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Abstract

Correcting arithmetical exercise is a labor intensive and time
consuming task for primary school teachers all the time.
To reduce their burdens, we propose Arithmetical Exercise
Checker (AEC), which is the first system that automatically
evaluates all arithmetical expressions (AEs) on exercise im-
ages. The major challenge is that AE is formed by printed
and handwritten texts with particular arithmetical patterns
(e.g., multi-line, fraction). Despite being part of AE, hand-
written texts usually lead to zigzag boundaries and tangled
rows. What’s worse, AE may be arithmetical incorrect, which
makes the contextual information less valuable for recogni-
tion. To tackle these problems, we introduce integrated detec-
tion, recognition and evaluation branches by leveraging AE’s
intrinsic features, namely 1) boundary indistinctive, 2) locally
relevant patterns and 3) globally irrelevant symbols. Experi-
mental results demonstrate that AEC yields a 93.72% correc-
tion accuracy on 40 kinds of mainstream primary arithmetical
exercises. So far, the online service of AEC processes 75, 000
arbitrary exercises on average per day, and already reduced
the burden of over 1, 000, 000 users. AEC shows the bene-
fits for implementing an vision-based system as a way to aid
teachers in reducing reduplicative tasks.

1 Introduction

With the rapid development of technology, the primary ed-
ucation is evolving all the time. By the end of 2018, there
are about a hundred million of primary students in China,
and the number is continuing to increase (chE 2018). Now
the consensus is that primary teachers should pay more at-
tention to daily performance and learning methodologies of
students, which puts forward a higher standard for teach-
ers. However, the time of teachers is still occupied by highly
repeated works like correcting exercises. Our survey in 4
primary schools demonstrates that a primary math teacher
corrects on average 6, 000 exercises per semester. To tackle
this problem, one feasible solution is to have the student par-
ents to correct the homework of their children by their own
(which is now a common phenomenon in China), but it re-
quires professional knowledge and not suitable for all par-
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Figure 1: AEC: correcting arithmetical exercise. It localizes,
recognizes and evaluates all arithmetical expressions on the
exercise, then returns correction results and suggestions.

ents. Most parents are not familiar with the curriculum and
could not give effective guidance to children.

In this paper, we aim to design such a system that auto-
matically corrects primary arithmetical exercise. To realize
this goal, we develop a novel end-to-end approach, arith-
metical exercise checker (AEC). It first extracts all AEs by
detection, then conducts recognition to convert them to texts.
Finally, their correctness is evaluated by arithmetical logics,
as shown in Fig. 1. With AEC, the instructors could finish
the correction of an exercise within a few seconds, while
manual work usually takes a few minutes.

The design of AEC is a non-trivial task. AE is formed
by printed and handwritten texts with arithmetical patterns.
It has no fixed format according to different publishers and
grades, and it could be even purely handwritten. Compared
with printed texts, handwritten texts are usually scratchy and
lead to 1) zigzag boundaries and 2) tangled rows, as shown
in Fig. 2. Zigzag boundaries hamper mainstream anchor-
boxes based approaches like SSD (Liu et al. 2016) and
Faster-RCNN (Ren et al. 2015), for generated marginal ar-
eas are padded by background and lack obvious visual fea-
tures. What’s worse, these approaches tend to set a loose in-
tersection over union (IoU) threshold to balance the number

686



Figure 2: Arithmetical expressions (AEs) are characterized by three distinct features. (A). Tangled rows lead to interference
between adjacent lines, and zigzag boundaries hamper mainstream anchor-boxes based approaches. (B). Particular symbols are
locally relevant, like “=” usually appears after a “\n” (an implicit newline symbol) in formulas. (C). Most symbols have weak
or even no semantic relationship with each other, which makes the global context less valuable for inferring individual symbols.
Different colors indicate different AE types. Best viewed in color.

between positive and negative proposals. As a consequence,
many proposals with cropped AEs are regarded as positive
too. On the other hand, tangled rows often lead to interfer-
ence between adjacent lines, which makes extracting single-
line texts a challenging task. Hence, existing text spotting
approaches like (Tian et al. 2016) that aim at single-line text
suffer in this case. Besides, as AE may be arithmetical incor-
rect (e.g., 1+1 = 3), its contextual information is weak. This
not only invalids a pre-defined lexicon (Liao et al. 2017), but
also makes it harder to train the recognition network.

