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Abstract

Many social and economic systems can be represented as at-
tributed networks encoding the relations between entities who
are themselves described by different node attributes. Find-
ing anomalies in these systems is crucial for detecting abuses
such as credit card frauds, web spams or network intrusions.
Intuitively, anomalous nodes are defined as nodes whose at-
tributes differ starkly from the attributes of a certain set of
nodes of reference, called the context of the anomaly. While
some methods have proposed to spot anomalies locally, glob-
ally or within a community context, the problem remain chal-
lenging due to the multi-scale composition of real networks
and the heterogeneity of node metadata. Here, we propose a
principled way to uncover outlier nodes simultaneously with
the context with respect to which they are anomalous, at all
relevant scales of the network. We characterize anomalous
nodes in terms of the concentration retained for each node af-
ter smoothing specific signals localized on the vertices of the
graph. Besides, we introduce a graph signal processing for-
mulation of the Markov stability framework used in commu-
nity detection, in order to find the context of anomalies. The
performance of our method is assessed on synthetic and real-
world attributed networks and shows superior results con-
cerning state of the art algorithms. Finally, we show the scal-
ability of our approach in large networks employing Cheby-
chev polynomial approximations.

Anomaly detection is an important problem in data min-
ing with multiple applications in diverse domains (Aggar-
wal 2013). Examples include credit card fraud detection, in-
trusion detection for network systems, identifying anoma-
lous users in communication networks, web spam detection,
and so on. Anomalous data can be understood as notewor-
thy objects with patterns or behaviors that deviate signif-
icantly from a background property. Investigating anoma-
lies in networks is especially interesting because many real
world systems are well modeled by a network consisting
of nodes with specific attributes and edges representing the
relations between nodes. For instance, in a social network
where nodes represent persons and edges social ties, node at-
tributes could be demographic information. In a co-purchase
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Figure 1: A toy example of work relation network. Nodes
have attributes describing individual features. Node at-
tributes define structural clusters in multiple scales. At the
1st scale outlier nodes (O1, O2, O3) lie within a local con-
text, i.e, offices. In a 2nd scale, departments emerge as new
contexts where O2 is not defined. Finally, at a larger scale O3

remains as a global anomaly in context of the whole com-
pany.

network, nodes represent items and might contain informa-
tion about them as attributes, while an edge is present be-
tween two items when the same person has bought them.

Because the mechanisms generating anomalies in real
world networks are usually unknown, defining ground truth
anomalies, is problematic and measuring the degree for
which a node is anomalous is a challenging problem. For
this reason, anomalies must be defined in opposition to a
background of “normal” nodes, i.e., the context relevant for
an anomaly.

So far, the issue of finding anomalous nodes, or outliers
(we consider these words as synonyms in this paper) on net-
works together with their relevant contexts has not been en-
tirely solved. Existing approaches consider outliers within
local or community contexts (Liu, Huang, and Hu 2017;
Gao et al. 2010) sometimes with strong assumptions about
the distribution of the attributes (Gao et al. 2010), or separate
the context identification from outlier detection (Sánchez et
al. 2014). Other methods detect anomalies without consid-
ering any context (Li et al. 2017).

However, real world networks representing complex eco-
nomic, social, or biological systems are characterized by
modular, multiscalar, and often hierarchical structures (Boc-
caletti et al. 2006). Taking into account the node attributes
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spanning across the multi-scale structure of networks to cor-
rectly define the contexts of anomalies is therefore crucial.
In addition, anomalous nodes might emerge within a spe-
cific context and later disappear in different contexts. Hence,
anomaly detection is linked naturally to the problem of com-
munity detection, consisting of finding clusters of nodes that
are densely linked together compared to the rest of the net-
work (Newman and Girvan 2004).

By performing multiscalar community detection on a net-
work where related nodes are close to each other through
edge weights expressing the similarity of nodes’ attributes,
we discover all the relevant contexts for anomalous nodes.
In this sense, we consider that a node can be an outlier only
at certain scales and not necessarily at all scales.

