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Abstract

Reconstructing components of a genomic mixture from data
obtained by means of DNA sequencing is a challenging prob-
lem encountered in a variety of applications including single
individual haplotyping and studies of viral communities. High-
throughput DNA sequencing platforms oversample mixture
components to provide massive amounts of reads whose rel-
ative positions can be determined by mapping the reads to a
known reference genome; assembly of the components, how-
ever, requires discovery of the reads’ origin – an NP-hard
problem that the existing methods struggle to solve with the
required level of accuracy. In this paper, we present a learning
framework based on a graph auto-encoder designed to exploit
structural properties of sequencing data. The algorithm is a
neural network which essentially trains to ignore sequencing
errors and infers the posterior probabilities of the origin of
sequencing reads. Mixture components are then reconstructed
by finding consensus of the reads determined to originate from
the same genomic component. Results on realistic synthetic
as well as experimental data demonstrate that the proposed
framework reliably assembles haplotypes and reconstructs
viral communities, often significantly outperforming state-of-
the-art techniques. Source codes, datasets and supplementary
document are available at https://github.com/WuLoli/GAEseq.

1 Introduction

Genetic makeup of a biological sample, inferred by means of
DNA sequencing, will help determine an individual’s suscep-
tibility to a broad range of chronic and acute diseases, support
the discovery of new pharmaceutical products, and personal-
ize and improve the delivery of health care. However, before
the promises of personalized medicine come to fruition, ef-
ficient methods for accurate inference of genetic variations
from massive DNA sequencing data must be devised.

Information about variations in an individual genome is
provided by haplotypes, ordered lists of single nucleotide
polymorphisms (SNPs) on the individual’s chromosomes
(Schwartz 2010). High-throughput DNA sequencing tech-
nologies generate massive amounts of reads that sample an
individual genome and thus enable studies of genetic varia-
tions (Schwartz 2010; Clark 2004; Sabeti et al. 2002). Hap-
lotype reconstruction, however, remains challenging due to
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limited lengths of reads and presence of sequencing errors
(Hashemi, Zhu, and Vikalo 2018). Particularly difficult is
the assembly of haplotypes in polyploids, organisms with
chromosomes organized in k-tuples with k > 2, where deep
coverage is typically required to achieve desired accuracy.
This implies high cost and often renders existing haplotype
assembly techniques practically infeasible (Motazedi et al.
2018).

A closely related problem to haplotype assembly is that
of reconstructing viral communities. RNA viruses such as
HCV, HIV, and Ebola, are characterized by high mutation
rates which give rise to communities of viral genomes, the
so-called viral quasispecies. Determining genetic diversity
of a virus is essential for the understanding of its origin and
mutation patterns, and the development of effective drug
treatments. Reconstructing viral quasispecies (i.e., viral hap-
lotypes, as we refer to them for convenience) is even more
challenging than haplotype assembly (Ahn, Ke, and Vikalo
2018) since the number of constituent strains in a community
is typically unknown, and its spectra (i.e., strain frequencies)
non-uniform.

Existing methods often approach haplotype assembly as
the task of grouping sequencing reads according to their
chromosomal origin into as many clusters as there are chro-
mosomes. Separation of reads into clusters is rendered chal-
lenging by their limited lengths and the presence of sequenc-
ing errors (Hashemi, Zhu, and Vikalo 2018); such artifacts
create ambiguities regarding the origin of the reads. The
vast majority of existing haplotype assembly methods at-
tempt to remove the aforementioned ambiguity by altering or
even discarding the data, leading to minimum SNP removal
(Lancia et al. 2001), maximum fragments cut (Duitama et
al. 2010), and minimum error correction (MEC) score (Lip-
pert et al. 2002) optimization criteria. Majority of haplotype
assembly methods developed in recent years are focused
on optimizing the MEC score, i.e., determining the small-
est possible number of nucleotides in sequencing reads that
should be altered such that the resulting dataset is consis-
tent with having originated from k haplotypes (k denotes the
ploidy of an organism) (Xie et al. 2016; Pisanti et al. 2015;
Kuleshov 2014; Patterson et al. 2015). These include the
branch-and-bound scheme (Wang et al. 2005), an integer
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linear programming formulation in (Chen, Deng, and Wang
2013), and a dynamic programming framework in (Kuleshov
2014). All these techniques attempt to find exact solution
to the MEC score minimization problem; the resulting high
complexity has motivated search for computationally effi-
cient heuristics. They include the greedy algorithm in (Levy
et al. 2007) and methods that compute posterior joint prob-
ability of the alleles in a haplotype sequence via MCMC
(Bansal et al. 2008) and Gibbs sampling (Kim, Waterman,
and Li 2007). A max-cut algorithm for haplotype assembly
in (Bansal et al. 2008) is motivated by the clustering interpre-
tation of the problem. The efficient algorithm proposed there,
HapCUT, has recently been upgraded as HapCUT2 (Edge,
Bafna, and Bansal 2017). In (Aguiar and Istrail 2012), a novel
flow-graph approach to haplotype assembly was proposed,
demonstrating performance superior to state-of-the-art meth-
ods. More recent methods include a greedy max-cut approach
in (Duitama et al. 2011), convex optimization framework in
(Das and Vikalo 2015), and a communication-theoretic moti-
vated algorithm in (Puljiz and Vikalo 2015).