To overcome these issues, we design the AEC system by
exploiting the intrinsic nature of AEs, namely 1) boundary
indistinctive, 2) locally relevance patterns and 3) globally
irrelevance symbols. We design the AE detection branch
based on CenterNet (Duan et al. 2019). It takes convolu-
tional feature as input and outputs a (top-left-corner, center,
bottom-right-corner) triplet rather than a rectangular box to
represent AE. We introduce an horizontal-focal loss func-
tion to let the network pays more attention to learning the
harder horizontal boundary. For recognition, we propose an
arithmetical neural machine translation (ANMT) approach.
ANMT is an encoder-decoder based sequence-to-sequence
model, which is inspired by recent progress in automatic
caption generation (Xu et al. 2015). Unlike previous text
spotting approaches that assume rigid single-line and left-to-
right ordering of text, ANMT allows focussing its attention
in both horizontal and vertical dimension. Hence, it could
cope with structured AEs like multi-line, even with the inter-
ference between adjacent lines. Specifically, we design the
encoder according to AE’s locally relevance pattern and de-
sign the decoder by referring to AE’s globally irrelevance
symbols. The contributions are summarized as follows:

• AEC is the first end-to-end system that automatically cor-
rects arithmetical exercises. We observe and conclude
three distinct features of AE, and use them to improve

the system design. Experimental results demonstrate the
effectiveness of AEC. Now its online service processes
75, 000 arbitrary exercises on average per day, and already
reduces the burden of over 1, 000, 000 users.

• We first established an arithmetical exercise dataset,
AEC-5k. It contains 5300 judiciously selected images,
which are collected from 40 mainstream exercises and
cover the entire grades of Chinese primary students (usu-
ally from age 6 to 12). We will release this dataset soon.

2 Related Works

AEC is essentially a text spotting challenge. In this section,
we briefly introduce text spotting approaches and their key
components, namely text detection and text recognition.

Text Detection

Existing text detection approaches could be roughly classi-
fied into character-based, line-based and word-based meth-
ods (Li, Wang, and Shen 2017). With the flourishing of
DNN techniques, the word-based methods are popular on
account of words are proper targets for mainstream objec-
tion detection frameworks (Ren et al. 2015; Liu et al. 2016;
Redmon et al. 2016). Inspired by SSD (Liu et al. 2016),
TextBoxes (Liao et al. 2017) leverages the combination of
different scaled feature maps for text detection. As the text
characteristics (e.g., shape, color, etc.) are quite different
from general objects, many approaches exploit customized
region proposal methods. CTPN (Tian et al. 2016) designs
a vertical anchor mechanism to jointly predict the location
and score for proposals with fixed width.

Beyond the detection of common text, recent approaches
focus on more challenging oriented text and twisted text.
For oriented text detection, ITN (Wang et al. 2018) en-
codes the geometric configurations of scene text instances
with in-network transformation embedding. In (Lyu et al.
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Figure 3: Architecture of AEC. AEC takes an exercise image as input and outputs the evaluation results of all AEs in this image.
For the vertical expression “78 - 67 = 11”, “\s” indicates a blank symbol, and “\n” indicates a new line symbol. Colored arrows
in “Encoder” indicate that the hidden units exploit two-dimensional feature embeddings. Best viewed in color.

