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Abstract 
Modeling student knowledge is critical in adaptive learning 
environments. Predictive student modeling enables formative 
assessment of student knowledge and skills, and it drives 
personalized support to create learning experiences that are 
both effective and engaging. Traditional approaches to 
predictive student modeling utilize features extracted from 

performance, aggregating student test performance as a single 
output label. We reformulate predictive student modeling as a 
multi-task learning problem, modeling questions from student 

of this approach by utilizing student data from a series of 
laboratory-based and classroom-based studies conducted with 
a game-based learning environment for microbiology 
education, CRYSTAL ISLAND. Using sequential representations 
of student gameplay, results show that multi-task stacked 
LSTMs with residual connections significantly outperform 
baseline models that do not use the multi-task formulation. 
Additionally, the accuracy of predictive student models is 
improved as the number of tasks increases. These findings 
have significant implications for the design and development 
of predictive student models in adaptive learning 
environments.  

Introduction
Recent years have seen growing interest in modeling 
student knowledge in adaptive learning environments 
(Piech et al., 2015; Mao, Lin, & Chi, 2018; Gardner, 
Brooks, & Baker, 2019). Predictive student modeling is 

problem or test based upon their past interactions with a 
learning environment. Predictive modeling is important 
for tailoring student experiences in a range of adaptive 
learning environments, such as intelligent tutoring 
systems (Gardner, Brooks, & Baker, 2019) and 

educational games (Shute et al. 2016; Min et al., 2019). 
By modeling student knowledge, adaptive learning 
environments can personalize delivery of problem 
scenarios, hints, scaffolding, and feedback to create 
student learning experiences that are more effective than 
one-size-fits-all approaches (VanLehn, 2011). However, 
predictive student modeling is a challenging machine 
learning task because student data is often noisy, 
heterogeneous, and expensive to collect (Bosch et al. 
2016).  
 Predictive student models typically represent student 

performance on a set of questions. For example, a typical 
output label in predictive student modeling is the overall 
accuracy of student responses on a post-test administered 
after the student has finished interacting with an adaptive 
learning environment. This approach makes stringent 
assumptions that each post-test question has an equivalent 
mapping from features in the input space and is equally 
representative of the underlying latent construct being 
measured (e.g., science content knowledge). A natural 
extension is to relax these assumptions by employing 
multi-task learning (MTL), wherein each test question is 
an outcome variable in the same predictive model. MTL 
has been shown to yield improved model accuracy across 
a range of domains by sharing feature representations 
across different tasks, which provides a natural form of 
model regularization (Zhang & Yang 2017; Argyriou, 
Evgeniou, & Pontil 2007). MTL has particular promise 
for predictive student modeling, where there are typically 
multiple test questions designed to assess the same 
knowledge and where there is often limited data available 
on student interactions with the particular adaptive 
learning environment.  
 In this paper, we present a novel predictive student 
modeling framework using MTL. We utilize MTL to 
model student outcomes at the item level within a game-
based learning environment for middle school science 
education, CRYSTAL ISLAND. Empirical results 
demonstrate the efficacy of the approach with markedly 
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improved results over what is typical for predictive 
student modeling. Additionally, we explore how different 
mechanisms of self-attention can influence model 
performance through selecting relevant sections of student 
gameplay interactions.  

