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Abstract

Personalized trip recommendation tries to recommend a se-
quence of point of interests (POIs) for a user. Most of existing
studies search POIs only according to the popularity of POIs
themselves. In fact, the routes among the POIs also have at-
tractions to visitors, and some of these routes have high pop-
ularity. We term this kind of route as Attractive Route (AR),
which brings extra user experience. In this paper, we study
the attractive routes to improve personalized trip recommen-
dation. To deal with the challenges of discovery and evalua-
tion of ARs, we propose a personalized Trip Recommender
with POIs and Attractive Route (TRAR). It discovers the at-
tractive routes based on the popularity and the Gini coeffi-
cient of POIs, then it utilizes a gravity model in a category
space to estimate the rating scores and preferences of the at-
tractive routes. Based on that, TRAR recommends a trip with
ARs to maximize user experience and leverage the tradeoff
between the time cost and the user experience. The experi-
mental results show the superiority of TRAR compared with
other state-of-the-art methods.

1 Introduction
With the rapid development of mobile devices and loca-
tion acquisition technologies, location-based personalized
trip recommender that recommends sequential points of in-
terest (POIs) to visitors1 has emerged and received popu-
larity recently. Traditional trip recommendation utilizes the
popularity and user preference to evaluate the attraction of
each POI, and recommends a sequential POIs with maximal
user experience (Lim et al. 2017; 2015). However, in addi-
tion to POIs, the route between two POIs also has attraction
to the visitors. We take Fig.1 as an example to illustrate the
attractions from routes. Each capital letter refers to a POI
and its number in the brackets indicates the popularity of
the POI. The number on each route indicates its popularity.
Traditional trip recommender only considers POIs with high
popularity to achieve high user experience. Thus, by only
considering the popularity of POIs, the path O → A → D
will be recommended, since POI A has the highest popular-
ity. Although the popularity of B is less than that of A, the
business events on the two routes O → B and B → D at-
tract many visitors to increase their popularity. When a user

Copyright c© 2020, Association for the Advancement of Artificial
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1We use the terms ”visitor” and ”user” interchangeably.
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Figure 1: An example of attractive routes.

travels along the two routes, she may also visit these events
and her experience will be improved. Thus, by considering
the popularity of routes and POIs, the recommended path
O → B → D will bring more user experience than the
previous one.

Moreover, by taking the route B → D in Fig.1 as an ex-
ample, it is an incoming route to a POI with high popularity,
and its popularity occupies the majority of POI’s. Without
depending on POI, the route has its own attractions (such
as business events) for visitors. We term this kind of route
as Attractive Route (AR), which brings extra user experi-
ence. However, considering attractive route in personalized
trip recommendation has the following challenging issues:
(1) How to discover attractive routes? (2) How to evaluate
the rating score and the preference of an attractive route, so
as to decide if a user will visit an attractive route with extra
travel time? (3) How to improve personalized trip recom-
mendation by considering attractive routes?

In this paper, we study the user experience from the routes
as an extension of the Orienteering Problem, which aims to
maximize the user experience of a recommended trip with
multi-constraints. To address these challenges, we propose a
personalized Trip Recommender with POIs and Attractive
Route (TRAR). It contains AR discovery, AR evaluation,
and trip recommendation. Our contributions are as follows:

• As far as we know, we are the first to investigate the attrac-
tive routes in personalized trip recommendation. TRAR
discovers the attractive routes by the popularity and Gini
coefficient of each POI from the travel history of users.

• In the process of AR evaluation, TRAR obtains the prefer-
ence of each AR by unsupervised learning. Then, TRAR
calculates the rating score of each AR by a gravity model
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and SVM.

• We propose a personalized trip recommendation algo-
rithm with attractive routes to maximize the user expe-
rience along the trip, by estimating whether a user will
visit the attractive routes.

• We evaluate the performance of TRAR with real-world
datasets from Foursquare, and compare it with some base-
lines. Experiment results show TRAR is superior to other
state-of-the-art recommendation techniques.