2018), it localizes corner points of text bounding boxes and
segmented text regions in relative positions. In (He et al.
2017b), it uses direct regression to predict the text bound-
ing box offset from a given point. For twisted text detec-
tion, Textsnake (Long et al. 2018) designs a flexible repre-
sentation for scene text, which represents text instances in
horizontal, oriented and curved forms. Besides, several ap-
proaches provide new perspectives in text detection by using
Markov clustering network (Liu et al. 2018b) or novel atten-
tion mechanism (He et al. 2017a).

Text Recognition

Existing text recognition approaches could be roughly
classified into word-level classification-based, sequence-to-
label-based and sequence-to-sequence-based methods (Li,
Wang, and Shen 2017). Now sequence-to-sequence-based
methods are flourishing for their excellent performance
in exploiting the context. With the development of RNN
techniques, several approaches (Shi, Bai, and Yao 2017;
He et al. 2016b) propose deep recurrent models to encode
the outputted features of CNN and adopt CTC as text de-
coder. In (Lee and Osindero 2016; Yang et al. 2017), they
utilize an attention-based, sequence-to-sequence framework
to focus on specified CNN features in decoding individual
characters. For more challenging irregular shaped text, re-
cent work (Shi et al. 2016) exploits a spatial transformer
network to rectify the inputted image. These works focus
on the recognition of single-line text. Different from these
works, AEC is inspired by recent progress in automatic cap-
tion generation (Xu et al. 2015) and image-to-markup sys-
tems (Deng, Kanervisto, and Rush 2016; Deng et al. 2017),
and can recognize structured multi-line texts.

Text Spotting

Existing text spotting approaches consist of two types: 1)
using separate detection and recognition models (a.k.a. end-
to-end at test phase) or 2) using a unified framework (a.k.a.
end-to-end at both train/test phase). For the first type, it
is expected that the separate branches could benefit from
more customized feature representations, thus the detector
could get precise proposals with tight bounding boxes and
the recognizer could generate precise parsing results. Follow
this rule, in (Jaderberg et al. 2016), it exploits an ensemble
model for detection and a word classifier for recognition.
Similarly, the text detection approach TextBoxes (Liao et al.
2017) utilizes CRNN (Shi, Bai, and Yao 2017) for recogni-
tion, which helps to prune false positives results generated at
the detection phase. For the second type, recent works (Liu
et al. 2018a; Li, Wang, and Shen 2017) propose unified
neural networks for simultaneous detection and recognition,
sharing computation and visual information among the two
branches. The unified systems are expected to yield better
system efficiency. Our system belongs to the first type.

3 Overall Architecture

Our goal is to 1) design a detection network to localize
all AEs, 2) build a recognition network to parse their ex-
pressions, and 3) set up the arithmetical logic to evaluate
their correctness. The architecture is presented in Fig. 3.
The backbone CNN of the detection branch is Hourglass-
52 (Newell, Yang, and Deng 2016) and the backbone CNN
of the recognition branch is ResNet-50 (He et al. 2016a). We
replace the Rectified Linear Unit (ReLU) with the Concate-
nated ReLU (Shang et al. 2016) in ResNet-50 to reduce the
model parameters.
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AE Detection Branch

The AE detection network could be mainstream one-stage
detectors like SSD (Liu et al. 2016) or two-stage detectors
like Faster-RCNN (Ren et al. 2015). Despite their differ-
ences, most of them set a number of rectangles with pre-
defined sizes, termed as anchor-boxes, and regress them to
ground-truth locations of targets. To ensure the coverage,
they usually deploy a large number of anchors with judi-
ciously designed scales and aspect ratios. However, hetero-
geneous AE types together with the writing style diversity
of respondents further increase the difficulty. Facing this
problem, we design the detection branch based on Center-
Net (Duan et al. 2019). It avoids the usage of anchor-boxes
and perfectly fits the boundary indistinctive feature of AE.

