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Abstract

Machine learning and data mining techniques are increas-
ingly being applied to electronic health record (EHR) data to
discover underlying patterns and make predictions for clinical
use. For instance, these data may be evaluated to predict clin-
ical deterioration events such as cardiopulmonary arrest or
escalation of care to the intensive care unit (ICU). In clinical
practice, early warning systems with multiple time horizons
could indicate different levels of urgency, allowing clinicians
to make decisions regarding triage, testing, and interventions
for patients at risk of poor outcomes. These different horizon
alerts are related and have intrinsic dependencies, which elicit
multi-task learning. In this paper, we investigate approaches
to properly train deep multi-task models for predicting clin-
ical deterioration events via generating multi-horizon alerts
for hospitalized patients outside the ICU, with particular ap-
plication to oncology patients. Prior knowledge is used as a
regularization to exploit the positive effects from the task re-
latedness. Simultaneously, we propose task-specific loss bal-
ancing to reduce the negative effects when optimizing the
joint loss function of deep multi-task models. In addition, we
demonstrate the effectiveness of the feature-generating tech-
niques from prediction outcome interpretation. To evaluate
the model performance of predicting multi-horizon deteriora-
tion alerts in a real world scenario, we apply our approaches
to the EHR data from 20,700 hospitalizations of adult on-
cology patients. These patients’ baseline high-risk status pro-
vides a unique opportunity: the application of an accurate
model to an enriched population could produce improved
positive predictive value and reduce false positive alerts. With
our dataset, the model applying all proposed learning tech-
niques achieves the best performance compared with com-
mon models previously developed for clinical deterioration
warning.

Introduction

Hospital inpatients are at high risk for clinical instabil-
ity (Escobar and dellinger 2016): about 4% of ward en-
counters involve transfer to the intensive care unit (ICU) or
death (Kipnis et al. 2016; Churpek et al. 2014). A recent
study found that this risk is over 9% among oncology inpa-
tients, who also have unique risk factors, such as cancer type
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and treatment complications (Lyons et al. 2019). Since de-
terioration is often presaged by abnormal vital signs or test
results hours before clinical decompensation (Churpek et al.
2012), which is often unrecognized (J R de Bie et al. 2019),
electronic health record (EHR)-based risk prediction mod-
els have been designed to identify these patients during win-
dows of potentially preventable instability, facilitating early
interventions to prevent or mitigate adverse events (Churpek
et al. 2014; Subbe et al. 2001). However, despite the promise
of these early warning systems (EWS), they have not con-
sistently improved patient outcomes (Bedoya et al. 2019),
which may be related to limitations in predictive accuracy,
discrimination, model calibration and the time horizon of the
impending clinical deterioration event.

Machine learning methods have been more widely ap-
plied to solve clinical event prediction problems with the
advent of massive EHR data. Deep learning, in particular,
has the potential to achieve superior predicting accuracy for
large datasets. In our study of predicting clinical deterio-
ration for oncology patients, the multi-horizon alerts (i.e.,
6 hours, 24 hours, and 48 hours prior to an event) pro-
vide different levels of urgency to allow clinicians to bet-
ter plan interventions in advance. Based on the fact that the
multi-horizon alerts are all predicting the same type of de-
terioration events across different (but related) time hori-
zons, the predictive models for the alerts can have sim-
ilar structure and intrinsic relatedness. This motivates us
to effectively learn the multi-horizon alerts model simul-
taneously via multi-task learning. Multi-task learning uti-
lizes the task relatedness to improve the prediction accu-
racy by jointly learning a shared model for multiple pre-
diction tasks. For example, multi-task learning and its vari-
ants are used to predict clinical outcomes from multiple
diseases (Nori et al. 2015). They are also widely used
to discover the characteristic patterns of clinical physiol-
ogy data, namely clinical phenotyping (Liu et al. 2015;
Che et al. 2015). While deep multi-task models have thou-
sands or even millions of parameters to learn, the models
need to be trained properly to simultaneously achieve opti-
mal performance for all the tasks. In this paper, we explore
two technical approaches based on a deep multi-task learn-
ing framework that can utilize the tasks’ intrinsic charac-
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teristics to accurately predict multi-horizon alerts for clini-
cal deterioration across different time horizons. Prior knowl-
edge regularization is adopted to our deep multi-task frame-
work, which exploits the positive effects of task relatedness
in the multi-task learning framework. Moreover, we pro-
pose a novel task-specific loss balancing technique, which
reduces the negative effects of the imbalanced task-specific
losses when optimizing the joint objective function.