2 Related Work

Trip Recommendation. Trip recommendation aims to sug-
gest a sequence of POIs to visit instead of individual POIs,
which is similar to our problem. Yoon et al. (Yoon et al.
2012) applied GPS trajectories to seek for a potential path
by topic modeling or Markov models. Lim et al. (Lim et al.
2017) recommended personalized tours by using POI popu-
larity and user preferences, which are automatically derived
from real-life travel sequences based on geo-tagged pho-
tographs. Luan et al. (Luan et al. 2018) proposed a maximal-
marginal-relevance-based algorithm in trip planning. Some
works (Zhang et al. 2015) maximized user experience based
on POI popularity in personalized trip recommendation.
(Zhang et al. 2015) found the optimal trip that maximizes
user experiences for a given time budget constraint. Lu et
al. (Lu, Chen, and Tseng 2012) proposed PTR to recom-
mend the personalized trips meeting multiple constraints by
mining visitor’s check-in behaviors. All these works do not
consider the attractive routes.

Orienteering problem in operations research. The ori-
enteering problem (OP) (Vansteenwegenaaba 2011) studied
in operation research and theoretical computer science is re-
lated to our problem. In OP, there is a set of nodes and each
of them has a score. The goal is to generate a path, limited
in time and the specific start and end nodes, that visits some
nodes and maximizes the total collected scores. However,
the differences between trip recommendation and OP are:
First, OP does not consider the personalized user preference
and generates the same trip for all users. Second, OP has no
stay time for each location, which is a key factor affecting
the total travel time of a trip. Finally, we consider the attrac-
tive routes, which is absent in OP.

Gravity and scenic path in recommendation. Another
relevant work is Zhang et al. (Zhang and Chow 2015) pro-
posed a gravity model to weigh the effect of each visited lo-
cation on the new location derived from the attractive force.
Javed et al. (Javed, Ghani, and Elmqvist 2012) calculated
a gravity vector that models the attention of current posi-
tion to a visitor. The most relevant work (Quercia, Schi-
fanella, and Aiello 2014) considered routes not only short
but also emotionally pleasant in the trip recommendation,
the recommended trips are more beautiful, quiet and happy,
which enhances users’ experiences; (Lu and Shahabi 2015;
Johnson et al. 2017; Lu et al. 2017) considered scenic or
safest path while planing a trip.

Our work differs from the aforesaid studies in that we in-
vestigate the user experiences from both of routes and POIs
in the personalized trip recommendation.

Table 1: Notations.

Notation Interpretation

V, E , U,R the set of POIs, routes, users, AR
S,L the set of AR rating score, classifiers
v, e, u POI in V , route in E , user in U

P (·)/ps(·) the function of preference / preference score
RS(·) the rating score
E(·) the function of user experience
T (u, ·) the function of time cost of u
t(e) the travel time on e
tp a sequence of ordered POIs

η1/η2 the threshold of POI popularity / Gini coefficient
Tmax the time constraint in a trip
δ the threshold of E(u, tp)

Pop(·) the function of popularity
m,n the number of users and POIs

3 Problem Definition

In this section, we first introduce the system settings and the
key concepts. Then we formally define the problem. Table 1
shows the notations used in this paper.

3.1 System Settings and Concepts

Definition 1: Travel Graph. For a region with n POIs,
we construct a directed complete weighted travel graph
G = (V , E) with n nodes being the POIs, and V =
{v1, v2, · · · , vn} is the set of the n POIs. Each edge eij ∈ E
represents the route from vi to vj where vi, vj ∈ V , and the
weight of edge includes the average travel time along it. The
set of m users is denoted by U = {u1, u2, · · · , um}.

Definition 2: Preference. Each user u and each POI v are
associated with a preference P (u) and P (v) in a z dimen-
sional category space, respectively. The preference function
is denoted by P (·) = (γ1, γ2, · · · , γz), where γi is in the
range of 0 to 1. γi in P (v) and P (u) refer to the preference
degree of the ith category for POI v and user u, respectively.
γi in P (u) is calculated by the ratio that the number of vis-
its of the ith category to the total number of visits, which
is modeled based on its past visiting records (Li et al. 2017;
Jiang, Wu, and Wang 2015).

Definition 3: Preference Score. The user u has a pref-
erence score to each POI v denoted by a function ps(u, v),
which is calculated by the cosine similarity between P (u)
and P (v). In the case of P (u) = (α1, α2, · · · , αz) and
P (v) = (β1, β2, · · · , βz), ps(u, v) =

∑z
i=1 αi·βi√∑z

i=1 α2
i ·
√∑z

i=1 β2
i

.