Boundary indistinctive: We observed that AE is charac-
terized by boundary indistinctive. Compared with general
objects, boundaries of letters/digits are implicit because they
are usually hollowed with concaved edges. If using rectan-
gular bounding boxes to represent AEs, their marginal ar-
eas may be padded by background and lack obvious visual
features. Besides, the bounding boxes generated by anchor-
boxes based approaches are not precise enough. The insight
is that these approaches tend to set a loose intersection over
union (IoU) threshold for positive samples, to balance the
number between positive and negative samples and thus fa-
cilitating the training process. Taking a common threshold
IoU = 0.7, many samples with imprecise bounding boxes
are denoted as positive samples too.

Facing these problems, we design our AE detection net-
work. It takes convolutional features as input and outputs
triplets rather than rectangular boxes to represent AEs. The
triplet consists of 1) left-up corner keypoint, 2) center key-
point and 3) right-bottom corner keypoint. The corner key-
points pair is used to generate the proposal and the center
keypoint is used to confirm its validity. The visual patterns
of the triplet are extracted by cascade corner pooling and
center pooling defined in CenterNet, respectively. We sug-
gest to refer to (Duan et al. 2019) for details. Compared with
anchor-boxes based approaches, our detection network bet-
ter extracts feature of AE corners and helps to generate com-
plete proposals.

For better pinpointing corners of AEs, we propose using
a horizontal-focal loss function for corner regression. Com-
pared with its counterpart in CenterNet, it imposes harsher
penalties against corner shift on the horizontal axis. The
intuition is that it is harder to learn the horizontal bound-
aries compared with the vertical boundaries. If one AE loses
part of its expression horizontally, it could still be a valid
expression with a high probability (dotted blue rectangle),
which does not apply in the vertical case (red rectangle),
as shown in Fig. 4. Hence, the horizontal boundary fea-
ture of AE is more indistinctive and is harder to be learned.
In CenterNet, the loss of a predicted corner is defined as
Ldet ∝ −e−(Δx2+Δy2), where Δx and Δy are coordinate
shifts of the predicted corner, according to the ground-truth.
Basing on this observation, we propose the horizontal-focal
loss function as:

Ldet ∝ −e−(αΔx2+Δy2) (1)
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Figure 4: We propose the horizontal-focal loss function to
pinpoint the harder horizontal boundaries. The detection net-
work rarely generates proposals with invalid vertical bound-
aries (red rectangle), but often generates proposals with in-
valid horizontal boundaries (dotted blue rectangle). “GT”
stands for the ground truth rectangular box for this AE.

We use α to control the penalty, which is set default as 2
experimentally. With this loss function, our detection branch
better pinpoints the challenge horizontal boundaries of AEs.

AE Recognition Branch

Most existing text-spotting approaches focus on the recog-
nition of single-line text (Shi, Bai, and Yao 2017; He et
al. 2016b; Lee and Osindero 2016). However, they are not
suitable for recognizing AEs, for they are usually struc-
tured, scratchy handwritten and multi-line texts. Facing
this problem, we design an arithmetical neural machine
translation module (ANMT) for recognition. ANMT is an
encoder-decoder based sequence-to-sequence model, which
is inspired by recent progress in automatic caption gener-
ation (Xu et al. 2015; Sutskever, Vinyals, and Le 2014).
Unlike approaches that assume rigid single-line and left-to-
right ordering of text (1D), ANMT allows to focus its atten-
tion in both horizontal and vertical dimension of AEs (2D).
Besides, we observe that AEs have another two distinct fea-
tures, namely locally relevant patterns and globally irrele-
vant symbols. We enhance the recognition branch by lever-
aging these features.

