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Abstract

Glaucoma is one of the three leading causes of blindness in
the world and is predicted to affect around 80 million people
by 2020. The optic cup (OC) to optic disc (OD) ratio (CDR)
in fundus images plays a pivotal role in the screening and di-
agnosis of glaucoma. Existing methods usually crop the optic
disc region first, and subsequently perform segmentation in
this region. However, these approaches come up with high
complexities due to the separate operations. To remedy this
issue, we propose a Region Focus Network (RF-Net) that
innovatively integrates detection and multi-class segmenta-
tion into a unified architecture for end-to-end joint optic disc
and cup segmentation with global optimization. The key idea
of our method is designing a novel multi-class mask branch
which generates a high-quality segmentation in the detected
region for both disc and cup. To bridge the connection be-
tween the backbone and multi-class mask branch, a Fusion
Feature Pooling (FFP) structure is presented to extract fea-
tures from each level of the pyramid network and fuse them
into a final feature representation for segmentation. Extensive
experimental results on the REFUGE-2018 challenge dataset
and the Drishti-GS dataset show that the proposed method
achieves the best performance, compared with competitive
approaches reported in the literature and the official leader-
board. Our code will be released soon.

1. Introduction

Glaucoma is a chronic disease that damages the optic nerves
and leads to irreversible vision loss (Tham et al. 2014). Early
screening and detection methods are essential to preserve
vision. To detect glaucoma, the ratio of vertical cup diame-
ter (VCD) to vertical disc diameter (VDD) is an important
factor in clinical, which is called CDR for measurements.
Normal CDR is 0.3 to 0.4 and the larger may indicate glau-
coma or other diseases such as neuro-ophthalmic diseases
(Jonas et al. 2000). Figure 1 gives an intuitive illustration. It
is extremely time-consuming for acquiring those measure-
ments manually, hence developing accurate algorithms to
automatically segment optic disc (OD) and optic cup (OC)
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Figure 1: Comparisons of normal CDR and glaucoma CDR
in fundus images. Figure 1(a) is a normal fundus image and
(c) is glaucoma. The Figure 1(b) and (d) are the partially
enlarged images for (a) and (c) respectively, in which the
region enclosed by the yellow circle is optic disc (OD) and
the central bright zone enclosed by the blue circle is optic
cup (OC). The VCD is vertical cup diameter, and the VDD is
vertical disc diameter. The vertical cup to disc ratio (CDR) is
calculated by the VCD to VDD. The OC region in (d) which
has a higher CDR is relatively bigger than that in (b).

from fundus images is pretty meaningful for prompting the
large-scale glaucoma screening.

As illustrated in Figure 1(a) and (c), the optic disc occu-
pies only about 10% of the total area of the fundus image.
For the low area proportion and heterogeneous appearance,
the segmentation of OD and OC is an extremely challeng-
ing task. Thus, it is an important pre-processing to locate
the optic disc for segmentation, since correct optic disc lo-
cation can not only reduce the computational complexity
of subsequent optic disc segmentation, but also reduce the
noise interference caused by non-optic disc areas in fun-
dus images. Early works in OD and OC segmentation are
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based on color, contrast or boundary feature in fundus im-
ages (Li et al. 2018a). Among these methods, the pixels
or patches of fundus images are determined as background,
disc, and cup regions, through a learned classifier with var-
ious visual features. While most of the methods based on
hand-crafted features are easily affected by pathological re-
gions and low contrast quality. In addition, they segment
the OD and OC in two separate steps without consider-
ing the mutual relation between them. Recently, deep learn-
ing has triumphed over various computer vision tasks, such
as image classification (Krizhevsky, Sutskever, and Hinton
2012), segmentation (Long, Shelhamer, and Darrell 2015;
Chen et al. 2018), and object detection (Ren et al. 2017).
A flurry of research has leveraged Convolution Neural Net-
works (CNNs) for fundus image segmentation and achieved
encouraging results. For example, the state-of-the-art like
M-Net (Fu et al. 2018), ET-Net (Zhang et al. 2019) and
ResU-net (Shankaranarayana et al. 2017) localize the disc
center firstly for explicitly suppressing irrelevant informa-
tion and highlighting the Region of Interest (RoI), and gen-
erate the multi-class probability maps for optic disc and cup.
However, these methods usually require much more compli-
cated operations such as traditional method, detection net-
work and pre-segmentation network to obtain cropped boxes
first. They extremely rely on localization accuracy because
the wrong cropped regions will lead to the wrong prediction.