Definition 4: Trip. A trip is orderly composed of one or
several POIs denoted by tp = (vk1 , vk2 , · · · , vks), which is
also denoted as s-trip and s indicates the number of POIs
in a trip (i.e., |tp| = s). The stay time of a user u costs on
a POI v is denoted by a function T (u, v), which is calcu-
lated by the historical trips of users (Lim et al. 2015). The
travel time of users on eij is denoted as t(eij), which is es-
timated by the Euclidean distance and the walking speed
of the user (e.g., 4 km/h). The time cost along a trip de-
noted by a function T (u, tp) is defined as the time of a user
u spending on the trip, which is calculated as: T (u, tp) =∑s−1

i=1

∑s
j=2 t(eij) +

∑s
i=1 T (u, vj).
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(a) v1 (b) v2

(c) v3 (d) v4

Figure 2: The popularity of incoming routes at four POIs: (a)
v1 has high popularity, more incoming routes with inequal
popularity; (b) v2 has low popularity, less incoming routes
with equal popularity; (c) v3 has high popularity, more in-
coming routes with equal popularity; (d) v4 has low popu-
larity, less incoming routes with inequal popularity.

3.2 Attractive Route

The number of visitors at a POI is affected by the attraction
from either the POI or the routes to it. Thus, inspired by (Lim
et al. 2017), we define the concept of popularity as follows:

Definition 5: Popularity. Popularity is the number of
visits of a POI or a route, which is denoted by a function
Pop(·). The POI popularity denoted by Pop(v) is estimated
by the the number of visits of v. The route popularity de-
noted by Pop(e) is estimated by the number of visitors who
have traveled along the route e. The relationship between
Pop(e) and Pop(v) is: Pop(v) =

∑
e∈E(v) Pop(e), where

E(v) is the set of incoming routes of E(v).
We make a statistic of the routes from Foursquare dataset

(Luan et al. 2018). For each POI and its incoming routes,
we obtain the average number of visits based on their pop-
ularity of each month. We take four POIs as an example to
illustrate the route popularity and Fig.2 shows the popular-
ity of incoming routes at 4 different POIs. We observe that
some POIs has popularity inequality of its incoming routes.
Among these incoming routes, the one with the highest pop-
ularity has advantages to attract visitors, such as business
events, etc. However, traditional trip recommendation ne-
glects such routes and recommends users to visit the incom-
ing route with low popularity and may reduce user experi-
ence. Therefore, we introduce a new concept of attractive
route as follows:

Definition 6: Attractive Route (AR). The attractive route
is an incoming route to a POI with high popularity, and its
popularity occupies the majority of POI’s. Let R denote the
set of attractive routes andR ⊂ E .

We take Fig. 1 as an example to illustrate the effect of AR.

(a) Category space (b) Travel time distribution

Figure 3: Analysis of AR in Foursquare.

Fig. 1 shows that by considering the popularity of routes and
POIs, the path O → B → D will be recommended to bring
more user experience. Many kinds of events can affect the
popularity of routes, such as the sales promotions, movie
promotions, temporal shows and so on. These events attract
visitors, however, they also increase their travel time. Tak-
ing Fig.1 for instance, it shows a commercial booth and a
festival booth occur on the attractive routes. The green ar-
row represents the pedestrian flow on the route, and the blue
sign represents the business event on the route. Although the
events improve user experience, they take longer travel time
for visiting. Therefore, we should estimate whether a user
will visit an attractive route by considering the extra travel
time, which is a challenging issue.

For an attractive route, we extract the preferences of past
visitors based on their visiting history from the Foursquare2

dataset. A user preference has the following 8 coarse-
grained dimensions3: arts & entertainment; college & uni-
versity; food; great outdoors; home, work, other; nightlife
spot; shop; travel spot. We take route1 of v1 mentioned in
Fig.2 as an example to analyze attractive route. We reduce
the preferences of 500 users who visit route1 to three di-
mensions (Category X, Category Y, Category Z) for visual-
ization by t-SNE (Maaten L 2008), and Fig.3(a) shows the
distribution of these user preferences in the category space.
For the users who visit the attractive route, we find the vast
majority of these users’ preferences cluster together, which
indicates the preferences of these users are similar to each
other; some preferences of users are scattered, which indi-
cates these users have different user preference with the clus-
tered users. Then we select 50 attractive routes and analyze
the travel time of users on these routes. The users who pre-
fer AR spend more time to on it. Fig.3(b) shows the travel
time distribution of users who have visited those attractive
routes. It indicates that some of them prefer attractive routes
and others not. The users who prefer the attractive routes
will cost longer travel time, such as visiting the event of sale
promotion on it. The users who don’t prefer AR will treat
AR as an ordinary route and travel along the AR quickly, so
users spend less time on this AR. Thus, the preference of an
attractive route is defined as follows:

Definition 7: Preference of AR. Preference of AR is
measured by the cluster center of the preferences of users

2https://foursquare.com/
3https://developer.foursquare.com/
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who prefer and visited this AR. Each attractive route e ∈ R
is associated with a preference P (e). Based on the above
analysis, the preference score of e for u denoted by ps(u, e)
is also calculated by the cosine similarity between P (u) and
P (e). The travel time of u spends on e is denoted as T (u, e).

