock as the residual block(He et al. 2016), and SkipDecon-
vBlock as ConvBlock-DeconvBlock after the concatenating operation.

Figure 3: Mask matrixes for mathematic morphology. E is
the mask matrix for erosion, while D is for dilation. The ”0”,
”1” and ”*” mean white, black and arbitrary respectively.

where X is the CH-char image, {S} = {E1, D1, E2, E3,
D2, E4, E5, D3, E6, E7, D4, E8} are the mask matrices in
Fig.3, ⊗ is erosion operation and ⊕ is dilation operation.

Since matching operation is similar to the convolution, we
improve the method as follows. We let X̂xy be the 3 × 3

image patch centered on point Xxy and Ŝ be the matrix in
S. The matching operation � for two elements is defined as

a� b =

{
1, if (a = b) ∨ (a = ∗) ∨ (b = ∗)
0, otherwise

. (2)

Thus the original matching operation � for image patch X̂xy

and mask matrix Ŝ is expressed as:

X̂xy � Ŝ =

3∏
j=1

3∏
i=1

(X̂xy
ij � Ŝij). (3)

For image X and mask matrices {S}, if the white, black,
and arbitrary in Fig.3 are respectively set as ”-1”, ”1”, ”0”
instead of ”0”, ”1”, ”*”, the sum of X̂xy

ij × Ŝij will equal
to P −M when X̂xy and Ŝ match, where P is the number
of elements in Ŝ and M is number of ”*”. The matching
operation can be expressed as:

X̂xy � Ŝ = (

3∑
j=1

3∑
i=1

X̂xy
ij × Ŝij +M)� P

= max((X̂xy ◦ Ŝ +M − 3× 3) + 1, 0)

= ReLU(X̂xy ◦ Ŝ +M − 8),

(4)

where ◦ means convolution, and ReLU(x) = max(x, 0).
In this way, the matching operation can be represented as a
convolution layer with the kernel Ŝ followed by ReLU (see
Fig.2). To keep the size, the zero padding is used before it.
As Equ.3, the result is still 1 when matching, otherwise 0.

For erosion, Xxy is black(1) when X̂xy matches, which
has to become white(-1). And similarly for dilation, Xxy

need to be black(1) from white(-1) while matching. There-
fore, the erosion ⊗ and dilation ⊕ are expressed as:

X ⊗ Ŝ = X − 2 ∗ (X � Ŝ), (5)

X ⊕ Ŝ = X + 2 ∗ (X � Ŝ), (6)

where these operations can be viewed as a residual map-
ping(He et al. 2016) H(X) = X + F(X). Next, we take
each element of {S} as a subnet and stack them into a net-
work, called ENet (see the left part of Fig.2). Finally, we
input Y (0) ≡ X into ENet to obtain the skeletonized image
Y (1), then input Y (i) into the ENet repeatedly until Y (i+1)

no longer changes, i = 1,2...N , and Y ≡ Y (N) is the skele-
ton of X . We try 35,280 characters in 4 styles, and the maxi-
mum of i is 12. Therefore, we set N = 15 in all experiments.
Since the features of single-pixel skeleton is difficult to ex-
tract by CNNs, we broadcast it to 4 pixels. Through formula
derivation, the improved operations can be easily accelerated
in parallel using the existing deep learning framework.

Stroke Rendering Network (RNet)

As Fig.1 shows, the goal of RNet is to render the stroke de-
tails of the target style on the skeleton through a cGAN con-
sisting of a generator GR and a discriminator DR. Feeding
in a skeleton y conditioned on the one-hot vector of the spec-
ified style c ∈ C (C is chirography style set), GR generates
a CH-Char image GR(y, c) with complete strokes.

In RNet, GR is composed of a downsampling mod-
ule, four ResBlocks, and a upsampling module(as shown
in the right part of Fig.2). Skip connections are employed
to preserve more spatial details. For DR, we leverage the
PatchGANs Dadv

R and the auxiliary classifier Dcls
R in Star-

GAN(Choi et al. 2018) to guide the single model GR to
achieve realistically multi-chirography style rendering.
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Figure 4: Schematic of the joint training for TNet and RNet. In Stage-I, We first train TNet individually, following the process
in the green box. Then, in Stage-II, we utilize the pre-trained RNet (pink box) to further assist the training process of TNet in
Stage-I. Moreover, both GT , DT and DR are trained in Stage-II, while freezing GR.