Related Work 

Student Modeling 
A widely used approach for modeling student knowledge 
in adaptive learning technologies is Bayesian knowledge 
tracing (BKT) (Mao et al. 2018). BKT models student 
knowledge as a binary latent variable in a hidden Markov 
model. The model is updated based upon student 
interactions with an adaptive learning environment, which 
provide evidence of student knowledge and skills over 
time. Although BKT is an effective approach to student 
modeling in adaptive learning environments, it is not 
always well suited for student modeling in educational 
games, particularly in cases in which a game-based 
learning environment lacks repeated content exercises that 
provide recurring evidence of student skills.  
 An alternative to Bayesian knowledge tracing is stealth 
assessment, which utilizes methods from evidence-
centered design to devise Bayesian networks that link 
student actions with content knowledge based upon 
network structures that are manually authored by domain 
experts (Shute et al. 2016). Stealth assessment is an 
effective approach for predictive student modeling in 
educational games, but the models are labor-intensive to 
construct. A related framework is deep stealth 
assessment, which utilizes long short-term memory 
(LSTM) networks to predict student test performance 
following interaction with an educational game and has 
shown promising results at modeling student knowledge 
without requiring domain experts (Min et al. 2019).  
 Item response theory (IRT) models the probability that 
a student will correctly answer a given exercise by 
incorporating the characteristics of both the test-taker and 
the questions (Embretson & Reise 2013). IRT does not 
assume all questions are the same difficulty, and it can 
model 
of both their capability and the difficulty of the question. 
Extensions of this work include time-varying models 
(Lan, Studer, & Baraniuk 2014) and the integration of 
ideas from IRT into traditional BKT models (Khajah et al. 
2014). More recent work has investigated recurrent neural 
networks to capture more complex representations of 
student knowledge and to estimate the probability that a 
student will answer the next question correctly (Piech et 
al. 2015). Other recent applications include the use of 
LSTM-based architectures with an attention mechanism 
to predict student performance for the personalization and 
sequencing of exercises (Su et al. 2018). Our work 
utilizes similar sequential architectures, but we 

incorporate methods from multi-task learning to 
significantly improve model performance. 

Multi-Task Learning
Recent years have seen a growing interest in multi-task 
learning in applications such as computer vision (Fang, 
Zhang, Zhang, & Bai 2017; Kendall, Gal, & Cipolla 
2018), climate modeling (Goncalves, Von Zuben, & 
Banerjee 2016), healthcare (Jin, Yang, Xiao, Zhang, Wei, 
& Wang 2017), and dialogue analysis (Tong, Fu, Shang, 
Zhao, & Yan 2018). Multi-task learning has been shown 
to improve model fitting by sharing information across 
multiple outcome variables, providing shared components 
of the model with additional training data and enhanced 
regularization (Zhang & Yang 2017). Multi-task learning 
dramatically reduces the number of parameters that need 
to be estimated, as well as the compute time required 
compared to running each outcome variable separately. 
This is operationalized by sharing weights across multiple 
tasks based upon the assumption that the tasks have an 
inherent relationship (Shui et al. 2019). A challenge of 
multi-task learning is the sensitivity to the choice of loss 
weights for each of the tasks. Hyperparameter tuning of 
the loss weights is effective with a small number of tasks 
but does not scale well as the number of tasks increases. 
An alternative approach is to estimate the loss weights as 
part of the model building process (Kendall et al. 2018). 
 Incorporated into adaptive learning environments in 
which data collection is often labor intensive compared to 
other machine learning applications. Therefore, 
frameworks that make efficient use of training data and 
incorporate regularization effectively can be beneficial in 
building predictive models from datasets with a limited 
sample size (Sawyer et al. 2018). Multi-task learning 
allows for the separate modeling of individual questions, 
which IRT has demonstrated can have largely different 
characteristics even if the questions are manifesting from 
the same underlying latent variable. A previous study 
found favorable results using MTL to predict student test 
scores using a standard feedforward neural network 
(Bakker and Heskes 2003), but it did not involve 
sequences of student actions as are often encountered in 
adaptive learning environments. Additionally, only one 

 loss function was explored, even 
though different loss weightings can have a large effect 
on model accuracy (Kendall, Gal, & Cipolla 2018).  