3.3 Problem Formulation

The objective of personalized trip recommendation is to rec-
ommend user trips while maximizing the user experience
(UE). Inspired by (Luan et al. 2018), the user experience
for u to v is based on the preference between u and v,
which is defined as: E(u, v) = ps(u, v) · RS(v), where
RS(v) denotes the rating score of v with 1-5 scales ob-
tained from Yelp (Hu and Ester 2013). The user experi-
ence for visiting an attractive route e by u is calculated as:
E(u, e) = ps(u, e) · RS(e), where RS(e) refers to the rat-
ing score of e and it is estimated in Section 4.1. The total
user experience of u to tp denoted by E(u, tp) includes the
user experience generated from both of POIs and attractive
routes as follows:.

E(u, tp) =

n−1∑

i=1

n∑

j=2

xij(E(u, vj)+E(u, eij)) (1)

In Eq.1, if a recommended trip involves traveling from POI
vi to vj , xij = 1; Otherwise, xij = 0.

Based on the above settings, the problem of personalized
trip recommendation with POIs and attractive routes is de-
fined as follows:

Problem 1: Personalized trip rEcommendation with
POIs and Attractive Route (PEAR). Given a travel graph
G = (V, E), a visitor u who requests a trip recommenda-
tion has a specific starting location, constraint time Tmax

and a predefined user experience demand δ. We recommend
a trip tp such that user experience is maximized meeting
four constraints: (1) the trip starts at a specific POI, (2) the
recommended trip comprises POIs connected as a trip with-
out loops, (3) the travel time of this trip should be in the
constraint traveling time Tmax, (4) the user experience is
larger than the predefined user experience demand δ. Thus,
the problem is formally defined as follows:

Maximize E(u, tp) (2)

s.t.
n∑

i=2

x1i = 1 (3)

n−1∑

i=1

xik =

n∑

j=2

xkj ≤ 1 (4)

n−1∑

i=1

n∑

j=2

xij(T (u, eij)+T (u, vj))≤Tmax (5)

n−1∑

i=1

n∑

j=2

xijE(u, vj) ≥ δ (6)

Eq.2 is the objective function merges the user experience
from POIs and ARs in the trip. Eq.s 3− 6 correspond to the
four constraints. The recommender generates a trip which
consists of a sequence of POIs and ARs.
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Figure 4: The framework of TRAR.

The hardness. We present the following simplified deci-
sion version of the PEAR problem, which is NP-complete,
by ignoring the stay time and the predefined demand of
user experience. In particular, we assume that T (u, v) =
0, E(u, eij) = 0, δ = 0, E(u, vj) = 1 for all POIs vj ∈ V
(except the source O and destination D), the source and the
destination are the same POI, i.e., O = D, and the traveling
time cost T (u, eij) is a fixed constant. The simplified deci-
sion PEAR problem is: Given a travel graph G = (V, E), a
user u with the source and destination O, and a time budget
Tmax, the task is to decide whether there is any trip tp such
that E(u, tp) ≥ δ and the trip is completed within constraint
time Tmax.
Theorem 1. The simplified decision version of PEAR
problem is NP-complete.

Proof. We reduce the decision version of the traveling sales-
man problem (TSP) (Applegate et al. 2007), which is known
to be NP-hard, to the simplified decision version of PEAR.
Since the simplified decision PEAR is NP-complete, the
optimization PEAR problem is at least NP-hard. Due to
the limited space, we omit the detailed proof.

4 Trip Recommendation with ARs

We propose a personalized Trip Recommender with POIs
and Attractive Route (TRAR) in this section, which in-
cludes AR discovery, AR evaluation and trip recommenda-
tion. Fig.4 shows the framework of TRAR.

4.1 AR Discovery

There is no records about ARs in the real dataset, so it is
necessary to discover ARs from dataset; We discover ARs
to improve the user experience from a recommended trip.