To address these issues, we propose an end-to-end net-
work architecture to simultaneously conduct the optic disc
localization and the multi-class probability segmentation in
a joint framework, by the spirit of Mask-RCNN (He et al.
2017). However, it is not a reasonable choice to directly
apply Mask-RCNN to solve our problem. Because it de-
tects the optic disc and cup separately, and predicts two la-
bel probability maps for foreground and background respec-
tively in each detected region. And the detection of the optic
cup is difficult due to the low contrast boundary between
the optic cup and the optic disc region, which can lead to
poor segmentation. Our experimental results also verify this
point. Inspired by this, we propose a novel Region Focus
Network (RF-Net) for automatic glaucoma screening, which
can detect the optic disc in fundus images and learn a high-
quality segmentation mask for disc and cup. The main con-
tributions are summarized as follows:

• Our RF-Net is an end-to-end deep learning system, inno-
vatively integrating detection and segmentation into a uni-
fied network without cropping the optic disc in advance,
which is also beneficial for unified optimization. In con-
trast, existing methods (Fu et al. 2018; Zhang et al. 2019;
Sevastopolsky et al. 2018) are more complex due to the
separate operations.

• A novel multi-class mask branch is designed to generate a
high-quality segmentation in the detected region for both
disc and cup. Besides, we also present a Fusion Feature
Pooling (FFP) structure to extract features from each level
of feature pyramid network and fuse them on different
levels, so as to further improve the performance.

• For joint OD and OC segmentation, we adopt the
weighted focal loss and dice loss in our framework, which

can remedy the issue of imbalance data during pixel-wise
segmentation for fundus images.

• Furthermore, with much ablation study on the REFUGE1

dataset and the Drishti-GS (Sivaswamy et al. 2014)
dataset, we evaluate the effectiveness of the proposed
method, and the results demonstrate that our method
achieves better performance, compared with the state-of-
the-art.

2. Related Work

Early works employ the handcrafted visual features, includ-
ing the color features, gradient information, and superpixel-
based classifier (Cheng et al. 2013; Li et al. 2018b). Be-
fore OD (or OC) segmentation, OD localization (Dehghani,
Moghaddam, and Moin 2012; Li et al. 2014) is an inevitable
task which can not only reduce the computational com-
plexity, but also reduces the noise caused by non-optical
disc areas in fundus images. However, most of the meth-
ods are easily affected by pathological regions and low con-
trast quality. Considering the blood vessel occlusion and
the lower-contrast boundary, the OC segmentation is usually
more challenging than OD. Therefore, OD and OC segmen-
tation are usually studied independently. For the OD seg-
mentation, Yin et al. (Yin et al. 2012) presented a method
combined knowledge-based circular hough transform and a
novel optimal channel selection for segmentation of the OD.
Zheng et al. (Zheng et al. 2013) integrated the OD segmen-
tation within a graph-cut framework and then used a Gaus-
sian Mixture Model to decide a posterior probability of the
pixel. Both of them are unsuitable for fundus images with
low contrast. For the OC segmentation, Narasimhan et al.
(Narasimhan and Vijayarekha 2011) predicted the OC re-
gion based on the K-means clustering technique and then
used elliptical fitting to refine the boundaries. Based on the
gradient information, Liu et al. (Liu et al. 2008) proposed
a method using threshold level set to extract the optic cup.
These methods are simple and easy to implement, but the
robustness is not high.