Haplotype assembly for polyploids (k > 2) is more
challenging than that for diploids (k = 2) due to a much
larger space of possible solutions to be searched. Among
the aforementioned methods, only HapCompass (Aguiar
and Istrail 2012), SDhaP (Das and Vikalo 2015) and BP
(Puljiz and Vikalo 2015) are capable of solving the haplo-
type assembly problem for k > 2. Other techniques that
can handle reconstruction of haplotypes for both diploid
and polyploid genomes include a Bayesian method HapTree
(Berger et al. 2014), a dynamic programming method H-
PoP (Xie et al. 2016) shown to be more accurate than the
techniques in (Aguiar and Istrail 2012; Berger et al. 2014;
Das and Vikalo 2015), and the matrix factorization schemes
in (Cai, Sanghavi, and Vikalo 2016; Hashemi, Zhu, and
Vikalo 2018).

On another note, a number of viral quasispecies recon-
struction methods were proposed in recent years. Examples
include ShoRAH (Zagordi et al. 2011) and ViSpA (Astro-
vskaya et al. 2011) that perform read clustering and read-
graph path search, respectively, to identify distinct viral com-
ponents. QuasiRecomb (Töpfer et al. 2013) casts the prob-
lem as the decoding in a hidden Markov model while QuRe
(Prosperi and Salemi 2012) formulates it as a combinatorial
optimization. PredictHaplo (Prabhakaran et al. 2014) em-
ploys non-parametric Bayesian techniques to automatically
discover the number of viral strains in a quasispecies. More
recently, aBayesQR (Ahn and Vikalo 2017) approached viral
quasispecies reconstruction with a combination of hierarchi-
cal clustering and Bayesian inference while (Ahn, Ke, and
Vikalo 2018) relies on tensor factorization.

In this paper, we propose a first ever neural network-based
learning framework, named GAEseq, to both haplotype as-
sembly and viral quasispecies reconstruction problems. The
framework aims to estimate the posterior probabilities of the
origins of sequencing reads using an auto-encoder whose
design incorporates salient characteristics of the sequencing
data. Auto-encoders are neural networks that in an unsuper-
vised manner learn a low-dimensional representation of data;
more specifically, they attempt to perform a dimensionality

reduction while robustly capturing essential content of high-
dimensional data (Goodfellow, Bengio, and Courville 2016).
Auto-encoders have shown outstanding performance in a va-
riety of applications across different fields including natural
language processing (Socher et al. 2011), collaborative filter-
ing (Berg, Kipf, and Welling 2017), and information retrieval
(Kipf and Welling 2016), to name a few. Typically, auto-
encoders consist of two blocks: an encoder and a decoder.
The encoder converts input data into the so-called codes while
the decoder reconstructs the input from the codes. The act of
copying the input data to the output would be of little interest
without an important additional constraint – namely, the con-
straint that the dimension of codes is smaller than the dimen-
sion of the input. This enables auto-encoders to extract salient
features of the input data. For both the single individual and
viral haplotype reconstruction problems, the salient features
of data are the origins of sequencing reads. In our work, we
propose a graph auto-encoder architecture with an encoder
featuring a softmax function placed after the dense layer
that follows graph convolutional layers (Masci et al. 2011;
Berg, Kipf, and Welling 2017); the softmax function acts
as an estimator of the posterior probabilities of the origins
of sequencing reads. The decoder assembles haplotypes by
finding the consensus sequence for each component of the
mixture, thus enabling end-to-end solution to the reconstruc-
tion problems.