In order to guide the training of RNet, we first construct
a skeleton-image pairs dataset by ENet. And we pre-train
RNet on them by optimizing the loss function, which con-
sists of adversarial loss Ladv , chirography classification loss
Lcls and reconstruction loss Lrec. We use WGAN-GP(Gul-
rajani et al. 2017) loss for adversarial training of both RNet
and TNet. Also, the L1 loss function is used as Lrec on the
rendered image and the ground truth.

For G and D, we define the general form of Ladv as:

Ladv(D) =Ez,c[D(G(z, c))]− Ez[D(z)]

+ λgpEẑ[(‖ �ẑD(ẑ) ‖2 −1)2],
(7)

Ladv(G) = −Ez,c[D(G(z, c))], (8)

and Lcls as:

Lcls(D) = Ez,c[− logD(c | z)], (9)
Lcls(G) = Ez,c[− logD(c | G(z, c))], (10)

where z is the input image, c is the style label, and ẑ is sam-
pled uniformly along straight lines between a pair of real and
generated images. We define the Lrec for GR as:

Lrec(GR) = Ex,y,c[‖ x−GR(y, c) ‖1]. (11)

Here, y is the input skeleton and x the target CH-Char.
Therefore, the total loss functions for GR and DR are:

L(GR) = αrLadv(GR) + βrLcls(GR) + λrLrec(GR),
(12)

L(DR) = αrLadv(D
adv
R ) + βrLcls(D

cls
R ). (13)

Skeleton Transformation Network (TNet)

TNet is designed for transforming skeleton structure to
the particular style by learning from the unpaired multi-
chirography style sets. Since it is impossible to learn the
mapping between different stroke styles directly from the
training pairs, our TNet needs to extract the content features
of skeleton first, and then restore them conditioned on spec-
ified style label. The transformed skeleton ought to keep the
consistency of the contents.

To achieve better extraction effect of content feature, we
adjust the conditional GAN by concatenating the style in-
formation with content features rather than input images, as
shown in the middle of Fig.2. Given the input skeleton y, we
utilize the encoder E to extract the content features E(y),
and then use the style decoder H to map the 1D one-hot
style vector c to the 2D feature maps H(c) with the same
size as E(y). After that, we employ the decoder F to recon-
struct the E(y) conditioned on H(c) to the corresponding
skeleton GT (y, c) ≡ F (E(y), H(c)), where GT is genera-
tor in our cGAN model. In this way, the encoder E is more
focused on learning the content of the skeleton.

In GT , the E contains a downsampling module and three
ResBlocks, while the H is stacked by three DeconvBlocks,
and the F is composed of three ResBlocks and a upsampling
module. The DT is the same as DR, including Dadv

T to dis-
tinguish true from false and Dcls

T to classify.
With the purpose of enabling E to extract the complete

content attributes and F to reconstruct the stylized skeleton
with unpaired training data, we apply the training process of
Stage-I in Fig.4 to TNet. First, we input the skeleton image y
in style s ∈ C and the target label t ∈ C into GT to generate
the ŷ = GT (y, t), and constrain the stylistic correctness of
ŷ with Ladv and Lcls. Next, ŷ and s are inputted into the
network to obtain the restored y′ = GT (ŷ, s). The content
attributes consistency of input and output is constrained by
cycle consistency loss Lcc, which signifies enforcing y′ ≈
y. Finally, based on Lcc, we utilize the L1 loss function on
E(y) and E(ŷ) as content loss Lcont for further improving
the capability of E and enforcing the content consistency of
input and output in feature-level. For GT , we define the Lcc

as:

Lcc(GT ) = Ey,c[‖ y −GT (GT (y, t), s) ‖1], (14)

and the Lcont as:

Lcont(GT ) = Ey,c[‖ E(y)− E(GT (y, t)) ‖1]. (15)

Thus the total loss functions for GT and DT in Stage-I are
written as:

L(GT ) =αtLadv(GT ) + βtLcls(GT )

+ λtLrec(GT ) + γtLcont(GT ),
(16)
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Figure 5: Comparison of the baselines and our method. The yellow box means the error stroke, the purple box indicates the
missing detail, the green box shows incorrect translation, and the blue box represents the blurred result. (b), (d) and (e) are
respectively the close-up views of the part in the red boxes of (a), (c), and (e).