We evaluate the proposed approaches on the adult oncol-
ogy patients hospitalized at Barnes-Jewish Hospital. Given
that a major drawback of many existing EWS (designed
in other populations) involves false positive alerts due to
low positive predictive value (PPV), our outcome-rich pop-
ulation provides a high-prevalence setting which could im-
prove PPV significantly when paired with a well-performing
model. The task is to learn multi-horizon alerts that can pre-
dict patients’ deterioration as a composite event of ward
death or ICU transfer. The evaluations compare the pro-
posed approaches to (1) the Modified Early Warning Score
(MEWS) that is implemented on many general inpatient
wards (but which is known to perform poorly among on-
cology inpatients (Cooksley, Kitlowski, and Haji-Michael
2012)), (2) state-of-the-art machine learning models, such as
(a) penalized logistic regression, (b) random forest, and (c)
gradient boosted tree, and (3) deep learning models trained
separately for each time horizon or jointly for all time hori-
zons via multi-task learning. The prior knowledge regular-
ization and task-specific loss balancing both exhibit their
superior performance over the benchmark models. The per-
formance is further improved when combining the two tech-
niques together.

In this paper, we present to our knowledge the first multi-
horizon alert system based on a deep multi-task learning
framework. Specifically, the contributions of this work are
four-fold: (1) we apply prior knowledge regularization to
the deep multi-task learning framework and demonstrate its
ability of improving prediction performance over the state-
of-the-art models as well as generating valid multi-horizon
alert sequences; (2) we propose the task-specific loss bal-
ancing to eliminate the negative effects brought by jointly
training deep multi-task model; (3) we evaluate the proposed
multi-horizon alerts model on a large and real oncology in-
patient dataset. The significant predictive performance im-
provement and the clinical relevance of high-impact fea-
tures demonstrate the feasibility of applying deep multi-
task learning to accurately predict clinical deterioration; (4)
by using relevance back-propagation, we show the inter-
pretability of the prediction results and verify the signifi-
cance of including second order time series features as the
input to the predictive models.

Related Work

Deterioration Prediction on Wards

As EHR data become widely available, machine learning
methods have been increasingly adopted to predict outcomes
including clinical deterioration events. Machine learning on
EHR data is challenging, since the data is heterogeneous
and contains missing values. Previous works focus on ap-

plying logistic regression and its variants to predict un-
planned ICU transfer (Wellner et al. 2017; Zhai et al. 2014;
Churpek et al. 2016) or other deterioration events on the
wards (Churpek et al. 2014; Bailey et al. 2013; Jeffery et
al. 2018). Some of these studies report better discrimina-
tory performance over simpler early warning models, such
as MEWS (Churpek et al. 2016) and the VitalPACTM Early
Warning Score (Churpek et al. 2014) (ViEWS). Random for-
est approaches have also been applied (Churpek et al. 2016;
Jeffery et al. 2018) and achieve better discrimination than
logistic regression (Churpek et al. 2016) for various out-
comes, including ICU transfers and ICU readmissions. En-
semble methods, such as adaptive boosting and gradient
boosting, proposed in recent works (Desautels et al. 2017;
Rubin et al. 2018), achieve better outcomes compared with
earlier models. Recently, more attention has been drawn to
deep models (Hu et al. 2016; Wellner et al. 2017; Lin et al.
2019). Deep models are able to discover complex underly-
ing patterns from massive heterogeneous data, permitting in-
clusion of complex interaction effects, previously unconsid-
ered patterns from metadata, and complicated temporal re-
lationships. However, previous models either predict alerts
without a specific time horizon, or predict events in a single
time horizon. To our knowledge our work produces the first
clinical warning model to generate alerts over multiple time
horizons.

Multi-task Learning

For applications with tasks that are related to each other,
multi-task models can achieve significant performance im-
provement over the single-task models. Graph Laplacian-
based regularization incorporates any relational information
in the prior knowledge as a weighted graph (Che et al. 2015),
which can be applied as regularization term in the objec-
tive function. Multi-task learning has been applied to clini-
cal phenotyping (Liu et al. 2015; Che et al. 2015) and pre-
diction of multiple clinical events (Nori et al. 2015), but has
not to our knowledge been applied towards development of
an early warning system, which either uses single or un-
defined event horizons. Here, we exploit multi-task learn-
ing for multi-horizon alerts for clinical deterioration, a new
problem that has not been addressed in clinical data mining.