Consider the toy example of the co-working network in
Fig. 1. If an employee, e.g., O2, works mainly with employ-
ees from a different office and not with the employees of
his office, it may appear as an anomaly at the scale of of-
fices. But if his office and the office of the employees he is
working with, both belong to the same department, this em-
ployee will not be an anomaly at the department scale. At
an even larger scale however, a company may form a large
context with anomalies persisting as global outliers, e.g, O3.
Anomalies are scale dependent, hence considering the mul-
tiscale nature of real world systems together with the node
attributes is essential for the detection of anomalies.

In summary, the contributions of this paper are:
• We propose a novel algorithm called MADAN (Multi-

scale Anomaly Detection in Attributed Networks) provid-
ing a principled mechanism to rank and localize outlier
nodes within their context at all scales in a network.

• We conduct experiments on synthetic and real world
benchmarks showing that our method allows to not only
recover and rank the so called ground truth anomalies, but
also to discover new anomalies jointly with their contexts.

• Finally, we show that our method is parallelizable and
scales to large networks thanks to the Chebychev approx-
imations of the exponential of the graph Laplacian. As
side benefit, it also provides a faster methodology for the
continuous-time Markov stability framework (Lambiotte,
Delvenne, and Barahona 2014) for community detection.

Related work

As the amount of attributed network data has increased dur-
ing the last decade, anomaly detection on attributed net-
works has attracted more attention. Analyzing static graphs
for anomaly detection can be grouped in two general classes
(Akoglu, Tong, and Koutra 2015): anomalies on plain (un-
labeled) graphs and anomalies on attributed networks. The
former one relates to detecting nodes having anomalous
connectivity features in the network without exploiting any
node attribute information (Akoglu, McGlohon, and Falout-
sos 2010), i.e. isolated or bridge nodes. The second one, into
which our method falls, aims to detect anomalous nodes re-
garding the attributes of nodes within a given local context,
i.e community of a node or attribute subspace. CODA (Gao
et al. 2010) is a community based algorithm which uses Hid-
den Markov Random Fields to characterize both data and

links simultaneously turning the outlier detection in an in-
ference problem. Consub+DisOut (Sánchez et al. 2014) is
a two step method performing statistical selection of con-
gruent subspace defined by subset of node attributes and
subsequently rank anomalous nodes introducing a distance
based outlier model. ALAD (Liu, Huang, and Hu 2017) is
a method to retrieve outlier nodes exploiting network struc-
ture and node attribute information jointly considered in a
non-negative matrix factorization framework. The RADAR
(Li et al. 2017) approach propose a learning framework to
identify anomalies via residual analysis exploring the coher-
ence between attribute information and the network infor-
mation. AMEN (Perozzi and Akoglu 2018) considers ego-
networks to characterize anomalous neighbors in attributed
networks. More recent deep learning approaches (Ding, Li,
and Liu 2019) introduce an interactive approach incorpo-
rating the feedback form the end user. Unlike the previous
methods, our MADAN approach allows to spot anomalous
nodes across all scales of the network uncovering the rel-
evant scales spanned by the nodes attributes and the graph
structure.

Problem statement and framework
Creating a weighted graph Considering a graph G =
(V,E) composed by a set V with |V | = N nodes or ver-
tices, and a set of edges E. For simplicity, we will re-
strict this work to undirected, connected, simple graphs.
Considering multidimensional node attributes, we associate
to each vertex u ∈ V a d-dimensional vector f(u) =
〈f1(u), . . . ,fd(u)〉 where fk(u) ∈ R represents the k−th
attribute of the vertex u.

Our problem is, informally speaking, to discover anoma-
lous nodes and the context with respect to which they are
anomalous, for all possible ranges of context size.

In order to do so, we introduce weights to the edges of
the graph, expressing the similarity of the nodes’ attributes
linked by the edge. Here we use the Gaussian weighting
function:

w(u, v) =

{
exp

(
−‖f(u)−f(v)‖2

2σ2

)
if (u, v) ∈ E

0 otherwise
(1)

where σ is a scaling parameter. This creates a weighted ad-
jacency matrix W over the network, or similarity matrix,
where two nodes are similar if they are neighbours with
close values of the attributes. This weighting function is
commonly used in image processing to represent similarity
between pixel intensities (Haralick and Shapiro 1992). Here
we use it to translate the node attributes into the structure of
the network.