2 Methods

2.1 Problem Formulation

Let H denote a k×n haplotype matrix where k is the number
of (single individual or viral) haplotypes and n is the haplo-
type length. Furthermore, let R denote an m× n SNP frag-
ment matrix whose rows correspond to sequencing reads and
columns correspond to SNP positions. Matrix R is formed by
first aligning reads to a reference genome and then identify-
ing and retaining only the information that the reads provide
about heterozygous genomic sites. One can interpret R as be-
ing obtained by sparsely sampling an underlying ground truth
matrix M , where the ith row of M is the haplotype sampled
by the ith read. The sampling is sparse because the reads are
much shorter than the haplotypes; moreover, the reads may
be erroneous due to sequencing errors. Following (Ahn, Ke,
and Vikalo 2018) , we formalize the sampling operation as

[PΩ(M)]ij =

{
Mij , (i, j) ∈ Ω
0, otherwise (1)

where Ω denotes the set of informative entries in R, i.e.,
the set of (i, j) such that the jth SNP is covered by the ith

read, and PΩ is the projection operator denoting the sam-
pling of haplotypes by reads. Sequencing is erroneous and
thus [PΩ(R)]ij may differ from [PΩ(M)]ij ; in particular,
given sequencing error rate p, [PΩ(R)]ij = [PΩ(M)]ij with
probability 1− p.

Since each read samples one of the haplotypes, R =
PΩ(UH) where U denotes the m × k matrix indicating
origins of the reads in R. In particular, each row of ma-
trix U is one of the k-dimensional standard unit vectors
e
(k)
i , 1 ≤ i ≤ k, with 1 in the ith position and the remaining

720



Figure 1: (a) Segment of the SNP fragment matrix. Non-zero entries represent SNP information provided by sequencing reads;
labels 1-4 indicate the four nucleotides. Zero entries in a row indicate that the read does not cover corresponding SNP. In this
illustration, the first two rows represent reads originating from the same haplotype; the third and fourth reads both originated
from another haplotype; and so on. (b) The pipeline from the SNP fragment matrix to haplotypes via a graph auto-encoder.

Figure 2: A forward pass through the graph auto-encoder consisting of a stacked graph encoder that passes messages between
read and SNP nodes and constructs approximate read origin indicator matrix via the softmax function. Decoder reconstructs
haplotypes and SNP fragment matrix.

entries 0. If ith read samples jth haplotype, the ith row of U
is e(k)j . If the origins of reads were known, each haplotype
could be reconstructed by finding consensus of reads which
sample that particular haplotype. We think of the assembly
as a two-step procedure: given the SNP fragment matrix R
we first identify the read origin indicator matrix U and then
use U to reconstruct the haplotype matrix H .

To characterize the performance of haplotype assembly
methods we rely on two metrics: the minimum error correc-
tion (MEC) score, which can be traced back to (Lippert et
al. 2002), and the correct phasing rate, also referred to as
reconstruction rate. The MEC score is defined as the small-
est number of observed entries in R that need to be altered
(i.e., corrected) such that the resulting data is consistent with

having originated from k distinct haplotypes, i.e.,

MEC =

m∑
i=1

min
j=1,2,...,k

HD(Ri:, Hj:), (2)

where HD(·, ·) denotes the Hamming distance between its
arguments (sequences, evaluated only over informative en-
tries), Ri: denotes the ith row of R and Hj: denotes the jth

row of H . The correct phasing rate (CPR) is defined as

CPR = 1− 1

kn
(min

k∑
i=1

HD(Hi:,M(Hi:))), (3)

whereM is the one-to-one mapping from the set of recon-
structed haplotype to the set of true haplotype (Hashemi,
Zhu, and Vikalo 2018), i.e., mapping that determines the best
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possible match between the two sets of haplotypes. To char-
acterize performance of methods for reconstruction of viral
quasispecies with generally a priori unknown number of com-
ponents, in addition to correct phasing rate we also quantify
recall rate, defined as the fraction of perfectly reconstructed
components in a population (i.e., recall rate = TP

TP+FN ), and
predicted proportion, defined as the ratio of the estimated
and the true number of components in a genomic mixture
(Ahn, Ke, and Vikalo 2018).