A key challenge of applying multi-task models is that
they are hard to train properly (Chen et al. 2018). Imbal-
anced task-specific losses in a multi-task model hinder the
performance (Kendall, Gal, and Cipolla 2018). Previous lit-
erature proposes to use uncertainty as the loss weights for
task-specific losses (Kendall, Gal, and Cipolla 2018), but it
is computationally intensive to optimize the loss weights.
GradNorm (Chen et al. 2018) proposes a new objective func-
tion for choosing the optimal loss weights at each training
step. However, the numerical optimization for loss weights
adds substantial computational burden to the learning pro-
cess. Our proposed task-specific loss balancing has a closed-
form analytic solution, which does not need additional nu-
merical optimization for loss weights and can be easily inte-
grated into the deep model training procedure.
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Methodology

Multi-horizon Alerts Problem

The EHR data, including demographics, comorbidity diag-
noses (via ICD-9 and ICD-10 codes from prior hospital ad-
missions), patient location, and time-stamped vital signs, lab
values, cultures, medications, and procedures, from a 6-hour
time window prior the predicting horizon is used as input to
the predictive models (a discrete-time framework to account
for interval censoring of clinical data such as vital signs and
laboratory measurements). The clinical deterioration event
(a composite of death on the wards or transfer to the ICU)
occurring at future time points (e.g. 6 hours, 24 hours and 48
hours after the end of an input window) is defined as the pos-
itive label in our multi-horizon alerts problem. It is impor-
tant to note that the alerts with different horizons are related
to each other. For instance, if a patient experienced an alert
24 hours prior to a true outcome, the patient would likely
have remained at high risk (i.e., had a high predicted prob-
ability of deterioration) 18 hours later, at the 6-hour mark.
Relatedly, it is unlikely for a 6-hour alert to be followed by
no alert in the next 24 hours. Therefore, we employ a multi-
task learning approach to exploit the relatedness of alerts of
different time horizons. The precedent constraints between
the alerts are encoded as co-occurrence matrix in the prior
knowledge regularization. Furthermore, we incorporate this
prior knowledge regularization into the learning process to
improve the accuracy of our predictions.

In the following, we describe the details of the approaches
to improve deep multi-task model for the mutli-horizon
alerts. We first exploit the task relatedness via incorporat-
ing prior knowledge as graph Laplacian-based regulariza-
tion (Che et al. 2015). Then, we introduce the approach
of removing negative effects induced by task loss imbal-
ance, and devise an auxiliary loss to balance the task-specific
losses during training. The block coordinate optimization
with a closed-form analytic solution is derived to optimize
the joint loss function with prior knowledge regularization
and auxiliary loss for task-specific loss balancing.
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Figure 1: Deep multi-task model with hard parameter shar-
ing

Exploiting Task Relatedness via Prior Knowledge

Suppose we have a dataset of N instances, each with a D-
dimensional feature vector derived from EHRs and K binary

labels for K different learning tasks. The labeled instances
can be represented as {x(i),y(i)}Ni=1, where x(i) ∈ R

D,
y(i) ∈ {0, 1}K . The model used in our study is a feed-
forward fully connected neural network with L hidden lay-
ers. We use Θl = (Wl,bl) to denote the neural network pa-
rameters in lth layer. As shown in Figure 1, the parameters of
hidden layers {Θl}L−1

l=1 from the first to the (L− 1)th layer
are shared by all the tasks to form a common feature rep-
resentation, which is also known as hard parameter sharing.
There are K separate Lth task-specific hidden layers with
their own parameters ΘL,k. The parameters in each task-
specific layer are updated simultaneously while optimizing
the joint objective function.