The heat kernel This adjacency matrix allows us to de-
fine a heat equation for any graph signal x ∈ R

N , i.e. any
function V → R assigning a scalar to every node. The heat
equation is expressed as

ẋ(t) = (W −D)x(t) = −Lx(t)

where D is the diagonal matrix of node strengths, defined
by Duu = du =

∑
v w(u, v). The matrix L is called the

Laplacian of the weighted graph.
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This equation, solved by x(t) = e−tLx(0), takes its name
from a physical analogy, where xu(t) is the ‘temperature’
or ’internal energy’ of node u (assuming unit heat capacity
for each node), which is being redistributed across the graph
following Fourier’s heat conduction law along edges with
conductivity w(., .). Importantly, the dynamics preserves the
average of the signal. This is seen as the sum of every col-
umn of L is zero. In the physical analogy, it corresponds to
the fact that the total energy on the graph is neither created
nor destroyed, only diffused.

In terms of signal processing (Shuman et al. 2013), the
heat kernel e−tL is often seen as a smoothing filter acting on
the initial signal x(0), parametrized by the time t. It replaces
every entry of x(0) with a weighted average of other nodes’
signals (with a greater emphasis on neighboring nodes). In
the limit of large t, the smoothed signal is just constant over
the network.

When the graph is a discrete line with constant weights
(modelling for example a discrete unidimensional space),
the filter is translation-invariant. This means that for any
two Kronecker delta signals δu (taking unit value on node
u and zero value elsewhere) or δv (for node v), the corre-
sponding smoothed signals e−tLδu and e−tLδv are transla-
tions of one another, and therefore have the same shape. This
translation-invariance, typical in ‘standard’ signal process-
ing, disappears in arbitrary networks, where e−tLδu will
strongly depend on the structure and weights of the network
around u. This property allows us to characterize the struc-
ture of the graph through the properties of its kernel. We use
this fact first to detect the anomalies and then to detect the
contexts in which these anomalies are relevant.

Finding the anomalous nodes The concentration of a
node u ∈ V at scale t is defined by the L2−norm of the
filtered δu signal with a heat kernel at time t (Perraudin et
al. 2018):

cu(t) = ‖e−tLδu‖2. (2)

This measure is useful because the filter preserves the sum
(or mean) of the signal, and therefore the Kronecker delta
has maximum norm of one while the completely smoothed
signal has norm 1/N , which is the smallest possible norm
for a signal of sum one spread over N nodes.

A node with high concentration at time t tends to be
poorly connected with its neighborhood, through few edges
or edges of low weight. The time t selects the size of the
neighborhood of reference, in a way that is discussed below.

With the weighting proposed in Eq. 1, a high-
concentration node indicates a node that is very dissimilar
in its attributes with its neighbors. In this way, we use the
concentration as way to quantify the degree of deviation of
a given node with respect to its context at a given time scale
and provides a scoring for ranking potential outliers.

To identify outliers, we use the following standard
thresholding rule used in general outlier detection methods
(Iglewicz and Hoaglin 1993) which works well in our ex-
periments. However, other criteria for identifying from the
concentration distribution could be developed.

Let c(t) = [c1(t), . . . , cN (t)] be the overall graph con-
centration. A node u is considered as anomalous at a time

scale t if the following thresholding condition holds:

cu(t) ≥ c̄(t) + 2s(c(t)) (3)

with c̄(t) as the average concentration and s(c(t)) its stan-
dard deviation across nodes.

Finding the contexts We now make sense of the choice
of t, in that it selects the context with respect to which a
node is anomalous. In a large t limit, a delta signal δu will
be smoothed to a constant over the whole graph, as the heat
kernel will have the time to mingle the signal of all nodes
together. A node that stands as an outlier for a large t is
therefore an outlier globally, with respect to the whole graph.
Conversely, a small t only allows heat diffusion with imme-
diate neighbors, and thus a small t outlier is anomalously
dissimilar to a small context.