To assemble haplotypes from a set of reads we design and
employ a graph auto-encoder. Fig. 1 (b) shows the entire
end-to-end pipeline that takes the collection of erroneous
reads and generates reconstructed haplotypes. First, the SNP
fragment matrix R is processed by the graph encoder to infer
the read origin indicator matrix U ; then, a haplotype decoder
reconstructs matrix H . The graph auto-encoder is formalized
in the next section.

2.2 Graph Auto-Encoders

Graph auto-encoders are a family of auto-encoders specifi-
cally designed for learning on graph-structured data (Berg,
Kipf, and Welling 2017; Kipf and Welling 2016). In this
paper, we design graph auto-encoders for the assembly of
the components of a genomic mixture. As in conventional
auto-encoder structures, the developed architecture consists
of two parts: the graph encoder and the decoder. The graph
encoder Z = f(R,A) takes the SNP fragment matrix R and
the m× n graph adjacency matrix A as inputs, and outputs
the m× k node embedding matrix Z. Note that we impose
constraints on the node embedding matrix so that the salient
features extracted by a graph auto-encoder approximate the
read origin indicator matrix U . Such a constraint does not
prevent efficient training of the auto-encoders via backpropa-
gation. The decoder R̂ = g(Z) is utilized to reconstruct the
SNP fragment matrix R and the haplotype matrix H from
the node embedding matrix Z; this implies that the decoder
is essentially capable of imputing the unobserved entries in
the SNP fragment matrix.

To numerically represent information in the SNP fragment
matrix R, we encode its entries Rij using a set of 4 discrete
values – one for each of 4 possible nucleotides – where the
mapping between nucleotides and the discrete values can
be decided arbitrarily. To this end, we may simply represent
the nucleotides A, C, G and T by 1, 2, 3 and 4, respectively;
non-informative entries in each row of R, i.e., SNP posi-
tions not covered by a read, are represented by 0. Note that
the SNP fragment matrix can be represented by an undi-
rected bipartite graph G = (V,E,W) where the set of read
nodes ri ∈ A with i ∈ {1, ...,m} and the set of SNP nodes
sj ∈ B with j ∈ {1, ..., n} together form the set of vertices
V , i.e., A ∪ B = V . The weights w ∈ {1, 2, 3, 4} = W as-
signed to edges (ri, w, sj) ∈ E are the discrete values used
to represent nucleotides. With this model in place, we can
rephrase the graph encoder as Z = f(R,A1, A2, A3, A4),
where Aw ∈ {0, 1}m×n represents the graph adjacency ma-
trix for a nucleotide encoded by w. Equivalently, Aw has
1’s for the entries whose corresponding positions in R are
encoded by w. Since we are interested in imputing the unob-

served entries based on the observed entries in R instead of
simply copying the observed entries to R̂, it is beneficial to
reformulate the decoder as R̂ = g(Z,R). In other words, the
auto-encoder is trained to learn from the observed entries in
order to determine origin of reads, impute unobserved entries
of R, and reconstruct haplotypes in the genomic mixture.

2.3 Read Origin Detection via Graph Encoder

Recall the interpretation that the SNP fragment matrix R is
obtained by erroneously sampling an underlying ground truth
matrix M . This motivates development of a specific graph
encoder architecture, motivated by the ideas of the design in
(Berg, Kipf, and Welling 2017), that is capable of detecting
origin of sequencing reads in R via estimating the posterior
probabilities of the origin of each read.

Let Dr denote an m × m diagonal read degree matrix
whose entries indicate the number of SNPs covered by each
read, and let Ds denote an n×n diagonal SNP degree matrix
whose entries indicate the number of reads covering each
SNP. We facilitate exchange of messages between read nodes
and SNP nodes in the graph, initiating it from the set of read
nodes A; doing so helps reduce the dimensions of weights
and biases since the number of reads m is far greater than
the haplotype length n. Note that the dimension of messages
keeps reducing during the message passing procedure.