As convolutional neural networks (CNNs) have recently
achieved great success in medical image segmentation tasks
(Milletari, Navab, and Ahmadi 2016; Cicek et al. 2016),
several attempts have been made to realize simultaneous
segmentation of joint optic disc and cup. Sharath et al.
(Shankaranarayana et al. 2017) proposed a novel improved
architecture named ResU-net building upon FCNs (Long,
Shelhamer, and Darrell 2015) by using the concept of resid-
ual learning and used adversarial training to evaluate the
segmentation result. Fu et al. (Fu et al. 2018) proposed a
deep learning architecture named M-Net, which generates
the multi-class probability maps for optic disc and cup after
localizing the disc center and transfers the original fundus
image into the polar coordinate system. The Stack-U-Net
(Sevastopolsky et al. 2018) designed a special cascade net-
work, which is based on the U-Net (Ronneberger, Fischer,
and Brox 2015) architecture as building blocks and the idea
of the iterative refinement for image segmentation on the ex-
ample of OD and OC. The Psi-Net (Murugesan et al. 2019)

1https://refuge.grand-challenge.org/
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Figure 2: Illustration of RF-Net framework. The left part in the figure is the feature extraction network, which constructed
by FPN with MobileNet-v1, and the right part is our proposed multi-class mask branch, which first gets high-level (28 × 28)
and low-level features (56 × 56) of pyramid structure by Fusion Feature Pooling, then fuses the upsampling of high-level and
low-level features to obtain the final representation.

proposed the use of parallel decoders which along with per-
forming the mask predictions also performs contour predic-
tion and distance map estimation for producing segmenta-
tion masks with smooth boundaries. Wang et al. (Wang et
al. 2019) presented a patch-based output space adversarial
learning framework to jointly and robustly segment the optic
disc and cup from different fundus image datasets. Besides,
a novel morphology-aware segmentation loss was proposed
to guide the network to generate accurate and smooth seg-
mentation. The method achieved an effective segmentation
performance. Edge-aTtention guidance Network (ET-Net)
was proposed by Zhang et al. (Zhang et al. 2019), which can
generate edge-attention representations and sufficient edge
information, and achieved an excellent result for optic disc
and cup segmentation. The method is the same as the above,
localizing the optic disc firstly by the traditional method,
then segmentation. The segmentation result depends on the
localization accuracy, and needs post-processing.

It is necessary to note that these methods crop images by
area of their optic disc (cup) before performing segmenta-
tion. It makes the methods not applicable to new, unseen
fundus images since it requires a bounding box of optic disc
and cup to be available in advance. Compared to the previous
methods, we integrate the ’crop-step’ into a unified network,
which can simultaneously conduct detection and multi-class
segmentation in a joint framework for end-to-end optic cup
and disc segmentation.

3. Method

Our task is to segment the optic disc and cup in the fun-
dus image. As shown in Figure 1, the optic cup is contained
in the optic disc, and both are only around one-tenth of the

whole image, which brings a great challenge to segmen-
tation. To this end, we propose an end-to-end method by
building a detection network with a multi-class mask branch,
which can detect only the optic disc region and simultane-
ously predict segmentation masks (both cup and disc) on
each RoI. Next, we will introduce our architecture in detail.

3.1 Network Architecture

Figure 2 illustrates the architecture of our network which is
composed of a backbone network, a detection branch and
a multi-class mask branch. Here we use FPN (Lin et al.
2017) structure with MobileNet-v1 (Howard et al. 2017) as
the backbone for feature extraction, which uses a top-down
architecture with lateral connections to build an in-network
feature pyramid from a single-scale input. The feature pyra-
mid is constructed from the backbone network with levels
from P2 through P5, where l is the pyramid level and Pl

has 1/2l resolution of the input image. After that, we pro-
pose a new feature fusion strategy, called Fusion Feature
Pooling (FFP), to fuse feature grids from different levels.
Connected after FFP, the detection branch consists of two
stages. The first stage proposes candidate object bounding
boxes, and the second stage extracts features using RoIAlign
from each candidate box and performs classification and re-
gression. The classification subnet predicts the probability
of objects for each RoI. The regression subnet predicts the
4-dimensional class-agnostic offset for each RoI if the object
exists.