We have discussed the popularity inequality of the in-
coming routes of a POI in Fig.2. In this section, we intro-
duce Gini coefficient (Barro 2000) to measure such inequal-
ity. We define �pj = [p1j , p2j , · · · ] as a vector with ascend-
ing order elements, and each element pij indicates the pop-
ularity proportion of an incoming route eij calculated by
pij =

Pop(eij)
Pop(vj)

. Let Gini(�pj) denote the Gini coefficient
of POI vj . It is calculated as follows:

Gini(�pj) = 1− 1

|�pj | (2 ·
| �pj |∑

i=1

i∑

k=1

pkj − 1) (7)

As shown in Fig.4, TRAR utilizes the travel history of users
such as check-in data from Foursquare to discover attractive
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Figure 5: AR evaluation with gravity model

routes. We select one incoming route with the highest pop-
ularity for each POI. The process of discovering attractive
routes is as follows: We initialize R ← ∅; For each vj ∈ V ,
TRAR first calculates the popularity and the Gini coefficient
of vj , and then it selects the POIs satisfying Pop(vj) > η1
and Gini(�pj) > η2, where η1 and η2 are two thresholds set
by the empirical studies; Finally, it selects eij with maximal
Pop(eij) as an AR of vj and inserts the selected AR intoR.

For example, we calculate the Gini coefficient of four
popular POIs shown in Fig.2. �p1 = [0.1, 0.1, 0.2, 0.6] in-
dicates that there are 4 incoming routes of v1, and the
elements in �p1 are the popularity proportion of the in-
coming routes. Similarly, �p1 = [0.1, 0.1, 0.2, 0.6], �p2 =
[0.4, 0.6], �p3 = [0.3, 0.3, 0.4], �p4 = [0.2, 0.8]. According to
Eq.7, Gini(�p1) = 0.4, Gini(�p2) = 0.1, Gini(�p3) = 0.067,
Gini(�p4) = 0.3. Thus, v1 has a high popularity and Gini co-
efficient, and its incoming route with the maximal popularity
proportion 0.6 is an attractive route.

The popularity inequality of incoming routes by Gini co-
efficient has some characteristics: (1) Gini coefficient ranges
between (0, 1); while the Gini coefficient is approaching to
0, the popularity proportions of incoming routes are close
to equal; (2) The fewer the number of incoming routes is,
the lower the Gini coefficient is; (3) With the same number
of incoming routes, the more unbalanced the popularity pro-
portion is, the higher the Gini coefficient is.

Complexity. AR discovery traverses the travel graph to
discover ARs and computes Gini coefficient of each POI
costs O(1) due to the limited incoming routes, so the com-
plexity is O(n), where n is the number of POIs.

4.2 AR Evaluation

The attraction between an AR and its related POI is differ-
ent, TRAR utilizes a gravity model to evaluate the prefer-
ence and rating score of each AR. In the gravity model, we
take the AR (denoted by eij) in Fig.3(a) as an example to
illustrate the process of evaluation. For an attractive route
eij , TRAR selects the users who have visited vj through eij
from the travel history, and maps them into a category space
with their preferences. Then, it also maps the POI vj into
the category space with its preference. TRAR clusters the
preferences of users in the z-dimensional space by applying
k-means clustering (Kanungo et al. 2002), which is chosen
due to its computational efficiency. Here we set k = 2 to

distinguish the users who prefer the AR or not. Fig.3 has
shown that the travel time of users who prefer the attractive
routes is longer than that of other, because an AR attracts the
users to cost longer time for visiting. Therefore, we utilize
the travel time of a route to distinguish the users who prefer
it or not. The users take a longer time along eij are labeled
as preferring eij , and others are not.

In the category space, we treat the centroid of users’ pref-
erences who prefer eij as P (eij). Based on the labeled user
preferences, a linear classifier lij is trained by SVM (Ben-
Hur et al. 2001). It partitions the category space into two
domains to distinguish the users who prefer vj and the users
who prefer eij . A linear classifier is a hyperplane in the cat-
egory space, and it is determined by the support vectors as
shown in Fig.5. The calculated lij is put into a classifier set
L. TRAR learns a classifier for each attractive route, so that
the attractive route eij is associated with the trained classi-
fiers lij .