In addition, we add the non-linearity activation, Rectified
Linear Unit (ReLU),

zl = max(0,Wlzl−1 + bl) (1)
to each hidden layer, where zl−1 denotes the activation out-
puts from the (l−1)th layer. The ReLU takes care the vanish-
ing gradient issue when training the neural network and ac-
celerates the convergence of gradient descent method. Since
the clinical deterioration events in our study have binary
outcomes (e.g. deteriorating within a specific time frame or
not), the sigmoid function

σ(zL,k) = 1/(1 + exp(−zL,k)) (2)
is applied to the task-specific activation functions in the last
layer. The cross entropy loss LCEk is used for each task,
which is referred as task-specific loss in the paper. The cross
entropy loss for the whole multi-task model is the sum of
task-specific cross entropy loss:

LCE =

K∑
k=1

LCEk =

K∑
k=1

N∑
i=1

[
y
(i)
k log σ(WL,kz

(i)
L−1

+bL,k) + (1− y
(i)
k ) log(1− σ(WL,kz

(i)
L−1 + bL,k))

]
(3)

where y
(i)
k is the ground-truth label for the kth task of in-

stance i, z(i)L−1 is the vector of activation outputs from the
(L− 1)th layer.

For those with known relatedness among the multiple
prediction tasks, the similarity of tasks can be utilized as
the prior information to regularize the optimization objec-
tive. Graph Laplacian-based regularization is a natural way
to incorporate cross-task relatedness via graph representa-
tion (Che et al. 2015). Let S ∈ R

K×K denote graph adja-
cency matrix encoding the similarity between the kth and
k′th tasks. Then L is the Laplacian matrix of S, such that
L = D − S, where D is a diagonal ”degree” matrix of S
whose diagonal elements are Dk,k =

∑
k′ Sk,k′ . Thus, the

graph Laplacian-based regularization can be written as:

RLap = tr(ΘT
LLΘL) (4)

RLap =
1

2

K∑
k=1

K∑
k′=1

Sk,k′ ‖ΘL,k −ΘL,k′‖22 (5)

where tr(·) denotes the matrix trace, ΘL = {ΘL,k}Kk=1 is a
vector of weights from all K task-specific layers. The inten-
tion is to regularize the model parameters in the task-specific
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layers according to the extent of similarity among tasks rep-
resented by S. In (5), the element Sk,k′ indicates the extent
of similarity between task k and k′. The high value of Sk,k′

will penalize ‖ΘL,k −ΘL,k′‖22 and thus enforce ΘL,k and
ΘL,k′ to be alike. There are various heuristics to determine
the similarity matrix S. However, we use the co-occurrence
matrix (Che et al. 2015) throughout the study, which is de-
fined by:

Sk,k′ =
1

N

N∑
i=1

I(y
(i)
k = y

(i)
k′ ) (6)

I(y
(i)
k = y

(i)
k′ ) is an indicator function, which is evaluated

to 1 if task k and task k′ have the same label for instance
i. The Frobenius norm is also applied as a regularization
term, which prevents the model from overfitting by enforc-
ing small model weights:

RF = ‖Θ‖2F (7)

The overall objective function so far is the summation of
the task-specific cross entropy losses, graph Laplacian-based
prior knowledge regularization and Frobenius norm, which
is defined as:

L = LCE + λ1RLap + λ2RF (8)

where λ1, λ2 are the regularization weights that can be tuned
respectively.

Reducing Negative Effects from Task Imbalance

The deep multi-task neural network is challenging to train
properly. As the joint learning process is often dominated by
the task-specific loss with the largest value, in the training
process the model parameters of the fast-converging tasks
may be overfitted while those of the slowly-converging tasks
are still underfitted. To address this problem, our goal is to
find a shared representation, so the losses of all tasks con-
verge to their own optimum. Task-specific loss weights have
been introduced to mitigate the imbalance among the loss
functions. The general expression of multi-task loss func-
tion is:

L =
∑
k

νkLk + Laux + λ1RLap + λ2RF (9)

where Lk is the task-specific loss for task k, νk is the loss
weight for task-specific loss k, Laux is the auxiliary loss
to balance the rate of change of task-specific losses. One
example choice of task-specific loss is the cross entropy loss
LCEk for classification problem.