L(DT ) = αtLadv(D
adv
T ) + βtLcls(D

cls
T ). (17)

In stage-I, TNet can preliminarily learn the skeleton trans-
formation between different chirography style.

Joint Training

The pre-trained TNet of Stage-I offen causes the ghosting
artifact, intermittent skeletons or missing strokes. If we di-
rectly render these results by RNet, the generated CH-Chars
images will contain obvious flaws such as incorrect strokes
and noise patchs. The principal reason is the insufficient
guiding information for training, so it is difficult to learn the
mapping relationship between skeletons, which is a common
problem in unpaired image translation.

To address this problem, we propose a low-cost solution
that leveraging the pre-trained RNet to refine TNet, called
Stage-II(see Fig.4). Aiming to reduce ghosting artifacts, blur
and excess strokes in the generated skeletons, we jointly
fine-tune the GT , DT and DR together while frozing the
GR. We should enforce not only the generated skeleton ŷ
but also its rendered result x̂ = GR(ŷ, t) to be realistic and
well-classified through the adversarial training between GT

and both DT and DR. Meanwhile, with the help of GR, we
enforce the rendered result x′ = GR(y

′, s) of the cycle re-
constructed skeleton y′ to be the same as the ground truth y
by optimizing the joint cycle reconstruction loss Lj

rec.
As illustrated in Fig.4, both Stage-I and Stage-II are both

executed for the joint optimization of TNet and RNet simul-
taneously to further constrain the training of GT in terms of
content and style. In joint training, the loss functions for DT

and DR are still the same as Ladv(DT ) and Ladv(DR) in
pre-training. For GT , the total loss functions is

Lj(GT ) =L(GT ) + αrLj
adv(GT )

+ βrLj
cls(GT ) + λrLj

rec(GT ),
(18)

where Lj
rec = Ex,y′,s[‖ x − GR(y

′, s) ‖1], Lj
adv =

−Ex̂,t[DR(x̂)] and Lj
cls = Ex̂,t[− logDR(t | x̂)].

Experiments

Dataset & Implementation Details

We establish the standard font dataset with detailed anno-
tation for the comparison, called StdFont-4, and the real
calligraphy dataset with only author information for the
perception experiments, called Calli-5. For StdFont-4, we
utilize the expert-designed font libraries, including regular
script, clerical script, Simsun, and YouYuan, to create about
6,700 CH-Char images each font based on the GB2312. For
Calli-5, we collect about 1,200 famous calligraphers’ digi-
tal works for each style, including regular script of Ouyang
Xun and Yan Zhenqing, clerical script of Deng Shiru and
Cao Quan tablet and semi-cursive script of Zhao Mengfu.

In our experiment, the input and output are 128 × 128
grayscale. During pre-training, αr, βr and λr of RNet are
set to 1, 1 and 100, while αt, βt, λt, γt of TNet are set to 1,
1, 10 and 5, respectively. During joint training, we reset λt,
βt, and λr as 20, 2 and 10, respectively, and reduce learning
rates by a factor of 10. We employ the history pool(Shrivas-
tava et al. 2017) to improve quality.

Baseline Models

Six existing methods are chosen as baselines to com-
pare with our method, including fast style transfer
(FST)(Johnson, Alahi, and Fei-Fei 2016), Rewrite(Tian
2016), zi2zi(Tian 2017), Pix2Pix, CycleGAN and Star-
GAN(Choi et al. 2018). Among them, the former 5 methods
are proposed for the translation between two domains, while
StarGAN and our method are for the multi-domain. There-
fore, we select 3 typical tasks from StdFont-4 for compari-
son, including Simsun-to-Regular similar skeleton (SK) but
different stroke style (SS), Regular-to-Clerical with dissimi-
lar SK but semblable SS, and clerical-to-YouYuan with large
difference in both SK and SS. In addition, Rewrite, zi2zi and
Pix2Pix require image pairs for training. We find the corre-
sponding image pairs from StdFont-4, and build the pairs
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Table 1: Quantitative evaluations and the average score(AVG Score) of test-I in user study for our method and baselines. R2C,
C2Y and S2R represent the Regular2Clerical, Clerical2YouYuan and Simsun2Regular, respectively. MS ACC stands for the
percentage classification accuracy of InceptionV3 pre-trained on StdFont-4. The ground truth is described as GT.