The messages from read nodes to SNP nodes are

M(1) = σ(

4∑
w=1

D−1
s AT

wRW (1)
w +B(1)

w ), (4)

where W
(1)
w and B

(1)
w denote the weights and biases of the

first convolutional layer for the nucleotide encoded with w,
respectively, σ denotes an element-wise activation function
such as ReLU(·) = max(·, 0), and (·)T denotes the transpose
of a matrix. The dimension of both W

(1)
w and B

(1)
w is n×c(1),

where c(1) denotes the message length after the first message
passing step.

The messages from SNP nodes to read nodes are

M(2) = σ(

4∑
w=1

D−1
r AwM(1)W

(2)
w +B(2)

w ), (5)

where W
(2)
w and B

(2)
w denote the weights and biases of the

second convolutional layer for the nucleotide encoded with
w, respectively. The dimension of both W

(2)
w and B

(2)
w is

c(1) × c(2), where c(2) denotes the message length after the
second message passing step.

Repeating message passing and stacking the convolutional
layers leads to formation of a deep model. The read nodes to
SNP nodes layer is readily generalized as

M(2i+1) = σ(

4∑
w=1

D−1
s AT

wM(2i)W
(2i+1)
w +B(2i+1)

w ), (6)

where i ∈ {0, 1, 2, ...} and M(2i) = R for i = 0. The dimen-
sion of M(2i) is m × c(2i). Furthermore, the SNP nodes to
read nodes layer is generalized as

M(2i) = σ(

4∑
w=1

D−1
r AwM(2i−1)W

(2i)
w +B(2i)

w ), (7)
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where i ≥ 1. The dimension of M(2i−1) is n× c(2i−1). Note
that the messages are passed from read nodes to SNP nodes
when the subscript of M is odd, and otherwise traverse in the
opposite direction.

Equation (6) and (7) specify the graph convolutional layer
while the dense layer is defined as

O = σ(M(l)Wd +Bd), (8)
where O denotes the output of the dense layer, Wd and Bd

are the weights and biases of the dense layer, respectively,
M(l) is the output of the last graph convolutional layer, and
l represents the number of graph convolutional layers. The
dimension of Wd is c(l) × k and the dimension of O and Bd

is m × k, where k denotes the ploidy (i.e., the number of
components in a genomic mixture).

To find Z which approximates the read origin indicator
matrix U (i.e., Z with each row close in the l2-norm sense
to a k-dimensional standard basis vector), we employ the
softmax function

Zij =
eβOij∑k
j=1 e

βOij

, (9)

where in our experiments we set β to 200. Having estimated
read origins by the node embedding matrix Z, the reads can
be organized into k clusters. This enables straightforward
reconstruction of haplotypes by determining the consensus
sequence for each cluster.

2.4 Haplotype Decoder

Thus far, we have conveniently been representing alleles
as the numbers in {1, 2, 3, 4}. It is desirable, however, that
in the definition of a loss function the distance between
numerical values representing any two alleles is identical,
no matter which pair of alleles is considered; this ensures
the loss function relates to the MEC score – the metric of
interest in haplotype assembly problems. Following (Ahn,
Ke, and Vikalo 2018), we define the loss function of the
auto-encoder as the squared Frobenius norm of the differ-
ence between a one-hot SNP fragment matrix R and the
reconstructed matrix R̂ = ZH at the informative positions,
i.e., L = 1

2 ||PΩ(R− ZH)||2F , where R ∈ {0, 1}m×4n and
H ∈ {0, 1}k×4n are formed by substituting discrete values
w ∈ {1, 2, 3, 4} by the set of four dimensional standard basis
vectors e(4)i , 1 ≤ i ≤ 4. With such a notational convention,
the proposed loss function approximates the MEC score;
it only approximates the score, rather than coincides with
it, because Z is an approximation of the read-origin matrix
U . Therefore, the graph auto-encoder is trained to approxi-
mately minimize the MEC score. Fig. 2 illustrates the data
processing pipeline that takes as inputs reads in the SNP frag-
ment matrix and produces the matrix of haplotypes as well
as imputes missing entries in the SNP fragment matrix. The
proposed graph auto-encoders for haplotype assembly and
viral quasispecies reconstruction are formalized as Algorithm
1 and Algorithm 2, respectively. For the viral quasispecies
reconstruction problem, the number of clusters k is typically
unknown; detailed strategy based on (Ahn, Ke, and Vikalo
2018) for the automated inference of k can be found in Sup-
plementary Document B.