As for multivariate differentiable functions, the direc-
tional derivative along a certain vector v is a scalar func-
tion that describes the rate of change in the direction of vec-
tor v. The directional derivative of the multivariate function
Lk(ΘL,k) along direction v is defined as:

∇vLk(ΘL,k) = v · ∇Lk(ΘL,k)

= lim
t→0

Lk(ΘL,k + tv)− Lk(ΘL,k)

t

(10)

The rate of change of task-specific loss is actually the direc-
tional directive along the direction of ΔΘL,k, which is the

change of model parameter from last epoch. The directional
derivative of loss function Lk(ΘL,k) along unit directional
vector v = ΔΘL,k/ ‖ΔΘL,k‖ is:

∇vLk(ΘL,k) =

lim
‖ΔΘL,k‖→0

Lk(ΘL,k +ΔΘL,k)− Li(ΘL,k)

‖ΔΘL,k‖ (11)

When implementing the auxiliary loss Laux, we approx-
imate the numerator and denominator of (12) by task-
specific loss differences (ΔLk) and model parameter up-
dates (ΔΘL,k) from the current and last epoch. The auxil-
iary loss is designed in such way that smaller value results in
more balanced task-specific losses. The auxiliary loss should
consider the balance among all pairs of tasks. Hence, it is a
sum of squared differences among all pairs of approximate
directional derivatives:

Laux =
∑
i �=j

(
νiΔLi

‖ΔΘL,i‖ − νjΔLj

‖ΔΘL,j‖ )
2

(12)

where i, j ∈ 1, ...,K, ΔLi/ ‖ΔΘL,i‖ and ΔLj/ ‖ΔΘL,j‖
are approximate directional derivatives of parameters in ith
and jth task-specific layer.

Optimization

The joint objective function with prior knowledge regular-
ization RLap and the auxiliary loss Laux for task-specific
loss balancing we optimize for the multi-horizon alerts is:

min
Θ,ν

L(Θ, ν) = min
Θ,ν

∑
k

νkLCEk(Θ) + Laux(Θ)

+λ1RLap(Θ) + λ2RF (Θ)

(13)

The objective function L(Θ, ν) is non-convex with respect
to Θ and ν. The block coordinate descent method is applied
to find the optimal value of objective function along a direc-
tion one at a time.

When solving variable block Θ with fixed variable block
ν, the optimization problem becomes the common neural
network parameter learning. Various gradient based meth-
ods, such as stochastic gradient descent, can be used to solve
the optimization problem. The model parameters Θ are up-
dated via back-propagation.

When solving variable block ν with fixed variable block
Θ, the objective function is a multivariate quadratic function
with respect to ν. The optimal ν has a closed-form analytic
solution. We define ν̄i as the ith task-specific loss weight to
achieve optimal value of L:

ν̄i = argmin
νi

L =

‖ΔΘL,i‖
ni �=jΔLi

(
∑
i �=j

νjΔLj

‖ΔΘL,j‖ − Li ‖ΔΘL,i‖
2ΔLi

) (14)

where ni �=j denotes the number of distinct task pairs (i, j).
In practical implementation, the loss weights ν are bounded
to positive values to avoid the exploding gradient issue. As-
sume νi ∈ [ν1, ν2] for ∀i, where ν1, ν2 > 0, the optimal νi
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is:

νi =

⎧⎨
⎩
ν1 ν̄i < ν1
ν2 ν̄i > ν2
ν̄i ν1 < ν̄i < ν2

(15)

The complete procedure of learning the neural network
model with prior knowledge regularization and task-specific
loss balancing is summarized as Algorithm 1. Since opti-
mizing the objective function with respect to ν has a closed-
form solution, updating the loss weights ν only adds con-
stant computation complexity to the neural network opti-
mization. The computational complexity of the optimization
algorithm is much lower than other approaches that optimize
loss weight via a separate gradient based optimization.

Algorithm 1: Model Optimization with Task-specific
Loss Balancing

Input: Training Data x ∈ R
N×D, Training Label

y ∈ {0, 1}N×K

Output: Model Parameters Θ, Loss Weights ν
Compute similarity matrix S by (6);
Initialize Θ and ν ;
for t = 1, ..., T do

Update Θ via back-propagation by optimizing (9);
Update ν by using (14) and (15);

end

Experimental Evaluation
To evaluate our proposed prior knowledge regularization and
task-specific loss balancing, we performed multiple experi-
ments on a real clinical dataset. In this section, we compare
the performance of applying the proposed techniques with
the commonly used models for prediction of clinical deteri-
oration on the ward. Then we show that our proposed model
can be interpretable in terms of utilizing clinically signifi-
cant features.