More generally, we consider that a set of nodes S is a
suitable context for all potentially anomalous nodes lying in
it, if this set is relatively poorly connected to the rest of the
network, in a manner akin to community detection. Here,
‘poorly connected’ is defined in reference to a given time
scale t, in that the ‘internal energy’ contained in S essen-
tially remains in S within time t. Consider hS the charac-
teristic signal of S, i.e. the node signal taking unit values in
S and zero values outside. The initial total energy of S is
|hS |1, the number of nodes in S. After smoothing, the en-
ergy remaining in S in excess of the energy 1

N |hS |1 that will
remain at t = ∞ is:

r(t;hS) = hT
Se

−tLhS − 1

N
|hS |1, (4)

which we want to be as high as possible.
As we want to be able to provide a context for potentially

each node of the graph, we look for a partition of the nodes,
encoded by its N × K characteristic matrix H , where K
is the number of sets and every column h1, . . . ,hK is the
characteristic vector of a set of nodes. An optimal partition
into contexts is given by the matrix H maximizing:

r(t;H) =
∑
i

(
hT
i e

−tLhi − 1

N
|hi|1

)
. (5)

This is essentially a particular case of the Markov stability
(Delvenne, Yaliraki, and Barahona 2010; Lambiotte, Del-
venne, and Barahona 2014), designed as a general frame-
work for multi-scale community detection. It has the ex-
pected behaviour to provide a fine partition of small sets of
nodes for low t, and a few large sets for large t. As some
nodes could be assigned to their own isolated context, in
practice, we join them with the closest one.

Although it is known to be NP-hard to optimize the max-
imization of Eq. (5) (Brandes et al. 2008) it can be recoded
(Lambiotte, Delvenne, and Barahona 2014) into a modular-
ity maximization problem for which the Louvain algorithm
(Blondel et al. 2008) is known to provide good results in
practice. For each time step, we run the Louvain algorithm
100 times with different random initializations and use Eq.
5 as a scoring function to rank partitions H . In order to as-
sess the robustness of the retrieved partition at a given time
scale, we follow the methodology of (Delvenne et al. 2013)
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Figure 2: Synthetic social network of 160 nodes with a planted partition of four communities. Each node (representing a person)
has a scalar attribute representing the income of a person, partitioning the network in four clusters labeled as rich, medium,
poor, and very poor. Three outlier nodes are injected: O1 is a medium income person within the rich cluster, O2 a very poor
person within the cluster of medium income people and O3 is a rich person in the very poor cluster. (A) We perform a scanning
of relevant contexts along the attribute subspace: for each time t we find the number of clusters (blue curve) and compute the
average variation of information (VI(t))) of the retrieved partitions (red curve). The VI(t) is obtained from 100 runs of the
Louvain algorithm. The background represents the VI(t, t′) between optimized partitions across times. As can be seen in (A),
starting at t ≈ 0.65, the partitions of 4, 3 and 2 clusters are found as persistent according with the low VI(t). Subsequently, we
compute the concentration over all nodes of the graph (bar plots) with Eq. (2). (B) At the 1st scale, the concentration of nodes at
t = 1.5 reveals three local outliers with their context given by the colored clusters. (C) At the 2nd scale, at t = 10.5 the context
of O3 enlarges whereas the concentration of O2 decreases. (D) At the 3rd scale given by t = 578, O2 is not an outlier and the
context for O3 enlarges more. (E) The dendrogram shows the hierarchy of partitions and the outlier nodes at each scale.

and compute the variation of information among the ensem-
ble of found partitions for a given time. To be more precise,
the normalized variation of information of two partitions P1

and P2 reads:

V I(P1, P2)(t) =
H(P1|P2) +H(P2|P1)

log(N)
(6)

where H(P1|P2) is the conditional entropy of P1 given P2,
i.e the additional information needed to describe P1 when
P2 is known assuming a uniform probability on the nodes.

To simplify the notation we will write V I(P1, P2)(t) as
V I(t). To find the range of scales relevant for a given parti-
tion, we also compute the variation of information between
the ensemble of partitions found between each pair of times
V I(t, t′). Relevant partitions H are finally identified by
times t, t′ where V I(t) shows a dip and V I(t, t′) shows
a continuous plateau (Lambiotte, Delvenne, and Barahona
2014).