Algorithm 1 Graph auto-encoder for haplotype assembly
1: Input: SNP fragment matrix R, the number of experi-

ments nexp and the number of haplotpyes k
2: Output: Reconstructed haplotypes H
3: while nexp �= 0 do

4: Initialize W
(i)
w , B(i)

w , Wd and Bd using Xavier ini-
tialization where w ∈ {1, 2, 3, 4} and i ∈ {1, 2}

5: for nepoch = 1 to 100 do

6: M(1) ← σ(
∑

w D−1
s AT

wRW
(1)
w +B

(1)
w )

7: M(2) ← σ(
∑

w D−1
r AwM(1)W

(2)
w +B

(2)
w )

8: O ← σ(M(2)Wd +Bd)

9: Zij ← eβOij
∑k

j=1 eβOij
with β = 200

10: CalculateH by majority voting
11: L ← 1

2 ||PΩ(R− ZH)||2F
12: Record reconstructed haplotypes and the MEC

score
13: Update W

(i)
w , B(i)

w , Wd and Bd using Adam Op-
timizer where w ∈ {1, 2, 3, 4} and i ∈ {1, 2}

14: end for
15: nexp ← nexp − 1
16: end while
17: Output the reconstructed haplotypes H corresponding to

the lowest MEC score

Algorithm 2 Graph auto-encoder for viral quasispecies re-
construction

1: Input: SNP fragment matrix R, the number of experi-
ments nexp, the MEC improvement rate threshold η and
the estimated initial number of components k0

2: Output: Reconstructed viral haplotypes H and the in-
ferred frequencies

3: Initial τ ← 0, MECflag← 0 and kτ ← k0
4: while τ = 0 or kτ = kτ − 1 do
5: for k ∈ {kτ , kτ + 1} do
6: Run Algorithm 1 with k
7: end for
8: if MECimpr(kτ ) ≤ η then
9: kτ+1 ← �(kτ + max{1, ki})/2	, {i ∈
{1, · · · , τ -1} : ki ≤ kτ}; MECflag← 1

10: else
11: if MECflag = 0 then
12: kτ+1 ← 2kτ
13: else
14: kτ+1 ← �(kτ + min ki)/2	, {i ∈
{1, · · · , τ -1} : ki > kτ}

15: end if
16: end if
17: τ ← τ + 1
18: end while
19: Output the viral quasispecies H with k = kτ +1 and the

inferred frequencies

3 Results

The hyper-parameters of GAEseq are determined by train-
ing on 5 synthetic triploid datasets with coverage 30× and
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Table 1: Performance comparison on biallelic Solanum Tuberosum semi-experimental data.
MEC CPR

Coverage Mean SD Mean SD

15

GAEseq 8.200 4.686 0.822 0.048
HapCompass 100.700 66.150 0.763 0.046
H-PoP 28.700 32.667 0.783 0.066
AltHap 59.100 28.125 0.709 0.054

25

GAEseq 8.400 4.719 0.831 0.081
HapCompass 124.800 132.156 0.810 0.063
H-PoP 33.800 47.434 0.798 0.046
AltHap 92.600 83.649 0.756 0.068

35

GAEseq 10.700 3.234 0.857 0.087
HapCompass 217.400 174.135 0.775 0.072
H-PoP 41.700 53.971 0.823 0.094
AltHap 164.000 101.583 0.754 0.093

Table 2: Performance comparison of GAEseq, PredictHap, TenSQR and aBayesQR on a real HIV-1 5-virus-mix data. Genes
where all the strains are perfectly reconstructed are denoted as boldface.

p17 p24 p2-p6 PR RT RNase int vif vpr vpu gp120 gp41 nef
GAEseq PredProp 1 1 1 1 1.2 1 1 1 1 1.2 1 1 1

CPRHXB2 100 99.4 100 100 100 100 100 100 100 100 96.2 96.7 100
CPR89.6 100 99.4 100 100 100 100 100 100 100 99.2 99.4 100 98.2