Dataset

The dataset used to evaluate the prediction models is an EHR
dataset of adult oncology patients from Barnes-Jewish Hos-
pital. The dataset contains patient demographics, comorbidi-
ties, vital signs, laboratory results, and medications of all
adult hospitalizations from 2014 to 2017 for cancer or stem
cell transplant. The dataset consists of 20,700 distinct en-
counters with hospitalization longer than 48 hours, includ-
ing 1,939 encounters with deterioration during the hospital-
ization.

Data Preprocessing

The patient’s demographics data, comorbidity diagnoses,
time-stamped vital signs and their second order features, lab
values, cultures, medications, and procedures from that data
window are used as the input to the predictive models. For
each encounter with no deterioration, we extract one exam-
ple with the EHR data in the 6 hours starting from the be-
ginning of hospitalization as the input data. Since the en-
counters do not contain any deterioration event (ICU transfer

or death), the labels for 6-hour, 24-hour and 48-hour alerts
are all zeros. For each encounter with deterioration, we ex-
tract three examples corresponding to 48, 24, and 6 hours,
respectively, prior to the deterioration event. Figure 2 illus-
trates how the three examples are generated associated with
a deterioration event. We segment the timeline into 6-hour
windows. If a clinical deterioration event occurs within a
time window, a positive label is generated at the end of the
time window. For the first example, the input data includes
the EHR data in the time window ending at 48 hours before
the positive label corresponding to the deterioration event.
The labels for the 6-hour, 24-hour, and 48-hour alerts are
negative, negative, and positive, respectively. For the sec-
ond example, the input data is from the time window ending
24 hours prior to the label generated for the deterioration
event. Hence, the label for the 6-hour alert is negative, fol-
lowed by a positive label for the 24-hour alert. If the pa-
tient remains in the ICU or is deceased 24 hours after the
label generated for the initial deterioration event, the label
for the 48-hour alert is positive. Otherwise, the patient has
been discharged from the ICU and the 48-hour alert is la-
beled negative. The third example is extracted in a similar
fashion, except the time window slides 24 hours further. The
examples extracted from the encounters form the dataset for
training and evaluating the model performance with random
train-test split. For the time-series data, we performed last
value carry-forward followed by median imputation to ad-
dress missing values in the raw data. All the features used
as input to the model are normalized when feeding into the
models.
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Figure 2: Extracting examples from a hospitalization en-
counter with clinical deterioration

Model Evaluation

In this section, the evaluation results are reported over 20
experiments with random 75% vs. 25% train-test split. For
the training data, we further split it as 10% of training data
used as a validation set for hyperparameter tuning. We ap-
ply random over-sampling to the training data to handle the
imbalanced dataset problem.

Comparison with Common Models We compare the per-
formance of Modified Early Warning Score (MEWS), lo-
gistic regression with elastic net regularization (LR-EN),
random forest (RF), gradient boosted tree (GBT), single-
task neural network (DNN) trained separately for each alert
and multi-task neural network (DMNN) with our proposed
methods (DMNNpb). In addition, we evaluate the individ-
ual effect of prior knowledge regularization (DMNNp) and
task-specific loss balancing (DMNNb) by applying each of
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them alone. The deep models used in our evaluation are the
four-layer fully connected neural network. For the multi-
task variants, the first three layers are shared among all the
tasks, while the fourth layer is the task-specific layer that
has separate parameters for each task. We show the perfor-
mance metrics of all models for predicting 6-hour, 24-hour
and 48-hour alerts with specificity fixed around 0.95 in Ta-
ble 1, since an important clinical goal is to correctly identify
risk patients with fewer false alerts.

Since our dataset lacks the AVPU score (”Awake, Verbal,
Pain, Unconscious” - a common nursing scale used for eval-
uating consciousness), the MEWS used in our dataset was
calculated without AVPU score. The area under the ROC
curve (AUROC) of the MEWS model is around 0.5 for all
three horizons of alert, which indicates the MEWS model
without the AVPU score actually cannot predict the deterio-
ration events in our study. The superior results from machine
learning models suggest they can predict the upcoming de-
terioration events, even if the AVPU score is not recorded
for some of the study cases. When comparing the state-of-
the-art machine learning models, gradient boosted trees have
better AUROC values than those of penalized logistic re-
gression and random forest. Although penalized logistic re-
gression does not have high AUROC values, it has better
sensitivity and precision for 24-hour and 48-hour alerts.