More importantly, we design a multi-class mask branch
that can predict multi-class probability maps for each RoI
proposed by the classification subnet and the regression sub-
net. {P2, P3} in the feature pyramid are used to get the
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Figure 3: Comparison of Pyramid Feature Pooling and Fusion Feature Pooling.The (a) is Pyramid Feature Pooling, which only
matches the RoIs from the previous network to the corresponding scale of feature pyramid and proposes feature pooling. The
(b) is the proposed Fusion Feature Pooling, P2, P3 are the low-level features in pyramid structure and P4, P5 are high-level.
P2, P3 are used to generate fixed-size (56× 56) feature maps (R2, R3), and the max operator is adopted for the R2, R3 to get
final features. P4, P5 are the same.

56 × 56 feature maps by FFP and {P4, P5} are used to ob-
tain 28×28 feature maps. Consequently, we fuse the features
with two scales to obtain final segmentation results.

3.2 Fusion Feature Pooling

Considering image segmentation is a pixel-level classifica-
tion task, whose result depends on the contribution of multi-
scale feature maps, we propose a new feature pooling struc-
ture called FFP to obtain multi-scale feature information,
as illustrated in Figure 3(b). The idea of FFP is to imple-
ment pooling layer in each level of feature pyramid network,
namely, the region proposals generate a fixed-size (56× 56)
feature map (R2 and R3) by mapping to the P2 and P3 layer
and another fixed-size (28 × 28) (R4 and R5) in P4 and P5

layer. Besides, we fuse the feature maps generated from the
P2, P3 layer and P4, P5 layer separately after feature pool-
ing, to properly align the extracted features with the input.
Then, the two branches are input to the multi-class mask
branch for segmentation task.

Our proposed FFP structure is different from the Pyramid
Feature Pooling in Mask R-CNN, as shown in Figure 3(a).
The Pyramid Feature Pooling only matches the RoIs from
the previous network to the corresponding scale of feature
pyramid and proposes feature pooling in the layer, which ig-
nores the information fusion with different receptive fields.
To verify the effectiveness of FFP, we also present a com-
parison with Pyramid Feature Pooling in Table 2, which in-
dicates the FFP improves the accuracy of segmentation and
the performance.

3.3 Multi-class Mask Branch

In general, the contrast boundary in the optic cup and disc
region is subtle, resulting in that the optic cup cannot be
identified correctly by instance-aware semantic segmenta-
tion. Motivated by this, we design a detection network for

only optic disc detection which avoids the incorrect detec-
tion of the optic cup. Besides, we propose a novel multi-
class mask branch to produce high-quality probability mask
for optic disc and optic cup by pixel-level classification in
the detected region.

Recall that in Section 3.2, we introduce FFP to generate
feature maps with two scales. After that, they are fed into the
proposed multi-class mask branch, as shown in Figure 4(b).
Different from the binary mask branch only predicting two
classes (foreground and background) in each bounding box,
as depicted in Figure 4(a), our branch can predict multi-class
object in the disc region. Also, our multi-class mask branch
is distinct from traditional semantic segmentation which just
generates the probability maps by several convolutions and
one upsampling, so as to not make full use of the effective in-
formation in the multi-level features. Consequently, we fuse
high-level features and low-level features with two scales to
obtain finer details.

3.4 Loss Function

Our task is a multi-class segmentation problem, which can
be seen as multiple binary classification. The overlap of op-
tic disc and cup make the segmentation somewhat challeng-
ing in the regions. Moreover, for the glaucoma case, the
boundary of the optic cup and optic disc is more indistin-
guishable. Thus, the multi-class method is more suitable for
addressing these issues by treating OD and OC as two inde-
pendent binary classification problems.