CPRJR−SCF 100 100 100 100 100 100 100 100 100 100 99.9 100 99.3
CPRNL4−3 100 100 100 100 100 100 100 100 100 100 100 100 99.8

CPRY U2 100 100 100 100 100 100 100 100 100 100 99.6 100 98.1
PredictHap PredProp 1 0.6 1 1 1 0.8 0.8 0.8 1 0.8 0.8 0.8 0.8

CPRHXB2 100 0 100 100 100 98.9 100 100 100 93.2 0 0 0
CPR89.6 100 100 100 100 100 100 99.8 100 100 0 97.8 100 98.8

CPRJR−SCF 100 100 100 100 100 100 100 100 100 100 99.7 100 100
CPRNL4−3 100 99.1 100 100 100 100 100 100 100 100 100 100 100

CPRY U2 100 0 100 100 100 0 0 0 100 100 98.6 100 100
TenSQR PredProp 1 1.6 1 1 1.4 1 1 1 1 1.6 2.2 1.2 0.8

CPRHXB2 100 98.9 100 100 99.2 100 100 100 100 92.8 96.0 99.0 0
CPR89.6 100 100 100 100 98.0 100 100 100 100 94.0 97.2 100 95.7

CPRJR−SCF 100 100 100 100 100 100 100 100 100 100 98.3 97.7 99.8
CPRNL4−3 100 99.3 100 100 99.5 100 100 100 100 100 99.8 99.5 99.7

CPRY U2 100 99.3 100 99.7 99.7 100 100 100 100 100 94.9 100 98.6
aBayesQR PredProp 1 1 1 1 1 1 1 1 1.2 1 0.8 0.8 1.2

CPRHXB2 100 99.4 100 100 98.5 100 99.9 100 100 99.6 98 0 95.8
CPR89.6 100 98.7 100 100 98.6 100 100 100 100 92 96.5 98.9 95.5

CPRJR−SCF 100 99.6 100 100 99 100 100 100 100 98.8 97.7 99.1 98.2
CPRNL4−3 100 100 100 100 98.9 100 100 99.8 100 100 96.3 98.8 100

CPRY U2 100 99.7 100 100 99.2 100 99.5 99.7 100 100 0 98.6 99.2

Figure 3: The precision-recall curves for Solanum Tuberosum semi-experimental data with coverage 15×, 25× and 35×
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validated on different 5 synthetic triploid datasets with the
same coverage. The results reported in this section are ob-
tained on test data. Detailed description of the computational
platform and the choice of hyper-parameters can be found in
Supplementary Document A.

3.1 Performance Comparison on Solanum
Tuberosum Semi-Experimental Data

We first evaluate performance of GAEseq on realistic simula-
tions which, for convenience and to distinguish from perhaps
more rich synthetic and experimental data discussed in sup-
plementary documents, we refer to as ”semi-experimental
data”. The semi-experimental data is obtained by simulating
mutations, shotgun sequencing procedure, read alignment
and SNP calling steps in a fictitious experiment on a single
individual Solanum Tuberosum (polyploid with k = 4). De-
tails on how exactly the semi-experimental data is generated
and processed can be found in Supplementary Document C.
We compare the performance of GAEseq on this data with
publicly available software HapCompass (Aguiar and Istrail
2012), an algorithm that relies on graph-theoretic models
to perform haplotype assembly, H-PoP (Xie et al. 2016), a
dynamic programming method, and AltHap (Hashemi, Zhu,
and Vikalo 2018), a method based on tensor factorization.
The performance of different methods is evaluated in terms
of the MEC score and CPR. All the considered softwares
were executed with their default settings, i.e. we follow in-
structions in the papers they were originally proposed; there
are no parameter tuning steps required for these methods.
We report the MEC scores and CPR achieved by the consid-
ered algorithms in Table 1. For each sequencing coverage,
the mean and standard deviation (SD) of the adopted met-
rics are evaluated over 10 samples. As shown in the table,
GAEseq achieves the lowest average MEC score as well as
the lowest standard deviation of the MEC score at all se-
quencing coverage settings. Moreover, GAEseq achieves the
highest average CPR at all coverage settings. Note that the
MEC score increases with sequencing coverage since higher
coverage implies more reads. The results demonstrate that
the adopted graph abstraction enables GAEseq to achieve
high accuracy of the reconstruction task by learning poste-
rior probabilities of the origins of reads. Fig. 3 shows the
precision-recall curves for data with coverage 15×, 25× and
35×. Note that GAEseq performs very accuratly at high se-
quencing coverage while its performance deteriorates at low
coverage. An extended version of Table 1 with additional
coverage settings is in Supplementary Document C.