The deep models (DNN), which are trained separately
for each horizon, do not have any advantages compared
to gradient boosted trees in terms of AUROC, sensitivity
and precision. The results demonstrate the superior pre-
dictive power of deep multi-task models, compared to the
”shallow” machine learning models, such as penalized lo-
gistic regression, random forest and gradient boosted trees.
DMNNb outperforms DMNN in terms of 6-hour (p=0.027),
24-hour (p<0.001), 48-hour (p<0.001) sensitivity; 6-hour
(p<0.001), 24-hour (p<0.001), 48-hour (p<0.001) pre-
cision. DMNNp outperforms DMNN in terms of 6-hour
(p<0.001), 24-hour (p<0.001), 48-hour (p<0.001) sen-
sitivity; 6-hour (p<0.001), 24-hour (p<0.001), 48-hour
(p<0.001) precision; 24-hour AUROC (p=0.030). The re-
sults demonstrate the performance improvement after in-
corporating the proposed techniques. In our evaluation, the
DMNNpb model has the best performance among all the
models for the three horizon alerts in terms of all the metrics.
The DMNNpb model has the highest precision compared to
the MEWS and the state-of-the-art models previously used
for clinical early warning. DMNNpb can achieve high AU-
ROC (0.9493) for 24-hour alert as well as high sensitivity
(0.5419) and precision (0.7062) while fixing the specificity
at around 0.95. One interesting finding is that the prediction
of 24-hour alert is the most accurate among the three horizon
alerts for all models except MEWS.

Alert Sequence

The goal of multi-horizon alerts is to inform clinicians of
the level of urgency of an impending deterioration event to
facilitate planning for intervention. For multi-horizon alerts
to be effective and accepted by clinicians, the resulting alert
sequence should be consistent with real-world clinical expe-
riences. In clinical practice, a deteriorated patient is rarely

discharged from the ICU within hours after the deteriora-
tion event (when the patient was transferred to the ICU or
became deceased). As a result, it is unusual for a positive
alert to be followed by a negative alert in the sequence of
alerts generated by a multi-horizon alert model. Henceforth,
we use an unexpected sequence to refer to an alert sequence
in which a positive alert precedes a negative alert, and an
expected sequence to refer to an alert sequence without any
negative alert following a positive one. Figure 3 shows all
expected alert sequences and unexpected alert sequences.
Only 0.77% of the examples in our dataset have unexpected
sequences. Therefore, a multi-horizon alert model should
avoid predicting unexpected sequences that may reduce the
trust and acceptance of the model among clinicians.
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Figure 3: Expected alert sequences (left) and unexpected
alert sequences (right)

We define sequence concordance as the number of ex-
pected alert sequences over the total number of alert se-
quences. Table 2 lists the Sequence Concordance for DNN,
DMNN, DMNNp, DMNNpb. The results indicate the ef-
fectiveness of incorporating prior knowledge to regularize
the model and generate expected alert sequences that are
concordant with clinical experiences. We also investigate
the models’ ability to generate correct alerts for each indi-
vidual patient. The one-alert, two-alert and three-alert con-
cordances represent the percentage of correctly predicted
alerts for at least one, two or three, respectively. As sum-
marized in Table 2, the DMNNp model can achieve the
0.7755 three-alert concordance, which means 77.55% of the
alert sequences are correct for all three alerts over different
horizons. The results suggest that prior knowledge can ex-
ploit the event relatedness and constrain the predicted multi-
horizon alerts to be expected sequences. Furthermore, the
concordance results of DMNNpb in Table 2 show that task-
specific loss balancing does not have a negative impact on
the prior knowledge regularization in enforcing expected
alert sequences.

Predictive Features

An additional important aspect of clinical event prediction
involves conveying the predictive results to clinical decision-
makers. Deep learning models are known for their opaque-
ness on generating the predictions. In this section, we ap-
ply Layer-wise relevance propagation (Bach et al. 2015),
which has been widely used for interpreting the outcomes
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Table 1: Performance evaluation of predictive models with mean and standard deviation reported (specificity fixed around 0.95)
Model 6-hour alert 24-hour alert 48-hour alert