Dataset
We investigated the multi-task learning framework for 
predictive student modeling in an educational game for 
microbiology education, CRYSTAL ISLAND (Rowe et al. 
2011). In CRYSTAL ISLAND, students take the role of a 
medical field agent investigating an infectious outbreak 
on a remote island (Figure 1). Students talk with non-
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player characters, explore different locations, read virtual 
books and microbiology posters, test hypotheses about the 
outbreak in a virtual laboratory, and record their findings 
in a virtual diagnosis worksheet. As students navigate 
through the game, their actions and locations are stored in 
trace log files that are subsequently used for modeling. 
 In this work, we used data from two different samples 
of students across different contexts (laboratory and 
classroom) to increase the heterogeneity of the sample 
and the generalizability of the resulting model (Sawyer et 
al. 2018). Students from both samples answered the same 
pre- and post-test surveys, but there were some 
differences in the experimental setup and game. 
Combining the data from the university-based laboratory 
study (n = 62) with the data from the classroom-based 
study (n = 119), the total sample size of the dataset is 181 
students. 
 Prior to playing the game, students completed a pre-
game survey containing demographic questions, 
questionnaires about student interest and achievement 
goals, and a 17-item microbiology content knowledge 
pre-test composed of multiple-choice questions. Each 
question had four options with one correct answer. The 
questions centered on microbiology content such as 
pathogens, viruses, carcinogens, and bacteria. Students 
then played CRYSTAL ISLAND until they either solved the 
in-game mystery or they ran out of time. After playing the 
game, students completed a post-game survey, which 
contained a separate set of 17 microbiology content 
knowledge questions. The post-test microbiology content 
items were summed to create a single post-test score. 

Figure 1: CRYSTAL ISLAND Game Environment.

Feature Representation 
The input features for all models consisted of items from 
two components of the pre-game survey (33 features), an 
indicator variable representing the dataset which the 
student belonged to (3 features
gameplay actions within CRYSTAL ISLAND (130 features), 
which yielded a total of 166 features. From the pre-game 
survey, we used 16-items from a survey on emotions, 
interest, and value (Likert scales) and a 17-item 
microbiology content pre-test (correct/incorrect answers). 
Similar to previous work that used gameplay log features 

in a learning environment, we used a one-hot encoding of 
student actions using several components (Min et al. 
2017): 

Action type: The system records each time the student 
moves to a new location within the virtual environment, 
engages in conversation with a non-player character 
(NPC), reads a virtual book or article, completes an in-
game milestone (e.g., 
transmission source), tests a hypothesis, or records 
findings in the diagnosis worksheet. The data include 8 
distinct player action types. 
Action arguments: Action arguments are specific to 
the type of action the student is taking. For example, 
they include the name of the book the student is 
reading, the NPC with whom the student is conversing, 
and the object the student is testing in the virtual 
laboratory. The data contains 97 distinct types of player 
action arguments. 
Location: Within the game world, the system logs the 
location of each action. The data tracks 24 non-
overlapping, discrete regions of the virtual game world. 
Game time elapsed: The system logs the time of each 
student action within the game, which is transformed 
into elapsed seconds since the start of gameplay.  

Predictive Student Modeling with Multi-Task 
Stacked LSTMs 

Student assessments are composed of multiple questions 
measuring the same construct (e.g., science content 
knowledge, personality) in order to provide accurate and 
reliable results. The traditional paradigm for modeling 
student assessments is to represent the outcome as an 

questions. This approach constrains the model to utilize 
the same feature encoding   and mapping 
from the feature encoding  across 
questions.  
 In this work, student knowledge modeling is 
reconceptualized within a multi-task learning framework, 
allowing for a shared feature representation for efficient 
estimation, but providing increased flexibility of different 
question characteristics through unique mappings from 
the encoding space. The long sequences of student actions 
generated from the game-based learning environment are 
modeled using a stacked LSTM with a residual 
connection. We explore how attention can potentially help 
the model focus on relevant sections of gameplay (Luong, 
Pham, and Manning 2015). Finally, the pretest data 
containing student characteristics is concatenated with the 
encoded gameplay features, fed into a dense layer, and 
then output as a prediction via the output layer.  

Single-Task Learning
Consider a dataset composed of a dimensional input 
space associated with a set of  correct/incorrect 
responses to questions across  i.i.d. students. The 
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performance of each student is represented as the sum of 
questions they answered correctly, . If using mean-
squared error as the loss function for , this single-task 
representation has the following formulation: 

This formulation assumes that the loss for each of the 
tasks are weighted equally. Additionally, each task is 
given an identical, shared representation, .