Method Style Error Rate(%) Content Error Rate(%) IOU MS
ACC

AVG
ScoreR2C C2Y S2R Total R2C C2Y S2R Total R2C C2Y S2R

GT 0.00 0.07 0.04 0.04 2.70 3.32 2.93 2.98 0.188 0.202 0.191 – –
Rewrite 52.91 99.42 0.56 50.60 0.14 35.92 1.38 12.33 0.189 0.021 0.014 – 0.04

zi2zi 0.07 0.25 0.04 0.12 0.28 1.91 0.21 0.80 0.482 0.359 0.266 – 2.84

PixPix 0.00 0.25 0.11 0.12 0.57 1.01 0.32 0.63 0.548 0.349 0.331 – 1.48
CycleGAN 0.07 0.29 0.07 0.14 0.00 0.00 0.04 0.01 0.499 0.124 0.307 – 1.76
StarGAN 0.07 0.00 9.91 3.36 0.43 1.30 0.56 0.76 0.386 0.326 0.243 85.46 0.92
Exp-TNet 0.07 0.04 3.39 1.18 0.43 1.33 0.88 0.88 0.451 0.344 0.260 94.15 0.82
ChiroGAN 0.00 0.00 0.42 0.14 0.11 0.87 0.00 0.32 0.477 0.346 0.278 99.72 2.13

Figure 6: Comparison of the StarGAN, Exp-TNet and Chi-
roGAN on StdFont-4. The red box represents poor results.

dataset StdFontPair. Moreover, We train CycleGAN on Std-
FontPair without the paired labels, and train multi-domain
methods on StdFont-4.

Qualitative Evaluation

We compare the baselines with our two scenarios, including
the three-stage architecture ChiroGAN, and the Exp-TNet
which directly employs TNet to translate the CH-Char from
source to target style like CalliGAN(Gao and Wu 2019).
Comparison for Two Chirographies Translation. The
qualitative results are presented in Fig.5, visibly demonstrat-
ing the validity of our unpaired method with realistic and
clear results as zi2zi. More specifically, Fig.5b, d, f show the
close-up views of the details, proving that our method can
generate finer stroke details than others.

The results of FST reveal that the pre-trained CNN is inca-
pable of learning the geometric style of CH-Char.Although
Pix2Pix seems to transfer the style well while preserving
the content, the results often contain erroneous and miss-
ing strokes in terms of complex tasks and high-density
strokes (yellow boxes). Besides, CycleGAN produces poor-
quality results for the tasks with great differences like Cler-
ical2YouYuan (green box). The generated strokes appear to
be directly modified on the source skeleton without trans-
formation, and the unreasonable strokes are added to the top
and bottom to make the overall structure look like the tar-
get style. Furthermore, StarGAN and Exp-TNet often cause

Figure 7: Comparison of ChiroGAN, ChiroGAN without
joint training, and ReenactGAN on StdFont-4.

ghosting artifacts and blur (blue boxes).
Comparison for Multi-chirography Translation. In
Fig.6b, StarGAN causes fuzzy strokes. Comparing with it,
the superiority of our method in unpaired multi-chirography
translation is demonstrated, which produces clearer and
more stylized results with precise content(see Fig.6d).

Quantitative Evaluation

In qualitative experiments, we calculate the SER(style er-
ror rate), CER(content error rate) and IoU(the intersection of
black pixels between the generated image and ground truth
over their union) for each method. The SER refers to the
misclassified rate by InceptionV3(Szegedy et al. 2016) pre-
trained in StdFont-4. And the CER represents the rate of the
original and generated images that are recognized as differ-
ent CH-Chars by InceptionV3. The InceptionV3 for CER is
trained on the 10,000 matched and 10,000 unmatched pairs
collected from StdFont-4. As shown in Table1, our method
achieves the low SER, CER and high IoU as the supervised
method and far exceeds other unpaired methods. Compared
with CycleGAN, ChiroGAN is more stable on various tasks,
which learns the commonality of multiple chirographies. In
addition, we employ pre-trained InceptionV3 on StdFont-
4 to classify all results of StarGAN, Exp-TNet and Chi-
roGAN, while ChiroGAN achieves the best performance.
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Figure 8: The examples in test-II. The green, purple, blue,
red and yellow respectively represent the source style of the
results as Cao Quan tablet, Deng Shiru, Ouyang Xun, Yan
Zhenqing and Zhao Meng. The number is the percentage of
results that users consider to be unrealistic, while others are
real calligraphy.