ANMT bases on the original NMT framework (Bah-
danau, Cho, and Bengio 2014). It models the translation
probability from CNN’s feature embedding x to expression
y = {y1, y2, · · · , yn}. Note that the original NMT denotes
CNN’s feature embedding as x ∈ R

C×H×W and permuted
it to 1D time major form {x1, · · · , xi, · · · , xW }, where
xi ∈ R

C×H is a vertical clip from the feature map with
channel C, width W and height H . This embedding fails to
represent AEs with multi-line texts. Inspired by (Deng, Kan-
ervisto, and Rush 2016; Deng et al. 2017), we keep the fea-
ture map x = {x11, · · · , xij , · · · , xHW } unchanged, where
xij ∈ R

C . Thus we have:

p(y|x) =
m∏

t=1

P (yt|y<t,x; θ)

=
m∏

t=1

softmax(f(yt−1, st, ct))

(2)

where f(·) is a nonlinear function that outputs the proba-
bility of yt according to the previous output yt−1, current
hidden state st and context vector ct. For decoder, we select
uni-directional LSTM g(·) as the function, which is formed
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Figure 5: Comparison between the arithmetical attention and the original attention in recognizing a vertical expression. “\s”
indicates a blank symbol, and “\n” indicates a new line symbol. Our method forces the visual embedding of “∗” to be attended
only once during the entire decoding process (the dotted blue rectangle), which avoids the error recognition of “1”. Our method
also helps to refine the hidden states and ignores the tiny “7” (yellow rectangle). It is a carry indicator that often appears in
handwritten vertical expressions, which is considered to be a severe noise. Best viewed in color.

by recurrent st:

st = g(st−1, yt−1, ct) (3)

where ct shows the attention on different hidden states hij

in the encoder:

ct =

H∑

i=1

W∑

j=1

atijhij (4)

The attention weight atij is calculated as follows:

atij =
exp (etij)∑H

k=1

∑W
l=1 exp (etkl)

(5)

where etij scores how much the hidden state st−1 in decoder
attends to hidden state hij in the encoder. Herein etij has
several definitions (Luong, Pham, and Manning 2015), and
we adapt etij = vT

a tanh (Wast−1 +Uahij) here.
Finally, the training objective of ANMT is to maximize

the log-likelihood of the training instances (xs,ys):

θ∗ = argmax
θ

S∑

s=1

log p (ys|xs) (6)

Local relevance: coupling arithmetical patterns: AEs
are characterized by the local relevance between particular
symbols. For instance, an “=” usually appears after a “\n”
in formulas. These particular local patterns could be encoded
in the hidden state to amplify the contextual information. To
realize this goal, we use MD-LSTM (Voigtlaender, Doetsch,
and Ney 2016) for encoding. Compared with the commonly
used bi-LSTM, MD-LSTM encodes the feature embedding
along both axes and produces a transformed embedding of
the same size. It allows the encoder to see more context and
leads to more stable training. Besides, trainable initial hid-
den states are inserted at the start position of each row as
vertical position embeddings, which are utilized to capture
the sequential order information in the vertical direction.

Global irrelevance: decoupling arithmetical symbols:
Another distinct feature of AE is that it may be arithmeti-
cally incorrect (e.g., 1 + 1 = 3). At the training phase, the
arithmetical expression acts as the target context y in Eqn.
(3). Except for a few arithmetical patterns, most symbols
(e.g., digits, letters) are randomly written by respondents.
Thus, these symbols are globally irrelevant and have weak
or even no semantic relationship with each other. This makes
the target context less valuable for the decoder. Motivated by
this observation, we use a context gate to let the decoder to
focus more on source contexts, a.k.a. the embedding of vi-
sual features. This context gate is essentially a gate function
that dynamically controls the ratios at which source and tar-
get contexts contribute to the generation of target words (Tu
et al. 2017). Formally, we have:

wt = σ(st−1, yt−1, ct) (7)

where wt denotes the context weight, σ(·) is a logistic
sigmoid function. With wt, the original decoding process
in Eqn. (3) is replaced by:

st = g(st−1, yt−1, wt · ct) (8)