Our loss function in the multi-class mask branch section
uses the weighted sum of focal loss and dice loss. Focal
loss balances the proportion of positive and negative sam-
ples by dynamic weighting, which reduces the weight of a
large number of simple negative samples in training. Dice
loss was first proposed in U-Net and can reflect the similar-
ity of two contour regions. Since the label of the mask will
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Figure 4: Comparison of the binary mask branch in the
instance-aware network and our multi-class mask branch.
The top of the figure is the binary mask branch which can
only perform two classes (foreground and background) seg-
mentation in each RoI. It needs to detect two types of the
bounding box, and segment each type into one class. The
bottom is our proposed multi-class mask branch, different
from the binary mask branch, it just detects one bounding
box and segment three classes (optic disc, cup and back-
ground) in it.

change according to the RoIs during each iteration, the net-
work is not accurate enough during the initial training, lead-
ing to the situation in Figure 5. This makes the proportion
of the negative sample much larger than the positive sample,
so we choose the focal loss to optimize the parameters of the
network. Our loss function is as follows:

Lmask(p, p
∗) = λLFL(p, p

∗) + LDL(p, p
∗)

where

LFL(p, p
∗) =

K∑

k=1

[−pkα(1− p∗k)
γ log p∗k

−(1− pk)(1− α)(p∗k)
γ log (1− p∗k)]

LDL(p, p
∗) = 1−

K∑

k=1

2pkp
∗
k

(pk)2 + (p∗k)2

where p = {0, 1} is a binary ground truth label, and
p∗ ∈ [0, 1] denote predicted probability. K is the number
of classes. After detailed tuning parameters, the weighting
factor α is set to 1 and the tunable parameter γ is set to 3. λ
is a constant and is set to 0.3.

4. Experiments

4.1 Data and Evaluation Metric

In our experiments, we use two glaucoma screening datasets.
The first one is the REFUGE dataset, provided by the

Figure 5: Diagram of sample imbalance. The images on the
left and right are partially enlarged for the middle image.
When the detection bounding box is precise, the positive
and negative sample ratios are balanced. On the contrary, the
background ratio is seriously more than the positive sample
ratio.

REFUGE-2018 challenge, including both normal and glau-
comatous cases and ground-truth of segmentation from mul-
tiple human experts. The dataset consists of 1200 color fun-
dus photographs which are split 1:1:1 into 3 subsets equally
for training, offline validation and onsite test. The testing set
is not available currently, we validate the effectiveness of our
proposed method on the validation set. The second one is the
Drishti-GS dataset, provided by Medical Image Processing
(MIP) group, IIIT Hyderabad. It contains 50 training images
and 51 validation images.

As the same in most works (Fu et al. 2018; Zhang et
al. 2019), the dice coefficients of the optic cup (DiceOC)
and disc (DiceOD), mean intersection-over-union (mIoU),
as well as FPS (Frames Per Second), are employed as the
evaluation metrics.

4.2 Implementation Details

Training The backbone of the network we use is FPN
structure with MobileNet-v1 and without using a pretrained
model. The RoIs mentioned above is considered positive if it
has IoU with a ground-truth bounding box of at least 0.5 and
negative otherwise. The mask loss Lmask is defined only on
positive RoIs. The mask target is the intersection between a
RoI and its associated ground-truth mask.

We adopt image-centric training. Images are resized and
padded with zeros to get a square image such that their scale
is 512 pixels. Each mini-batch has 4 images per GPU and
each image has N sampled RoIs, with a ratio of 1:3 of pos-
itives to negatives. N is set to 200. In our experiments, we
train the model on 1 NVIDIA Tesla P100 GPU for 100
epochs and employ stochastic gradient descent (SGD) for
optimizing the deep model. We use a gradually decreasing
learning rate starting from 0.01 and a momentum of 0.9. We
employ the piecewise constant learning rate policy where
the learning rate is multiplied by 0.1 every 30 epoch. For
data augmentation, we apply random flipping (horizontally,
vertically) and rotation (90, 180, 270).
Inference At test time, the number of the proposals is 1000.
We run the box prediction branch on these proposals, fol-
lowed by non-maximum suppression. The mask branch is
then applied to the highest scoring 10 detection boxes which
speeds up inference and improves accuracy (due to the use
of fewer, more accurate RoIs). The mask branch can pre-
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Image GT U-Net M-Net Mask R-CNN RF-Net