We further test the performance of GAEseq on simulated
biallelic diploid, polyallelic triploid and tetraploid data, and
on real Solanum Tuberosum data; in addition to H-Pop, Al-
tHap and HapCompass, comparisons on diploid data also
include performance of HapCUT2 (Edge, Bafna, and Bansal
2017). GAEseq outperforms all the considered algorithms by
achieving lower MEC score and higher CPR. Further details
can be found in Supplementary Document D and E. Note that
GAEseq handles deletions automatically while insertions can
be handled by employing a downstream pipeline proposed in
(Ahn, Ke, and Vikalo 2018).

3.2 Performance Comparison on Gene-Wise
Reconstruction of Real HIV-1 Data

The real HIV-1 data with pairwise distances between 2.61%−
8.45% and relative frequencies between 10% and 30% is an
in vitro viral population of 5 known HIV-1 strains generated
by Illumina’s MiSeq Benchtop Sequencer (Di Giallonardo
et al. 2014). These reads are then aligned to the HIV-1HXB2

reference genome. According to (Di Giallonardo et al. 2014),
we remove reads of length lower than 150bp and mapping
quality scores lower than 60 for better results. We compare
the performance of GAEseq on gene-wise reconstruction of
the HIV population to that of other state-of-the-art methods
such as PredictHaplo (Prabhakaran et al. 2014), TenSQR
(Ahn, Ke, and Vikalo 2018) and aBayesQR (Ahn and Vikalo
2017), following their default settings. For fair benchmarking,
we use the same dataset as (Ahn, Ke, and Vikalo 2018) which
is why the results of our benchmarking tests match those in
(Ahn, Ke, and Vikalo 2018). The correct phasing rate and the
inferred strain frequencies are evaluated for all reconstructed
strains because the ground truth for the 5 HIV-1 strains is
available at https://bmda.dmi.unibas.ch/software.html. Fol-
lowing (Ahn, Ke, and Vikalo 2018), we evaluate predicted
proportion by setting the parameter η needed to detect the
number of HIV-1 strains to 0.09. The results in Table 2 show
that GAEseq perfectly reconstructs all 5 HIV-1 strains in 8
genes while other methods correctly reconstruct components
in 5 or 6 genes. This demonstrates that GAEseq’s inference
of read origins based on posterior probabilities enables high
accuracy of the reconstruction tasks. Regarding the 5 genes
where GAEseq and other methods do not achieve perfect re-
construction (p24, vpu, gp120, gp41, nef): closer examination
of viral strains reconstructed by various methods suggests
possible rearrangements of short segments within those 5
genes in the “gold standard” dataset created by (Di Gial-
lonardo et al. 2014), which may be the reason for mismatch
between reconstructed strains and the ground truth. Further
results on reconstruction of HIV viral communities can be
found in Supplement Document F.

4 Conclusions

In this article, we introduce auto-encoders to the problem of
reconstructing components of a genomic mixture from high-
throughput sequencing data that is encountered in haplotype
assembly and analysis of viral communities. In particular, a
graph auto-encoder is trained to group together reads that
originate from the same component of a genomic mixture
and impute missing information in the SNP fragment matrix
by learning from the available data. The graph convolutional
encoder attempts to discover origin of the reads while the
decoder aims to reconstruct haplotypes and impute missing
information, effectively correcting sequencing errors. Studies
on semi-experimental data show that GAEseq can achieve
significantly lower MEC scores and higher CPR than the
competing methods. Benchmarking tests on simulated and
experimental data demonstrate that GAEseq maintains good
performance even at low sequencing coverage. Studies on
real HIV-1 data illustrate that GAEseq outperforms existing
state-of-the-art methods in viral quasispecies reconstruction.
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