AE’s globally irrelevant feature further guides the design
of attention mechanism. As shown in Eqn. (4), the attention
mechanism extracts source contexts by aggregating all hid-
den states. Since symbols have weak or even no semantic re-
lationship with each other, a hidden state should only obtain
a significant weight once during the entire decoding process.
This significant weight is achieved when the decoder is in-
ferring the hidden state’s presented symbol if existed. For
example, the visual feature embedding of symbol “∗” is at-
tended when inferring “∗”, and it should not be heavily at-
tended when inferring other symbols, as shown in Fig. 5. To
realize this goal, we keep a mask matrix M whose size is
the same as h, where the default value of all symbols is 1.
For a specific element hij ∈ h, if its corresponding weight
atij > γ, where γ is cut-off threshold and is set default as
0.5, we have:

mij = 0, s.t. atij > γ (9)
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Hence, Eqn. (4) is replaced by:

ct =

H∑

i=1

W∑

j=1

atij · hij ·mij (10)

Beyond the recognition branch, we also exploit candidates
of AE to improve the recognition. Note that AEs are usually
formed by dozens of symbols, and a single recognition er-
ror may bias the correction result with a high probability.
Facing this problem, we generate multiple candidates of AE
by slight rotation, resizing or padding. These candidates are
recognized together with the original AE. The majority ex-
pression in the results is selected as the output, or expression
of the original AE is selected if no majority exists.

AE Evaluation Branch

AEs could be essentially divided into two classes: self-
contained and co-existed expressions. For the self-contained
expression, its correctness could be evaluated by itself. This
type of expression could be denoted as f

⊗
g, where f

and g are combinations of basic arithmetical operations like
C0 × (C1 − C2) ÷ C3, herein C0, C1, C2, C3 are rational
numbers and

⊗
denotes a operation symbol such as “=”.

AEC evaluates f and g respectively first and then checks the
correctness of f

⊗
g. For the co-existed expression (e.g.,

a formula), AEC evaluates all sub-expressions and checks
their consistency. For instance, a single formula contains the
question f(x) = C0 (e.g., 2x − 1

2 = 3
2 ), an intermediate

function g(x) = C1 (e.g., 2x = 2) and the answer x = C2

(e.g., x = 1). AEC evaluates the question and all interme-
diate functions and gets consistent results x = C2, which
proves the correctness of this formula. Otherwise, AEC re-
turns false. If so, AEC will also provide suggestions to re-
spondents according to the error type, as shown in Fig. 1.

4 Experiments

Datasets: Now there exist no public datasets of arithmetical
exercises. Hence, we construct the AEC-5k dataset, which is
formed by 40 kinds of mainstream primary exercises. AEC-
5k consists of 5, 000 images for training and 300 images for
testing, with mean resolution 1152 × 768 and average 8.7
AEs in each image. each AE annotation has two attributes:
1) a bounding box that covers the entire AE even if it is
multi-lined, and 2) a char-level text annotation. 120 kinds of
different characters appear in annotations, which comprise
of numbers (e.g., “1”, “2”), operation symbols (e.g., “+”,
“×”), uppercase/lowercase English letters (e.g., “cm”, “kg”)
and their mappings in Chinese. As the labeled data is insuf-
ficient for training the recognition branch, we synthesize a
600k handwritten corpus by referring to (Deng et al. 2017).
We’ll release these datasets soon.
Criteria: we adapt two metrics for evaluation: 1) the eval-
uation protocols of ICDAR 2015 (Karatzas et al. 2015) that
measure the text-spotting performance. As AEs are permu-
tations of arbitrary symbols, we select the general “End-to-
End” protocol for it works without a contextualized lexicon.
2) the AE correction accuracy to measure the performance
of AEC. An AE is considered to be “correct” if its expres-
sion satisfies the corresponding arithmetical logics.