Summary of our approach Our multi-scale anomaly de-
tection method (MADAN) is summarized and illustrated in
Fig. 2. Roughly speaking, we first scan the network to find
the most relevant scales and finding the contexts, as de-
scribed in the previous section. For the times that are identi-
fied by this context-finding methodology, we simultaneously
detect the outliers satisfying Eq. 3.

Experiments

We evaluate the performance of our method in detecting
anomalous nodes in synthetic and real life attributed net-
works. MADAN1 is compared against state-of-the-art and
baseline methods.

Experimental setup

Synthetic dataset. We generate a series of undirected
synthetic networks with ground truth community structure,
adding node attributes and injecting node anomalies in dif-
ferent hierarchies.

In order to simulate real networks, we generate networks
with the Lanchinetti-Fornunato-Radicchi (LFR) benchmark
(Lancichinetti and Fortunato 2009). This algorithm gener-
ates networks with diverse community structures, commu-
nity sizes and power law degree distributions. Networks with
N = 1000 nodes are generated with the mixing parameter
μ = 0.1 generating partitions of well defined communities
containing between 50 to 200 nodes. The average node de-
gree is ranging from 10 to 100. The size of the communi-
ties are taken from a power law distribution with exponent
1. Similarly, the degree distribution for the nodes is drawn
from a power law distribution with exponent equal to 2.

1MADAN Python code can be found at
https://github.com/leoguti85/MADAN
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Figure 3: Synthetic experiments. Performance on anomaly
detection when adding increasing levels of anomalous
nodes. Colors correspond to different baseline techniques,
including our MADAN approach. We report the mean and
standard deviation (vertical lines) over 50 LFR networks.

Nodes attributes are generated as follows: to each node,
we associate a vector of attributes of dimension d = 20. To
make the problem more realistic, we introduce heterogeneity
in the node attribute values, so that within each community
C ∈ {0, 1, 2, . . . , cmax} nodes attributes are sampled from
different probability distributions.

For any attribute k of a node belonging to a community C,
its values are drawn from a normal distribution with mean C
and standard deviation σ̂, a uniform distribution in the in-
terval [C − σ̂, C + σ̂] and a logistic distribution with mean
C and scale σ̂. As nodes within a same cluster are deemed
to have similar values, we chose σ̂ = 0.1 for all distribu-
tions. In addition, we force some clusters to have similar
node attributes, i.e. drawn from the same distributions, in or-
der to introduce attribute hierarchies. Thus, the ground truth
community structure defines structural clusters, and node at-
tributes on top introduces clusters similarity, i.e., clusters of
clusters. To generate anomalous nodes, a percentage of ran-
domly chosen nodes (1%, 5%, 10%, 15%, 20%, 25%, 30%)
is perturbed by replacing 30% of their attributes with at-
tributes from a distinct, randomly chosen cluster. The per-
formance of anomaly detection is measured over 50 random
networks, reporting the average and standard deviation of
the performance measures.

Real life datasets. We also evaluate our approach on three
real life attributed networks, see Table 1. They were labeled
with the so called ground truth anomalies used as benchmark
datasets in the literature.

Table 1: Real life datasets
DATASET # nodes # edges # node attr # anomalies

Disney 124 334 28 6
Books 1418 3695 28 28
Enron 13533 176987 20 5

The Disney and Books datasets (Müller et al. 2013) are
co-purchase networks extracted from Amazon. They con-
tain 28 attributes per node describing properties about on-
line items, i.e., rating, selling price, etc. The ground truth
anomalies for Disney DVDs movies were tagged manually
by high school students in Germany. Ground truth anoma-
lies were defined as follow (Müller et al. 2013). A parti-

tion of the network was obtained after applying the Lou-
vain algorithm. Students were then asked to tag anomalous
nodes with a high deviation of the attribute values within
each cluster. Outliers nodes were defined as the ones tagged
as anomalous by at least 50% of the students. In the Book
dataset, ground truth anomalies were defined as nodes hav-
ing the tag amazonfail (Müller et al. 2013).