Multi-Task Learning 
A multi-task learning framework relaxes the assumption 
that all tasks are weighted equally by having both a shared 
representation, , and a task specific representation,  
for each task . The overall multi-task learning loss 
function is often composed as a weighted sum of the 
individual task loss functions: 

The weight of each individual task, , must be 
determined before training the MTL model and thus is not 
learned. A challenge stemming from this fact is that the 
overall loss can be sensitive to the selection of each ,
which can become prohibitively expensive to tune as 
grows large. 
Uncertainty weighted. Kendall et al. (2018) proposed an 
alternative method for selecting  by estimating it as a 
parameter within the model. The form of the adjusted loss 
function is derived from the log-likelihood of the 
multivariate normal distribution based on an assumption 
of independence across tasks. In order to prevent the 
model from selecting , an additional 
regularization term is added. Equal weighting across tasks 
is a special case of this formulation when 

.

Self-Attention 
Given a sequential output of length  of an 
dimensional recurrent unit, , the most common 
approach to obtaining a static representation is to either 
take the unweighted average across the entire sequence or 
to select the last output from the recurrent unit. An 
alternative approach is to use self-attention, where a 

weighted average is taken across the sequence. There are 
a number of approaches to estimate attention weights, .
Here we describe the multiplicative approach outlined in 
Luong, Pham, and Manning (2015), where ,

, and  are estimated parameters.

In addition to the traditional form of self-attention shown 
above, we also utilized a simplified form, given our 
smaller dataset, where   instead of an 
matrix. This greatly reduces the number of parameters at 
the cost of limiting the flexibility of the model. 

Implemented Predictive Student Model
To investigate MTL for predictive student modeling, we 
compared three model architectures: a single-task 
representation, an unweighted multi-task representation, 
and an uncertainty weighted multi-task representation. 
Each of the architectures were fit using three attention 
configurations: no attention, a simplified form of 
attention, and traditional matrix self-attention. 
Single-task baseline. The single-task model utilized post-
test score as the outcome variable with an identity 
activation function (Figure 2). 

Figure 2: Single-Task Model Architecture. 

Unweighted multi-task learning. The unweighted multi-

accuracy on each of the post-test questions, for a total of 
17 tasks (Figure 3). Each question was modeled as a 
binary classification problem (i.e., correct/incorrect) with 
a sigmoid activation function. Binary cross-entropy was 
used as the loss function for each task. The relative 

training as a hyperparameter. Each task was weighted 

Figure 3: Multi-Task Model Architecture. 

Uncertainty weighted multi-task learning. The 

accuracy on each post-test question using a similar setup 
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to the unweighted multi-task learning model (Figure 3). 
However, e
preselected and were instead estimated as part of the 
model using the method outlined in Kendall et al. (2018). 

Experiments
The single-task baseline models were formulated as a 
regression problem and trained to predict student post-test 
score. In contrast, the MTL models were trained as a joint 
binary classification problem across each of the 17 post-
test items. The MTL predictions for each of the 17 items 
were summed to create a single post-test score in order to 
make comparisons with single-task baseline models. For 
the baseline models, we developed a set of predictive 
models utilizing a static representation calculated as the 
sum of each feature in the gameplay data in addition to a 
single-task neural network with an otherwise equivalent 
architecture to the MTL models. All models were trained 
and evaluated using 10-fold cross-validation along the 
same set of students to remove noise from sampling 
differences. In conducting the cross-validation, we 
ensured that no student data occurred both in the training 
and test sets. Hyperparameter tuning was conducted for 
each of the models within the 10-fold cross validation. 
Continuous data were standardized within each of the 
folds.  

Static Models 
A set of baseline models were selected using a static 
representation to assess if the added complexity of deep 
learning methods was beneficial over non-neural machine 
learning methods. The static baseline regression models 
for the single-task problem were the following: mean 
value, Lasso, Linear Kernel Support Vector Regression 
(SVR), Random Forest (RF), Gradient Boosting (GB), 
and multi-layer perceptron (MLP). In addition, we used a 
multi-task majority classifier baseline for each of the post-
test items. Prior work on predictive student modeling in 
educational games has often utilized feature 
representations that consist of summary statistics 

of books read, the number of laboratory tests run, etc.), 
which do not capture sequential patterns in student 
behavior over time (Sawyer et al. 2018). Student 
gameplay data was aggregated by summing the one-hot 
encoded variables of each student action across their total 
gameplay and dividing by their overall gameplay 
duration, resulting in their relative action rate. 