Figure 6: The visual examples of the optic disc and cup segmentation, where the yellow and red region denote the cup and disc
segmentation, respectively. From the left to right: fundus image, ground truth (GT), U-Net, M-Net with the polar transformation,
Mask R-CNN, and our RF-Net.

dict k masks per RoI, where k is the predicted class by the
classification branch. The m×m×k floating-number mask
output is then resized to the RoI size, where each pixel value
represents the probability for OD, OC, and background.

4.3 Comparison with State-of-the-art

Our RF-Net is compared to the state-of-the-art approaches
(i.e., U-Net (Cicek et al. 2016), M-Net (Fu et al. 2018), ET-
Net (Zhang et al. 2019), Mask R-CNN (He et al. 2017),
and AIML2. The performance comparison is presented in
Table 1. Our proposed method achieves scores of 89.79%,
96.06% and 87.08% in terms of DiceOC , DiceOD and mIoU
on the REFUGE dataset, respectively. And it achieves scores
of 94.60%, 97.75% and 88.13% on the Drishti-GS dataset.
As shown in Table 1, compared to the second best scores
achieved by AIML, it can be seen that our method has a
marginal improvement of 0.64% for the optic cup and 0.23%
for the optic disc. Compared with Mask R-CNN, our method
has a huge improvement of 7.43% for the optic cup, 5.61%
for the optic disc. On the Drishti-GS dataset, our RF-Net has
slender improvement of 1.46% for the optic cup, 0.23% for
the optic disc and 0.21% for the mIoU respectively, com-
pared to the second best scores achieved by ET-Net. The ex-
perimental results show that Mask R-CNN is not suitable for
the segmentation of overlapping bounding boxes which are
the mostly same size. In addition, our network can reach a
speed of 4 FPS, faster than other works.

2https://refuge.grand-challenge.org/Results-ValidationSet/

(a) mask shape of 28x28 (b) mask shape of 56x56

Figure 7: Comparison of the different shapes of mask
groundtruth. The left part is 28× 28 result and the right part
is 56 × 56. It can be clearly seen the edge of the left is ser-
rated, and the details on the right part remain more complete.

We also show a visual comparison of the OD and OC seg-
mentation results of various methods in Figure 6. For bet-
ter demonstration, the segmentation results are the partially
enlarged images for the whole images. The first two rows
are normal cases and the last row is glaucoma. For the U-
Net method, the segmentation is coarse due to the 16 pix-
els stride at the final prediction layer, causing the loss of
boundary details. The M-Net method obtains more accurate
boundaries, but it easily changes the original shape of the
optic cup with polar transformation. In terms of Mask R-
CNN, the optic cup is not fine because of the challenging cup
detection. By contrast, our RF-Net without post-processing
can effectively and accurately segment OD and OC regions.
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REFUGE Drishti-GS
Method DiceOC(%) DiceOD(%) mIoU(%) DiceOC(%) DiceOD(%) mIoU(%) FPS

U-Net 85.44 93.08 83.12 88.06 96.43 84.87 3.1
M-Net 86.48 93.59 84.02 88.60 96.58 85.88 2.0
ET-Net 89.12 95.29 86.70 93.14 97.52 87.92 3.8

Mask R-CNN 82.36 90.45 76.68 83.53 77.87 75.61 2.2
AIML1 89.15 95.83 - - - - -

Our RF-Net 89.79 96.06 87.08 94.60 97.75 88.13 4.1

Table 1: Optic disc/cup segmentation results on retinal fundus images. Comparison experiment of the state-of-the-art approaches
(U-Net, M-Net, ET-Net, Mask R-CNN and AIML) on the REFUGE and the Drishti-GS datasets.

Our approach can generate better segmentation results, es-
pecially at the boundary regions.