Enron (Metsis and et al. 2006) is a communication net-
work with edges indicating email transmission between peo-
ple. Each node contains 20 attributes describing metadata of
the message i.e., content length, number of recipients, etc.
This dataset has been extensively used as benchmark for
spam detection (Metsis and et al. 2006). Spammers were la-
beled as ground truth for anomaly detection (Müller et al.
2013). In all cases, we set the parameter σ in Eq. 1 as the
standard deviation of the distribution of pairwise distances
between node attributes.

Evaluation metric. Following the evaluation setup of (Li
et al. 2017; Müller et al. 2013), we assess the anomaly de-
tection performance with two well known metrics for eval-
uation of anomaly detection systems (Aggarwal 2013): the
area under the receiver operating characteristic curve (ROC-
AUC) and the area under the precision/recall curve (PR-
AUC). The former allows to quantify the trade-off between
true positive rate (tpr) and false positive rate (fpr) across dif-
ferent thresholds. The tpr is defined as the detection rate,
i.e. the rate of true anomalous nodes correctly identified as
anomalous, whereas the fpr is the false alarm rate, i.e. rate
of normal nodes identified as anomalous. The second met-
ric quantifies the trade-off between the precision, i.e., the
predictive power of the method and the recall, defined as the
ratio between true positive over true positives plus false neg-
atives. In both cases, the more the AUC approaches to 1 the
better the performance of the method.

Baseline methods We compare our MADAN approach
with five baseline methods of the literature having their
source code available: Local Outlier Factor (LOF) (Bre-
unig et al. 2000), Accelerated Local Anomaly Detector
(ALAD) (Liu, Huang, and Hu 2017), Anomaly Mining of
Entity Neighborhoods (AMEN) (Perozzi and Akoglu 2018),
Residual Analysis for Anomaly Detection (RADAR) (Li
et al. 2017) and a simple Random classifier (Random) for
anomaly detection, i.e., assigning random ranking scores
to each node. We did not experiment with CODA (Gao et
al. 2010) and Consub+DisOut (C+D) (Sánchez et al. 2014)
on our synthetic dataset because the authors did not pro-
vide their scripts. However, we compare against them on
the real life benchmarks by taking their performance values
from their papers. Each method output an anomaly score or
a ranking of nodes according with their anomaly level. We
compute the ROC and PR curves and report their AUC score.

Performance evaluation

Synthetic results. Results on synthetic attributed net-
works are shown in Fig. 3. As can be seen, our MADAN
approach outperforms the baseline methods in all cases.
Here the scale t was chosen as the one giving the best
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Table 2: Results real life datasets (ROC-AUC)
DATASET LOF C+D RADAR ALAD AMEN MADAN

Disney 0.61 0.81 0.87 0.70 0.52 0.93
Books 0.49 0.60 0.58 0.43 0.47 0.68
Enron 0.44 0.74 0.65 0.72 0.47 0.66

performance. Indeed our approach can deal with hierarchi-
cal composition of attributes across communities together
with heterogeneous distribution of node attributes. Injecting
a few amount of anomalies, i.e., 1% of perturbed nodes,
MADAN is comparable with RADAR and LOF in both
ROC-AUC and PR-AUC metrics. However, when the num-
ber of anomalies increases, LOF performance fall down be-
cause it does not exploit the graph structure. It can also be
seen that AMEN performance is precarious comparable to a
random classifier because this method was designed to de-
tect anomalous nodes on ego-networks discovering anoma-
lous neighborhoods. MADAN also shows the lowest vari-
ance across identifying outliers across different random net-
works.

Real life results. Results on real life datasets are shown in
Table 2. We see that our approach (MADAN) achieves the
best performance compared to other baseline methods on the
Disney and Books networks while C+D shows the best AUC
on the Enron dataset. The advantage of our method that it
allows us to find the right scale for which the anomalous
nodes are well defined regarding the nodes attributes of the
network. In general it performs better, or at least with com-
parable AUC, than the baseline methods, in particular com-
pared to LOF, which ignores the underlying structure of the
network, and AMEN, which focuses only anomalous neigh-
bors. Results of precision, recall and F12 scores (thresh-
olded with Eq. 3) in Table 3 highlight the performance of
our method, except on Enron dataset. This shows that our
method is not well suited for spammer detection.