The gravity model is utilized to estimate the rating score
of an attractive route. Let dist(vj , lij) denote the distance
from vj to lij in the category space, and dist(eij , lij) denote
the distance from eij to lij . RS(vj) is obtained from Yelp4,
which represents the mass of vj in the category space. We
assume that the attraction from vj and eij are balanced on
the hyperplane. According to the gravity model (Zhang and
Chow 2015), RS(vj) and RS(eij) are treated as different
masses in the space, and we apply the force balance on the
hyperplane to calculate RS(eij), as follows:

RS(vj)

(dist(vj , lij))2
=

RS(eij)

(dist(eij , lij))2
(8)

Then RS(eij) is normalized to 0-5, which is consistent
with the range of POI rating score. The calculated RS(eij)
is put into the classifier set S.

Complexity. AR evaluation traverses the attractive routes
to evaluate ARs. The complexity of this process is O(kn),
where k is a small constant, n is the size of POI set.

4.3 Trip Recommendation

Since the problem of PEAR is NP-hard, we propose a heuris-
tic method to recommend a personalized trip for a user. For
a region with n POIs, we construct a travel graph G(V, E)
with n nodes being the POIs; these n nodes are available to
visit under the time constraint of the user, we take the tempo-
ral information into consideration of POI (Yuan et al. 2013).
The user experience and travel time of the route eij is ini-
tialized as: E(u, eij) = 0, T (u, eij) = t(eij). When a new
user u arrives, according to the user preference P (u) and
the preference of each POI P (v) , the recommender calcu-
lates the preference score between the user and each POI. To
narrow down the searching range in G, the recommender se-
lects the top-k POIs by their preference scores. A new graph
G′ = (V ′, E ′) is generated by these selected POIs as V ′ and
the routes among them as E ′, which is a subgraph of G.

The recommender maps the preference of user u P (u)
in the category space for each attractive route in E ′ ∩ R. If
P (u) falls in the domain of eij , the recommender updates

4http://www.yelp.com/
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the user experience and time cost T (u, eij) on eij in G′.
The attraction of AR is utilized to heighten the weight of the
route. The user experience on eij is updated by E(u, eij),
and the time cost T (u, eij) is updated by:

T (u, eij) = t(eij) + Iu→eijΔT (u, eij) (9)

where Iu→eij is an indicator function which returns 1 when
u prefers to eij , otherwise returns 0. As discussion in Fig.3,
ΔT (u, eij) is the value that the average travel time of users
who prefers to eij subtracts the average travel time of users
who do not. The updated travel graph is denoted as G′′(u),
which is personalized for the user u.

Under the constraints discussed in Section 3.3, TRAR ex-
ecutes a greedy algorithm on G′′(u) according to the time
cost and user experience on each edge as follows: For the
current selected POI, TRAR collects its unvisited neighbour-
ing POIs. Then, it chooses the next POI with the maximal
UE from the current POI to its unvisited neighbouring POIs.
The total UE and time cost is updated. The above process
is terminated until the total time cost is larger than the user
time constraint if a next unvisited POI is inserted to the trip.
Thus, an optimal trip with maximal user experience is gen-
erated for u.
Theorem 2. Trip Recommendation is an Ω(OPT ) approx-
imation, with OPT as the optimal user experience.

Proof. Consider a simple instance that all POIs and routes
have unit user experience, and all POIs have no stay time,
δ = 0. In such instances, TRAR recommends a trip to a user
which is an optimal solution.

Complexity. Calculating top-k POIs costs O(n lg n), up-
dating the travel graph costs O(n2), traversing the person-
alized travel graph costs O(n). So the time complexity of
trip recommendation is in O(O(n lg n)+O(n2)+O(n)) =
O(n2), where n is the number of POIs.

5 Experiments

5.1 Experimental Setup

Dataset. The datasets include two parts: One is synthetic
dataset to evaluate the scalability of recommender sys-
tem, and it contains 20, 000 users, 200 POIs, 50 attrac-
tive routes. The synthetic dataset is generated by a sim-
ulator (Lu, Chen, and Tseng 2012), and it randomly se-
lects routes as attractive routes. Another one is Foursquare
dataset (Zhang et al. 2015), which is a publicly large-scale
check-in LBSNs dataset. It contains 11, 326 users, 7,711
POIs, and 1, 385, 223 check-ins. The rating score of POIs
in Foursquare is obtained from Yelp (Hu and Ester 2013).

We divide a user’s travel history by day, and separate each
one into distinct trips if the check-in time between two con-
secutive POIs is more than a threshold. And similar to ex-
isting work (Lim 2015), we set 8 hours for this threshold in
our experiments. These trips also serve as the ground truth
of real-life user trips, which are subsequently used for eval-
uating our algorithm and baselines. From the travel history
of users, we discover 592 attractive routes by AR discovery
process. We select the earliest 80% trips to train the model,
and use the other 20% as a testing dataset.