Implementation Details

Basing on Pytorch (Paszke et al. 2017), we implement all
benchmarks on a regular platform with 8 Nvidia P40 GPUs
and 64GB memory. We initialize the detection branch with-
out pretraining on any external dataset. The AEC-5k train-
ing data is used to fine-tune the model until convergence.
The training data is augmented by: 1) randomly rescaling the
width of the image by ratio range [0.8, 1.2] without changing
its height, and 2) randomly extracting image crops from the
original image with ratio range [0.75, 1]; Image crops with
truncated AEs are discarded. We adapt the Adam optimizer
with learning rate 2.5 × 10−4 for optimization. We apply
NMS (Rosenfeld and Thurston 1971) on generated text re-
gions. For the recognition branch, we use the AEC-5k train-
ing data and the 600k synthetic data for training without a
pre-trained model. We adapt the SGD optimizer with learn-
ing rate 0.1 for optimization. The learning rate halves after
300k iterations, and halves again after each 100k iterations.

AEC: Ablation study

We conduct benchmarks to investigate the contribution of
proposed components in the AEC system.
Boundary indistinctive: Motivated by the boundary indis-
tinctive feature, AEC detection branch uses the horizontal-
focal loss function for corner regression. We observe that by
replacing the original loss in CenterNet with the horizontal-
focal loss (α = 2), the precision, recall, and F-measure are
increased by 1.77%, 0.64% and 1.23% respectively. α = 2
is also a balanced trade-off for learning both the horizon-
tal and the vertical boundary, As shown in Table 1. Addi-
tionally, we use multi-scale input for improvement. In the
multi-scale setting, resolution of images is set as {0.8, 1,
1.2} times referring to the original image. The multi-scale
input produces a more robust result, and we select “AEC de-
tection (MS, α = 2)” as the default detection approach.
Locally relevant patterns: In the method “ANMT w/o lo-
cal.”in Table 2, we replace the original bi-LSTM encoder
in ANMT with an MD-LSTM encoder, to embed the con-
textual information of locally relevant arithmetical patterns.
We observe that the recognition accuracy and the correction
accuracy are increased by 0.52% and 0.68% respectively. It
validates that the MD-LSTM encoder helps to encode arith-
metical patterns.
Globally irrelevant symbols: It guides the design of two
modules in ANMT’s decoder: 1) the context gate and 2) the
arithmetical attention mechanism. In the method “ANMT
w/o cg.”, we remove the context gate. As a consequence,
the recognition accuracy and the correction accuracy are de-
creased by 0.75% and 1.40% respectively. In the method
“ANMT w/o attn.”, we replace the arithmetical attention
module with the default global attention. This operation de-
creases the recognition accuracy and the correction accuracy
by 0.88% and 1.58% respectively.

Besides, we exploit AE’s candidates for improvement.
Given an AE, we generate its candidates by slight rotation,
resizing or padding. Two candidates are generated for each
action. For resized candidates (“ANMT with res.”), the res-
olution range is [0.8, 1.2]; For padded candidates (“ANMT
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Detection Method Precision Recall F
CenterNet (α = 1) 89.61 94.13 91.79
AEC detection (α = 3) 88.31 90.43 89.35
AEC detection (α = 5) 79.52 83.04 81.24
AEC detection (α = 2) 91.38 94.77 93.04
AEC detection (MS, α = 2) 94.55 97.02 95.76

Table 1: Ablation study of the AEC detection branch. “F”
represents F-measure in percentage, and “MS” stands for
multi-scale.

Recognition Method End-to-End Accuracy
ANMT w/o local. 91.71 90.43
ANMT w/o cg. 91.48 90.71
ANMT w/o attn. 91.35 90.53
ANMT 92.23 91.11
ANMT with res. 93.39 92.16
ANMT with pad. 93.22 91.83
ANMT with rot. 93.25 91.84
ANMT (AC) 94.32 93.72

Table 2: Ablation study of the AEC recognition branch. “w/o
local.”, “w/o cg.” and “w/o attn.” are short for “without us-
ing the MD-LSTM”, “without using the context gate” and
“without using the arithmetical attention”, respectively. “w/o
res.”, “w/o pad.” and “w/o rot.” stands for without resized,
padded and rotated candidates, respectively. “AC” stands for
using candidates generated by all actions. “End-to-End” in-
dicates the general ICDAR 15 protocol without a lexicon.
“Accuracy” stands for the AE correction accuracy.