It is worth mentioning that, when assessing the per-
formance of anomaly detection algorithms on empirical
datasets, one should keep in mind that the set of manually
annotated, so-called, ‘ground truth’ anomalies does not rep-
resent an objective truth as different annotators may label
different nodes as anomalous, choosing different criteria to
make their decisions. We believe that our method, that al-
lows to measure the degree of anomaly of each node as a
function of the size of its attribute context, offers a frame-
work to explore systematically anomalies in a principled
way. We will present later an example of such anomaly ex-
ploration in a real world network..

Computational issues

The computational bottleneck of our approach relies in the
computation of the exponential of the Laplacian for large
graphs (more than 8000 nodes) used for computing the
node concentration (Eq. 2), and finding the optimal context
for anomalous nodes (Eq. 5). Previously, (Hammond, Van-
dergheynst, and Gribonval 2011) introduce an efficient way

2The F1-score is weighted by support (the number of true in-
stances for each label), accounting for label imbalance.

Table 3: Results real life datasets (PR/RC/F1-score)
DATASET LOF RADAR ALAD AMEN MADAN

Disney 0.55 0.47 0.53 0.48 0.82
Books 0.50 0.50 0.50 0.50 0.52

Pr
ec

is
io

n

Enron 0.49 0.50 0.50 0.50 0.50
Disney 0.62 0.50 0.67 0.41 0.82
Books 0.50 0.52 0.46 0.44 0.60

R
ec

al
l

Enron 0.44 0.55 0.55 0.45 0.60

Disney 0.57 0.48 0.41 0.35 0.83
Books 0.48 0.09 0.34 0.34 0.53

F1
-s

co
re

Enron 0.47 0.10 0.33 0.33 0.17

to approximate kernel evaluations of general filters employ-
ing Chebychev polynomials approximation. Here3 we pro-
pose a way to compute the heat kernel evaluation at a given
scale, by approximating the entire exponential of the Lapla-
cian as:

e−tL = [e−tLδ1, . . . , e
−tLδN ] (7)

where each column component is approximated with
a Chebychev polynomial, being easily parallelized across
columns. The error of the approximation is controlled by the
degree of the Chebychev polynomial m. The larger the m
the better the approximation with a cost of a longer running
time. We chose m = 30 as in (Hammond, Vandergheynst,
and Gribonval 2011).

We test the scalability of this approach in the compu-
tation of the exponential of the Laplacian, compared with
the classical Fourier approach, i.e., Cholesky decomposition
and Padé approximations. We generate Barabási-Albert net-
works with power-law degree distribution of varying number
of nodes N and number of edges equal to 3N . Results are
depicted in Fig. 4.

Figure 4: Running time for the computation of the exponen-
tial of the graph Laplacian for t = 1 varying the network
size. Our parallel setting run across 8 cores.

Multi-scale anomaly detection: a case study

We consider the Disney network as a case study. This dataset
provides manually labeled ground-truth anomalies (Müller
et al. 2013) and has been largely used as benchmark for out-
lier detection in networks. Here, we use MinPricePrivate-
Seller and Number of reviews as node attributes.

3All computations were done on a standard computer Intel(R)
Core(TM) i7-4790CPU, 3.60GHzI with 16G of RAM.
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Figure 5: (A) Number of clusters (blue curve) found by maximizing Eq. 5, at each time step, the variation of information V I(t)
(red curve) between the ensemble of optimal partitions at each time and the variation of information (V I(t, t′)) between optimal
partitions across times (background contour plot). Relevant partitions are determined by dips of V I(t) and extended plateaus
of V (t, t′). Visualization of four robust partitions and the node heat concentration (bar plots), indicating outlier nodes (blue
bars) when evaluating the node concentration at (B) t = 1.18, (C) t = 7.25, (D) t = 14.89 and (E) t = 204.8. In all bar plots,
the upper horizontal line (blue) indicates the detection threshold defined in Eq. 3. (F) Dendrogram showing the hierarchy of
clusters at each time with the contextual outliers. (G) Anomalous Disney DVD movies.

As is shown in Fig. 5, we start scanning to look at rele-
vant scales taken into account both the node metadata and
the graph structure. For each intrinsic scales found in Fig.
5A, we display on the network the corresponding optimal
partition (scales) in the right-hand side of Fig. 5.