4.4 Ablation Study

Feature Pooling Comparison The performance compari-
son between Pyramid Feature Pooling and Fusion Feature
Pooling is shown in Table 2. When we use the Pyramid
Feature Pooling, it achieves 87.83%, 93.96% and 85.76%
in terms of DiceOC , DiceOD and mIoU, respectively. When
we adopt the Fusion Feature Pooling, it yields more favor-
able scores due to the ability to obtain multi-scale feature
layer information with consideration of the size of propos-
als. Experimental results indicate Pyramid Feature Pooling
using only one scale feature information is not sufficient for
detailed segmentation. In contrast, the Fusion Feature Pool-
ing using multi-scale feature map information can capture
more details and bring great benefit to segmentation.

Feature Pooling DiceOC(%) DiceOD(%) mIoU(%)

Pyramid 87.83 93.96 85.76
Fusion 89.79 96.06 87.08

Table 2: Optic disc/cup segmentation results from different
feature poolings (Pyramid and Fusion Feature Pooling) on
REFUGE dataset.

Loss Comparison To evaluate the contribution of the pre-
sented loss function, we conduct experiments with different
settings on the REFUGE dataset. Our first attempt to train
RF-Net using standard Binary Cross Entropy (BCE) loss
with our learning rate policy mentioned above. BCE loss is
a traditional two-class loss function, while Dice loss defines
the similarity between two contour regions. The focal loss
is a dynamically scaled cross entropy loss for dealing with
class imbalance. As shown in Table 3, when we only use the
dice loss, the result outperforms the other two loss functions.
However, when we combine BCE loss with dice loss, it does
not help in the task. When we append focal loss on dice loss
with a weight of 0.3, it results in more favorable scores due
to the ability to maintain the stability in the training process,
in particular for the optic disc.
Mask Shape Comparison The performance comparison
between different mask shape are demonstrated in Table 4,
employing the mask shapes of 56 × 56 improves the per-
formance remarkably. Compared with the mask shape of
28 × 28 result, it increases 2.25%, 3.03%, 1.96% in terms

Loss Function DiceOC(%) DiceOD(%) mIoU(%)

BCE Loss 88.54 93.84 84.26
Dice Loss 88.50 94.47 84.73
Focal Loss 86.48 93.25 82.26

BCE+Dice Loss 88.25 93.94 84.10
Focal+Dice Loss 89.79 96.06 87.08

Table 3: Optic disc/cup segmentation results from different
loss function on the REFUGE dataset.

Mask Shape DiceOC(%) DiceOD(%) mIoU(%)

28× 28 87.54 93.03 85.12
56× 56 89.79 96.06 87.08

Table 4: Optic disc/cup segmentation results from different
mask shape on the REFUGE dataset.

of DiceOC , DiceOD and mIoU respectively. Particularly, in
early experiments, we attempt to train with the mask shape
of 28× 28. However, as illustrated in Figure 7(a), too many
times of downsampling make the edge information distor-
tion seriously, which results in poor segmentation. Then we
attempt to use the mask shape of 56 × 56. The results are
visualized from Figure 7(b). The segmentation is refiner,
demonstrating the superiority of the larger mask shape. The
results show that the larger mask shape brings a more fan-
tastic benefit to segmentation.

5. Conclusion

In this paper, we propose a novel RF-Net, an end-to-end
trainable architecture, which integrates detection and multi-
class segmentation into a unified network for joint optic disc
and cup segmentation with a global optimization. To achieve
simultaneous segmentation of disc and cup, we design a
multi-class mask branch that can predict multi-class prob-
ability maps. Moreover, we propose a new feature fusion
strategy to utilize multi-scale information, so as to make the
segmentation more subtle. In addition, we construct a loss
function that can balance the positive and negative samples
at the beginning of the training. In online testing, it costs
only 0.244s on 1 NVIDIA Tesla P100 GPU to generate the
final segmentation map for one fundus image, which is faster
than other methods. Finally, we perform our method on the
REFUGE and the Drishti-GS datasets, which achieves the
state-of-the-art performance.
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