(a) Popularity proportion of ARs (b) Incoming routes

Figure 6: ARs in the Foursquare dataset.

Experimental Settings. η1 and η2 in AR discovery are set
at 800 and 0.3 as the default value. In the Synthetic dataset,
we treat ΔT (u, eij) in Eq.9 as a random variable following
a certain distribution (Zhang et al. 2015).

Evaluation Metrics. In our experiments, each user in the
testing dataset is related with two trips: one is the ground
truth trip from the dataset, and the other is a predicted
trip by recommender under the user preference and multi-
constraints. The metrics include recall, precision and F1 (Li
et al. 2015; Zhang and Chow 2015), the testing results of all
trips of test users are averaged to produce the final results.

5.2 AR Analysis

Fig.6(a) shows the distribution of the popularity proportion
(described in Section 3.2) of all selected ARs in Foursquare,
whose popularity proportion are concentrated at 0.2 to 0.6,
which shows the popularity of ARs occupy an primary part
of the POI popularity. There are no ARs whose popularity
proportion is less than 0.2. Fig.6(b) shows the amount of
POIs with different number of incoming routes. The number
of POIs of 4 incoming routes with AR is the largest of all.

5.3 Baselines

Since our work is the first to consider attractive routes, we
implement the following baselines related to our work:

GreedyTSPCost (GTC): This algorithm recommends
POIs with maximum user experience per unit time to visi-
tors (Friggstad et al. 2018), which greedily chooses a POI
with higher user experience and shorter travel time.

MPTR: This algorithm recommends a sequence of POIs
meeting multiple constraints of users by mining user’s pref-
erence to POIs (Luan et al. 2018), which ignores the attrac-
tive routes in the recommendation process.

RandomWalk (RandW): This algorithm (Lim et al.
2015) randomly selects an unvisited POI in a trip.

5.4 Variants of TRAR

In addition to the above baselines, we also evaluate two vari-
ants of the proposed TRAR.

Sat: This variant only recommends recommends unvis-
ited POIs with high user experience for a user to generate a
personalized trip.

Hap: This variant only chooses unvisited attractive routes
with high user experience for a user as many as possible to
form a personalized trip.
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Table 2: Performance comparison between TRAR and baselines on different datasets.

Dataset Method R@3 R@5 R@10 R@15 P@3 P@5 P@10 P@15 F1@3 F1@5 F1@10 F1@15

Foursquare

RandW 0.1139 0.1237 0.1359 0.1586 0.2245 0.1840 0.1464 0.1101 0.1512 0.1480 0.1410 0.1300
MPTR 0.1353 0.1479 0.1759 0.2355 0.2369 0.1874 0.1639 0.1428 0.1722 0.1653 0.1697 0.1778
GTC 0.1638 0.1887 0.2735 0.3046 0.3393 0.3075 0.2678 0.1739 0.2210 0.2331 0.2706 0.2214
TRAR 0.2979 0.3657 0.4358 0.4648 0.4178 0.3684 0.2733 0.2175 0.3478 0.3670 0.3359 0.3145

Synthetic

RandW 0.1102 0.1210 0.1405 0.1586 0.2126 0.1840 0.1326 0.1101 0.1450 0.1453 0.1362 0.1300
MPTR 0.1200 0.1300 0.1603 0.2250 0.2105 0.1731 0.1514 0.1320 0.1500 0.1473 0.1548 0.1648
GTC 0.1521 0.1843 0.2516 0.2724 0.3250 0.2950 0.2521 0.1619 0.2053 0.2236 0.2500 0.2009
TRAR 0.2800 0.3511 0.4253 0.4501 0.4002 0.3500 0.2607 0.2200 0.3294 0.3500 0.3226 0.2955

(a) Synthetic Dataset (b) Foursquare Dataset

Figure 7: Execution time on different datasets.

5.5 Evaluation Results and Discussion

Execution time on different datasets We performed the
evaluation of TRAR on a 3.3GHz CPU with 8GB of RAM.
Fig. 7 shows average execution time of different algorithms
on different datasets for test users. In the Fig. 7(a) and (b),
the execution time of GTC and RandW are smaller because
the two methods are easy to perform. The execution time of
TRAR is slightly larger than that of MPTR, because TRAR
considers both POIs and ARs in the recommend process.
The execution time of TRAR is still tolerable for users. With
time constraint increases, the execution time tends to be sta-
ble, because of finite number of ARs and POIs in the per-
sonalized travel graph. The execution time in Fig. 7(b) is
slightly higher than that in Fig. 7(a) when the algorithm is
fixed, because Foursquare dataset is larger and richer than
synthetic dataset. The execution time in the experiment is
sufficient for most real-life applications.