The contour plot in Fig. 5A shows the variation of infor-
mation V I(t, t′) between the sets of optimal partitions at
time t and t′ and reveals blocks of low VI (dark blue blocks)
corresponding to the different scales uncovering different
contexts. The number of clusters at each scale (blue curve)
displays plateaus corresponding to the blocks in V I(t, t′).
The scales are also visible as dips in the V I(t) among the
set of partitions found by iterating the Louvain algorithm
at a given time scale (red curve). We identify four relevant
scales with 9, 6, 4 and 2 number of clusters (or contexts) re-
spectively. Simultaneously, the concentration on each node
Eq. 2 is evaluated at the same t, spotting anomalies at the
given scale and context.

As shown in the right hand side of Fig. 5, (bar plots in
B,C,D,E), outliers nodes at a given scale are detected as the
ones having a concentration of energy more than two stan-
dard deviation above the mean concentration (Eq. 3).

At the 1st scale (the finest one) the Fig. 5B shows the

partitioning of the network in 9 clusters. Node O5 (The jun-
gle book) appears as an anomalous node within this con-
text, that corresponds to all the read along movies, having
both high selling price and number of reviews. An interest-
ing case is found in O3 (The Nightmare Before Christmas
/ James and the Giant Peach) which has low reviews but
is a very expensive article because it is the only one in its
context consisting in a two DVD pack. The cluster contain-
ing O2 and O4 corresponds to Pixar movies, where again
O4 is a three pack DVD promotion (Toy story 1-2 and A
Bug’s Life), whereas O2 corresponds to the poorly reviewed
but very expensive Buzz Lightyear of Star Command: The
Adventure Begins film. The cluster containing O6 consists
in many Winnie-The-Pooh related movies with some inde-
pendent Tigger sagas. The anomalous node O6 (The Many
Adventures of Winnie the Pooh) is the most expensive film
with the highest rate of reviews in this category. The three-
nodes cluster containing O7 (The Nightmare Before Christ-
mas) flagged O7 as an anomaly because its selling price is 3
and 6 times higher than the two other nodes.

Going up in the hierarchy of clusters allows us to de-
tect anomalous nodes within coarser contexts and discarding
more local outliers. As can be seen in the 3rd scale, the Fig.
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5D, the outliers remaining within the pink cluster, O3 and
O4, correspond to the two packs DVD promotions with very
high prices, whereas more local anomalies disappear at this
scale, e.g., O7.

Finally we see in Fig. 5E that at the 4th scale, O3 (The
Nightmare Before Christmas / James and the Giant Peach)
remains as a global outlier within the coarser pink cluster,
being a bad connected node with high attribute values.

Conclusions

In this work we introduce an effective algorithm (MADAN)
to perform multi-scale anomaly detection on attributed net-
works. Anomalous nodes are characterized as those remain-
ing highly concentrated after smoothing unit impulse signals
around each vertex of the graph. Using the heat kernel as fil-
tering operator allows us to exploit the link with the Markov
stability to find the context for outlier nodes at all relevant
scales of the network. Extensive empirical studies on syn-
thetic and real world benchmarks demonstrated the superi-
ority of MADAN over many state of the art approaches. In
addition, we show that our method is highly efficient, being
easily parallelized scaling with networks with up to at least
100k nodes.
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ing outlier nodes in subspaces of attributed graphs. In ICDEW,
216–222.
Newman, M. E. J., and Girvan, M. 2004. Finding and eval-
uating community structure in networks. Physical Review E
69(2):026113.
Perozzi, B., and Akoglu, L. 2018. Discovering communities
and anomalies in attributed graphs: Interactive visual explo-
ration and summarization. ACM Trans. Knowl. Discov. Data
12(2):24:1–24:40.
Perraudin, N.; Ricaud, B.; Shuman, D. I.; and Vandergheynst,
P. 2018. Global and local uncertainty principles for signals
on graphs. APSIPA Transactions on Signal and Information
Processing 7:e3.
Sánchez, P. I.; Müller, E.; Irmler, O.; and Böhm, K. 2014. Lo-
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