with pad.”), the ratio for blank paddings is [0.05, 0.25]. For
rotated candidates (“ANMT with rot.”), the angle is limited
within [-10◦, 10◦]; In the method “ANMT (AC)”, all candi-
dates generated by three actions are used. We use batch op-
erations for acceleration. Compared with ANMT, “ANMT
(AC)” has a 2.09% recognition improvement and a 2.61%
correction accuracy improvement, at the cost of an addi-
tional 27% inference speed. We select “ANMT (AC)” as the
default recognition approach, for users are more sensitive to
the correction accuracy, as reported in the user feedback.

AEC: Comparison with the State-of-the-Art

Detection: We train the detection branch with AEC-5k train-
ing data and its augmentation. The same data is used to im-
plement training of mainstream one-stage and two-stage text
detection approaches. For anchor-box based approaches, we
set 6 × 12 anchors according to the K-means clustering re-
sult on aspects and ratios of the AE objects in the training
data. The AEC-5k testing data is used for evaluation. Exper-
imental results demonstrate that our method yields more pre-
cise proposals compared with anchor-box based approaches,
which are crucial for the following AE recognition.
Recognition and correctness evaluation: We train the
recognition branch with AEC-5k training data and the 600k
synthetic data. The same data is used to implement recent
text recognition approaches. To evaluate the end-to-end met-
ric together with the correction accuracy, we use the pro-

Detection Method Precision Recall F
TextBoxes (Liao et al. 2017) 84.75 84.00 84.37
EAST (Zhou et al. 2017) 85.10 85.45 85.28
RPN (Ren et al. 2015) 54.32 64.25 58.87
Faster-RCNN (Ren et al. 2015) 73.91 93.03 82.38
Faster-RCNN + OHEM 74.82 94.12 83.37
Faster-RCNN + OHEM (MS) 88.77 93.05 90.86
AEC detection 91.38 94.77 93.04
AEC detection (MS) 94.55 97.02 95.76

Table 3: Comparison with state-of-the-arts text detection ap-
proaches.

Text-spotting Method End-to-End Accuracy
CRNN (Shi, Bai, and Yao 2017) 65.91 62.12
Im2markup 86.36 83.60
ANMT 92.23 91.11
ANMT (AC) 94.32 93.72

Table 4: Comparison with state-of-the-arts text-spotting ap-
proaches. Im2markup is proposed in (Deng, Kanervisto, and
Rush 2016).

posal generated by “AEC detection (MS)” as the input for all
recognition approaches. Note that CRNN (Shi, Bai, and Yao
2017) targets at the single-line text, thus it can not recog-
nize multi-line AEs directly. For a fair comparison, we add
extra single-line text vertex annotations on AEC-5k train-
ing data, then build a SSD (Liu et al. 2016) model with
customized anchors to extract single-line texts. These texts
are recognized separately, and the outputted expressions are
concatenated together as the results. Compared with these
approaches, our approach achieves the best recognition per-
formance and correction accuracy.

AEC: User Feedback

Through an on-line feedback page, we received 1643 valid
comments across 338 days. Most participants consider AEC
a beneficial tool by comments such as: “It could calculate
multiple formulas simultaneously, and it really saves time”,
and, “The correction speed is promising, really helpful”.
At the same time, some feedbacks also point out the defi-
ciencies in the current system. For example, one participant
said, “it could not evaluate the graphic computation (e.g.,
Δ+Δ = 2Δ)”. We will digest their suggestions to improve
the system design in the future.

5 Conclusion

In this paper, we proposed AEC, an end-to-end system that
automatically corrects primary arithmetical exercises. The
design of AEC roots in three distinct features of arithmetical
expressions, which are obstacles for existing text-spotting
approaches. We also introduced the AEC-5k dataset to assist
the study of AEC, which consists of 5, 300 images from 40
mainstream primary exercises. Future directions would be to
support the evaluation of more expression types.
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