AUROC Sensitivity Precision AUROC Sensitivity Precision AUROC Sensitivity Precision
MEWS .5013(.0048) .0662(.0072) .1014(.0110) .4993(.0035) .0647(.0045) .1884(.0128) .4999(.0040) .0645(.0039) .1847(.0113)
LR-EN .8852(.0022) .3050(.0122) .3976(.0106) .9216(.0013) .4620(.0129) .6772(.0074) .9106(.0025) .4262(.0254) .6520(.0131)

RF .8660(.0033) .1370(.0112) .2270(.0161) .9309(.0015) .3110(.0119) .5830(.0089) .9090(.0022) .1480(.0182) .3917(.0300)
GBT .9122(.0019) .3228(.0140) .4205(.0118) .9442(.0014) .4493(.0356) .6668(.0090) .9294(.0019) .3560(.0635) .5911(.0237)
DNN .8604(.0051) .2588(.0132) .3633(.0114) .9263(.0063) .4400(.0086) .6382(.0121) .9165(.0029) .3481(.0103) .5964(.0139)

DMNN .9144(.0018) .3393(.0098) .4158(.0088) .9478(.0014) .4944(.0168) .6715(.0065) .9329(.0016) .4053(.0347) .6220(.0159)
DMNNp .9142(.0020) .3576(.0116) .4325(.0098) .9489(.0013) .5400(.0160) .7061(.0077) .9334(.0016) .4403(.0284) .6483(.0155)
DMNNb .9136(.0019) .3552(.0175) .4335(.0079) .9487(.0012) .5215(.0089) .7009(.0046) .9332(.0019) .4405(.0344) .6566(.0343)
DMNNpb .9147(.0019) .3629(.0097) .4346(.0087) .9493(.0014) .5419(.0171) .7062(.0083) .9345(.0016) .4413(.0276) .6567(.0140)

Table 2: Concordance evaluation with mean and standard
deviation reported

DNN DMNN DMNNp DMNNpb
Seq. .7548(.0031) .9542(.0023) .9814(.0020) .9817(.0022)

1-alert .8745(.0035) .8839(.0028) .8857(.0019) .8861(.0020)

2-alert .8039(.0027) .8162(.0024) .8206(.0029) .8212(.0032)

3-alert .7592(.0033) .7677(.0028) .7755(.0031) .7758(.0028)

of deep neural networks. Figure 4 shows the top 20 features
with the highest relevance to the positive and negative out-
comes. time ward hours2 (the square of hours on the
ward) has the greatest impact on both outcomes, followed
by cvc duration hours (the duration a central venous
catheter had been in place) and time2 (the square of total
time in the hospital). It seems reasonable that these are the
most predictive features in the model, since patients remain-
ing in the hospital or on the ward for a long time are likely
to be sicker, and thus more likely to suffer clinical deterio-
ration. Among the top 20 relevant features listed for positive
outcomes, 10 of them are second order statistical features
from the time series data, which are entropy, energy and in-
ertia generated from heart rate, hemoglobin, oxygen flow,
creatinine, respiratory rate, and systolic blood pressure. The
result is similar for negative outcomes. The findings suggest
the second order statistical features have significant impact
on the prediction outcomes, which support our claim of in-
corporating second order statistical features into the model
input is beneficial. The results also suggest that extracting
temporal features from time series data is extremely useful
for training predictive models.

Conclusion and Future Work

We applied two new approaches - prior knowledge regular-
ization and task-specific loss balancing - to a deep multi-task
prediction model for clinical deterioration among a high-
risk group of hospitalized patients. The evaluation on a large
dataset of adult oncology patients demonstrates that the pro-
posed techniques effectively improve the prediction accu-
racy of multi-horizon alerts. Our review of highly-predictive
features includes many expected to contribute to a patient’s
high-risk status, as well as a number of complex features not
being used in previous early warning systems. The applica-
tion of such a model to a high-risk cohort of patients may be
quite beneficial clinically, as common early warning systems
are limited by low positive predictive values. Another ad-

Figure 4: Top 20 features with the largest impacts on positive
outcomes (top) and negative outcomes (bottom)

vantage of our approach is that simultaneous multi-horizon
alerts may be clinically useful by allowing the planning and
triage of diagnostic tests and interventions earlier in a pa-
tient’s clinical course. Because these approaches have only
been evaluated retrospectively in a single cohort of patients,
future evaluations should be considered. External evalua-
tions could enhance the generalizability of this approach to
other hospitals and patient groups, and prospective evalua-
tions could ensure temporal validity prior to implementing
for real-time use.
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