User Study

We also conduct the user study to compare the results with
baselines and to test the realism and style-similarity of Chi-
roGAN on Calli-5 dataset. In test-I, we randomly choose 3
samples from results in StdFontPair for each task and each
method. Users are asked to select and sort the top 4 results
according to the ground truths. For the top-4 results and the
rest, we assign 4, 3, 2, 1 and 0 points, respectively. In test-
II, we randomly select 8 real calligraphy from each style in
Calli-5 and mix them with 8 generated ones to build the test
matrix(as shown in Fig.8). The users are firstly presented
with some real samples, and then are required to choose the
unrealistic ones. Finally, we calculate the average score for
test-I and the accuracy for the test-II respectively. We design
several groups of experiments according to the above rules.

For test-I and test-II, 42 and 29 people familiar with Chi-
nese are involved, including 13 calligraphers. Our method
achieve a high score close to zi2zi(see Table1) in test-I. Fur-
thermore, the accuracy in Fig.2 is lower than random selec-
tion(50%), proving the difficulty for users to distinguish the
generated results from the ground truth.

Table 2: The accuracy of test-II in user study.
Style Ou Yan Deng Cao Zhao Total
ACC(%) 45.7 47 35.8 31.5 42.7 40.5

Analysis of Each Component

Effect of TNet. By comparing the performance of our two
scenarios in Fig.6c, d, we prove the superiority of our three-
stage architecture, which implements character-to-skeleton
by ENet, skeleton-to-skeleton by TNet and skeleton-to-

Figure 9: Analysis of all the components in our method.

character by RNet. Exp-TNet directly implements character-
to-character, leading to the fuzzy details similar to StarGAN.

Effect of ENet. Fig.9a shows the extraction process of ENet.
The structure and content of the example can be well repre-
sented by the skeleton extracted in 11 steps. We also repro-
duce the original algorithm to test the efficiency, which takes
about 10 seconds to extract the skeleton for one image on the
Intel Xeon e5-2640 v4 CPU. However, using ENet, it only
takes 0.02 seconds on the NVIDIA TITAN Xp GPU. More-
over, ENet only requires 0.27 seconds and 800M memory
for 1,000 images simultaneously.

Effect of RNet. When training RNet, we add label infor-
mation to achieve multi-style translation. To verify it, arbi-
trary skeletons are rendered in various styles by RNet. Fig.9c
manifests that RNet has the ability to render any skeleton in
the specified stroke style according to the label.

Effect of Joint Training. In Fig.7(3), we use the TNet only
trained on Stage-I and pre-trained RNet for comparison. We
also try the two-phase method ReenactGAN(Wu et al. 2018)
on our task in Fig.7(4). It separately trains boundary trans-
former (like TNet) and encoder-decoder (like ENet-RNet),
and utilizes a PCA shape loss to constrain content consis-
tency instead of our content loss Lcont.

Fig.7(2) shows our demonstration of the noticeable im-
provement in TNet from joint training. There are many in-
correct strokes in the generated skeleton without joint train-
ing, being likely to affect the realism.

Effect of Content Loss. In order to verify whether content
loss Lcont can guide the encoder E to capture the content
features, we use the handwriting in personal style as input to
observe the results. Fig.9b indicates that handwriting is suc-
cessfully transferred to the target style, preserving the con-
tent consistency, which proves the validity of Lcont.

Effect of the Pre-training for TNet. As shown in Fig.9d,
without pre-training, although TNet learns the features of
the overall structure, the results are far from expectation.
Therefore, the pre-training for TNet plays a significant role
in learning the skeleton details.
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Conclusion

In this paper, we propose ChiroGAN, a novel three-stage
framework for multi-chirography Chinese character transla-
tion with unpaired training data. First, we improve a skele-
tonization algorithm (ENet) to efficiently extract the skele-
ton. Then, the novel stacked cGAN based on skeleton trans-
formation (TNet) and stroke rendering (RNet) is employed
to transfer the skeleton structure and stroke style for the in-
put. To compensate for the lack of labeled information in
training data, we propose a low-cost solution by training
TNet jointly with the pre-trained RNet. The experiments
demonstrate that the performance of our method in visual
perceptions and quantitative evaluations is comparable to the
supervised baseline methods and superior to other unpaired
baseline methods.
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