Sequential Models 
All sequential models were composed of two stacked long 
short-term memory (LSTM) layers with residual 
connections, a layer concatenating the LSTM gameplay 
features and pretest features, and a single densely 
connected layer (see Figures 2 and 3). The activation 

function for the dense layer, single-task output, and multi-
task output were the hyperbolic tangent function, the 
identity function, and the sigmoid function, respectively. 
All models used early stopping using mean squared error 
with a patience of 15 and 500 maximum epochs. Every 
model was hyperparameter tuned using a grid search: 
number of LSTM units (32, 64, 128), number of dense 
units (32, 64, 128), and dropout rate (.33, .66). The best 
model was selected using the validation data and reported 
using the 10-fold test data. 

Results
The lasso and random forest models tied for the best 
performance among the static baseline models (Table 1). 
The single-task models outperformed the static models by 
a moderate margin. The no attention unweighted MTL
model and the full self-attention weighted MTL model tied 
for the best performance among the sequential models, 
with a large improvement over the single-task sequential 
baseline. Neither simple nor full attention had a notable 
effect on model performance with the exception of the 
weighted MTL model, where it provided a small 
improvement to model fit. All models terminated by early 
stopping prior to the maximum number of epochs.  
 The relationship between the number of tasks and the 
performance of the sequential models was assessed by 
evaluating each tuned model on 15 random samples 
across an increasing number of outcome variables. The 
average performance is displayed in Figure 4. The MTL 
models consistently outperformed the single-task 
representation, with the performance of both increasing 
with the number of tasks. The unweighted MTL models 
performed as well as or better than the uncertainty 
weighted MTL models. This result was contrary to 
expectations and led to an additional analysis exploring 
the properties of the uncertainty estimated loss weights. 

Uncertainty Weighted Loss Weights Simulation
An additional investigation was conducted on the 
flexibility of the estimated loss weights using Kendall et 

. To better understand 
the similarity between the weighted and unweighted MTL 
model results, we examined the range of optimal loss 
weights for an individual task with varying levels of 
accuracy. We optimized the loss weight with respect to 
the uncertainty estimated binary cross-entropy for a single 
classification subcomponent of the overall multi-task 
framework (Figure 5). Results showed that the uncertainty 
estimation method provides limited flexibility for 
reweighting across the most common ranges of accuracy. 
The accuracy of the weighted MTL models ranged 
between 55-76% for each classification task, with loss 
weights between .77-1.07. This result is expected, as 
within this accuracy range there is a limited range of loss 
weights.
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Table 1: Performance Comparison of Post-Test Sum across Static Baseline Models 

Metric Mean GB Lasso Lin. SVR RF MLP Majority 
Class MTL 

MSE 13.91 9.77 8.69 12.14 8.76 12.49 18.22 

MAE 3.19 2.54 2.29 2.81 2.41 2.85 3.49 

R2 -0.00 0.30 0.37 0.13 0.37 0.10 -.29 

Table 2: Performance Comparison of Post-Test Sum across Neural Sequential Models 

Metric Single-task Model Unweighted MTL Weighted MTL 

Attention None Simple Full None Simple Full None Simple Full 

MSE 8.36 8.19 8.08 6.93 7.05 6.99 7.40 7.29 6.92 

MAE 2.25 2.23 2.22 2.06 2.09 2.08 2.19 2.14 2.07 

R2 .41 .42 .42 .51 .50 .50 .47 .48 .51 

Figure 4: Sequential Model Performance by Number of Tasks. Figure 5: Optimal Uncertainty Estimated Loss Weight for a 
Single-Task.

Discussion
Evaluation results demonstrated that the multi-task 
learning (MTL) formulation of predictive student 
modeling yielded a 24% improvement in R2 over the 
single-task neural network model using a sequential 
representation and a 38% improvement over models 
employing a static representation. Results showed that 
models leveraging the sequential nature of student 
interaction data outperformed those that used a static 
representation only.  