Impact of trip time constraint The travel time is not
more than the trip time constraint. As shown in Fig.8(a),
this experiment compares the user experiences by of TRAR,
GTC, MPTR and RandW on synthetic dataset when the
travel time is varied from 40 to 150 minutes. TRAR out-
performs GTC, MPTR and RandW, and achieves the highest
score while the time constraint is increasing. Because MPTR
chooses POIs of higher rating scores and ignores attractive
routes, and GTC chooses POIs with maximum user experi-
ence per unit time, which may not fully fit for user’s interest.
The gap between the user experiences of TRAR and GTC is
the extra user experience from attractive routes. The score of
TRAR is lower than that of GTC with short time constraint,
because GTC chooses POIs with higher user experience per
unit time while TRAR chooses the POIs and attractive routes
which fit for the preference of a user.

(a) Synthetic Dataset (b) Foursquare Dataset

Figure 8: Impact of trip time constraint.

As shown in Fig.8(b), this experiment compares the
user experience of TRAR, GTC, MPTR and RandW on
Foursquare dataset when the travel time is varied from 1
to 8 hours. The user experiences of all methods increase at
first and tend to be stable by increasing the time constraint
(i.e., travel time), and the reason is same as that in synthetic
dataset. The score is much higher than the methods in syn-
thetic dataset, because the categories in Foursquare dataset
are richer than that in synthetic dataset. TRAR achieves the
highest score with increasing time, since TRAR considers
the user experience from attractive routes.

Performance metrics: Recall, Precision and F1 Table
2 summarizes the performance with the metrics Recall@k,
Precision@k and F1@k on both of Foursquare dataset and
synthetic dataset. The results show that TRAR improves rec-
ommendation performance. TRAR, GTC and MPTR out-
perform RandW in terms of all metrics. It indicates that
TRAR has a significant performance disparity in terms of
top-k recall. TRAR outperforms other baseline algorithms,
such as the recall@5 of TRAR in the Foursquare dataset
is 0.3657, while the recall@5 of other three algorithms are
0.1139, 0.1353 and 0.1638 shown in Table 2. First, this is
because TRAR applies the gravity model in category space
to model the attraction of attractive routes and produce trip
recommendation. Second, compared with GTC and MPTR,
TRAR justifies the benefit brought by considering the simi-
larity between the preferences of users and attractive routes.
Third, TRAR performs well than other algorithms on re-
call and precision which implies that the visitors gain more
user experience from attractive routes. The value of Recall,
Precision and F1 with Foursquare dataset are higher than
that of synthetic dataset due to the rich and diverse data of
Foursquare dataset, which shows that TRAR is more effec-
tive and performs well in the true dataset.
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Table 3: Comparison of variants of TRAR.

Variant Recall Precision F1

Sat 0.142 0.231 0.184
Hap 0.122 0.154 0.109

Variants of TRAR We compare the variants of TRAR on
the Foursquare dataset as shown in Table 3. Sat solely selects
unvisited POIs with high user experience for a user to gener-
ate a personalized trip, and consequently the results are more
similar to MPTR. Sat outperforms Hap in these three metrics
because Hap only selects attractive routes the user interested
in as many as possible, while the number of attractive routes
is far less than that of POIs. Though attractive routes im-
prove user experience, it may not fit to the preference of user.
Sat satisfies the requirement of user but lacks the user expe-
rience from attractive routes. Based on the above discussion,
the performance of Sat is superior to Hap, but TRAR is bet-
ter than both of them as shown in Table 2.

6 Conclusion

In this paper, we identify a novel kind of route called attrac-
tive route, and propose a novel method named TRAR for
personalized recommendation trip with ARs. TRAR discov-
ers attractive routes based on the popularity and the Gini co-
efficient of POIs, and we propose (1) a gravity model under
the category space to estimate the rating score and prefer-
ence of an attractive route, and (2) a recommendation algo-
rithm to efficiently plan the trip which aims to maximize the
user experience. As far as we know, this is the first work
on personalized trip recommendation that considers the at-
tractive routes. Through a series of experiments by different
datasets, we validate the effectiveness of TRAR and show
TRAR performs well under various conditions. In the future
work, we will apply TRAR to more applications.
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