 Within the MTL framework, we observed an increase 
in model performance as the number of tasks increased 
across all models, with MTL models consistently 
outperforming the single-task model. Previous work on 
predictive student modeling in adaptive learning 
environments has typically reported R2 ranges from 0.09 
to 0.41, depending on the dataset and the chosen models 
(Moo, Lin, & Chi 2018; Bakker & Heskes 2003; Zhang et 
al. 2017). These results are in line with the model 
accuracies observed for the static baseline models utilized 
in this work. By leveraging a multi-task stacked LSTM 
framework, we observe sizable improvements in 
predictive accuracy. 
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 In addition to the MTL framework, we used a self-
attention mechanism to further act as a weighting scheme 
for modeling student s sequential gameplay data. We did 
not see substantial improvements from this self-attention 
mechanism. A potential explanation for this could be that 
each of the 17 tasks in the predictive modeling problem 
are influenced by different parts of the input sequence. 
Students are likely to gain knowledge throughout their 
interaction with the CRYSTAL ISLAND game-based 
learning environment. Therefore, predictions about the 
collection of tasks, each corresponding to a single item 
from the content knowledge post-test, may rely fully on 
the entire gameplay sequence. We constructed the 
attention mechanism as part of the shared weight portion 
of the model architecture, and it was an alternative to 
using attention for each unique task. This was due to 
insufficient data and the computational expense that task-
specific attention would require. Because of this, attention 
may be forcing equal weighting across the game sequence 
because the tasks as a whole demand it.  
 It is notable that we did not see a benefit of using 
uncertainty weighting estimation over unweighted MTL 
models.  Simulations on the uncertainty weighted loss 
weights shed light on this finding by demonstrating that 
the range of optimal loss weights is constrained when 
each of the tasks has a similar base rate, which is true in 
our dataset. These results suggest that when tasks in a 
multi-task framework possess similar base rates, the 
simpler method of equal weighting of tasks is as effective 
as more complex uncertainty-weighted methods. 
 Overall, results show that multi-task stacked LSTMs 
are an effective framework for predictive student 
modeling in educational games, and therefore, they show 
significant promise for enabling run-time support 
functionalities to enhance student learning in adaptive 
learning environments. Specifically, they enable 
personalized support, such as feedback and hints, that 
proactively intervene when a learner is trending toward a 
negative outcome. This support can also be targeted 
toward specific concepts and skills addressed by 
individual test items captured in the multi-task model. 
MTL is broadly applicable to predictive student modeling 
tasks, so long as they feature assessments with multiple 
questions, as is common in educational settings. 
Furthermore, MTL is likely to be most effective as the 
communality of test items decreases. Finally, predictive 
student models can also serve as a type of formative 
assessment, providing an 
teachers that enables re-allocation of attention toward 
those students who need the most help. 

Conclusion and Future Work 
Predictive student modeling is critical for driving 
personalized feedback and support in adaptive learning 
environments. However, devising accurate models of 
student knowledge is challenging because student data for 

a particular learning environment may be sparse, and it is 
often inherently noisy. In this paper, we have introduced a 
multi-task stacked LSTM-based predictive student 
modeling framework for modeling student knowledge in 
educational games. Multi-task learning creates shared and 
task-specific representations of student learning data that 
improve model regularization and allow for increased 
flexibility in modeling different tasks.  
 In future work, it will be important to explore how 
different loss functions can be used to combine the loss 
across multiple correlated binary variables without 
requiring the assumption of independence across each 
task. It will also be important to investigate the 
performance of multi-task stacked LSTMs for predictive 
student modeling in different genres of learning 
environments to study their generalizability. Additionally, 
further research is needed on developing interpretable 
predictions for multi-task predictive student models to 
allow teachers to incorporate model feedback into 
classroom settings. Finally, it will be important to 
investigate the incorporation of the multi-task stacked 
LSTM-based predictive modeling framework in adaptive 
learning environments to explore how they can most 
effectively drive adaptive support to create the most 
effective learning experiences for students.  
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