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Abstract

Partial differential equations (PDEs) are essential founda-
tions to model dynamic processes in natural sciences. Dis-
covering the underlying PDEs of complex data collected
from real world is key to understanding the dynamic pro-
cesses of natural laws or behaviors. However, both the col-
lected data and their partial derivatives are often corrupted by
noise, especially from sparse outlying entries, due to mea-
surement/process noise in the real-world applications. Our
work is motivated by the observation that the underlying data
modeled by PDEs are in fact often low rank. We thus de-
velop a robust low-rank discovery framework to recover both
the low-rank data and the sparse outlying entries by inte-
grating double low-rank and sparse recoveries with a (group)
sparse regression method, which is implemented as a mini-
mization problem using mixed nuclear norms with �1 and �0
norms. We propose a low-rank sequential (grouped) threshold
ridge regression algorithm to solve the minimization prob-
lem. Results from several experiments on seven canonical
models (i.e., four PDEs and three parametric PDEs) ver-
ify that our framework outperforms the state-of-art sparse
and group sparse regression methods. Code is available at
https://github.com/junli2019/Robust-Discovery-of-PDEs

Machine learning plays a transformative role in analyzing
and understanding dynamic processes from complex data
in the natural sciences (e.g., physics, chemistry, biology
and neuroscience) (Jordan and Mitchell 2015; Butler et al.
2018). Many real-world complex data can be modeled by a
function u(x, t) with spatial locations x and/or time points
t, and its underlying partial differential equations (PDEs)
provide essential foundations to govern the dynamic pro-
cesses, such as, Schröinger’s equations for quantum physics
and chemistry, Navier-Stokes equations for fluid and gas dy-
namics, and FitzHugh-Nagumo models for neural excite-
ment (Schaeffer 2017). A key problem in machine learn-
ing is to identify the governing PDEs from the complex
data. However, the complex data are often corrupted by
noise, especially from sparse outlying entries, due to mea-
surement/process noise, limitations in sensor technologies
and ad-hoc data collection techniques (Elhamifar and Vidal
2013). Therefore, discovering the governing PDEs from the
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Figure 1: Low-rank numerical solutions U ∈ C
n×m and

their partial derivatives Ut ∈ C
n×m of PDEs (e.g., Burg-

ers, Korteweg-de Vries (KdV) and Kuramoto-Sivashinsky
(KS)). U and Ut are collected from all the spatial time se-
ries data u(x, t) and ut(x, t) in the intervals [a, b] and [c, d]
with n spatial locations and m time points.

complex data with sparse outlying entries becomes a central
challenge in many diverse areas of the natural sciences.

Our work is based on the observation that the underly-
ing data modeled by the PDE function u(x, t) are often low
rank since there exist similar patterns and/or linear combi-
nations in its underlying PDEs. For example, in the filtering
Gaussian noise process via singular value decomposition,
low-rank solutions of Navier Stokes and reaction diffusion
have been confirmed in the literature (Rudy et al. 2017).
Moreover, Fig. 1 also shows that the ranks of the numeri-
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cal solutions U of Burgers, Korteweg-de Vries (KdV) and
Kuramoto-Sivashinsky (KS) equations are 15, 26 and 49,
respectively, with ranks computed using MatLab functions,
rank(U, 0.01) or rank(Ut, 0.01). In addition, we observe that
a data matrix Ut discretely sampled from the partial differ-
entiation ut(x, t) is also low rank, that is, the ranks of the
corresponding Ut are respectively 29, 32 and 128 in Fig. 1.

By considering both the complex data U and Ut with the
sparse outlying entries, they can be regarded as the superpo-
sition of the low-rank component and the sparse component
(Candés et al. 2011). Therefore, this leads us to recover both
the complex data U and the partial differentiations Ut by us-
ing double low-rank and sparse decompositions for robustly
discovering the underlying PDEs. In this paper, we intro-
duce a robust approach to discover the governing PDEs by
separating the low-rank data and the sparse outlying entries.
Overall, our contributions are three folds.
• To address the PDEs discovery challenge with the sparse

outlying entries, we develop a robust PDEs discovery
framework by integrating double low-rank and sparse re-
coveries with the (group) sparse regression method. This
framework is implemented as a minimization problem
with mixed nuclear norms using �1 and �0 norms.

• To solve the optimization problem, we introduce a dou-
ble low-rank sparse regression (DLrSR) algorithm that in-
cludes three parts: (i) derive a clean low-rank data matrix
by separating the outliers from the noisy data U , (ii) build
a library using Z from the clean data matrix, and (iii) use a
low-rank sequential (grouped) threshold ridge regression
to robustly find the PDEs.

• Several experiments are demonstrated on seven canonical
models (i.e., four PDEs and three parametric PDEs) with
the introduction of the sparse outliers. The results verify
that our framework outperforms the state-of-the-art group
sparse and sparse regression methods.

Related Work
We mainly review sparse representation, low-rank repre-
sentation and sparse identification of nonlinear dynamics
(SINDy) in this section. We also discuss our robust low-rank
PDEs discovery with SINDy and its variants.

Sparse representation. Suppose an observation x ∈ C
n

can be represented by a linear combination of a given
overcomplete dictionary D ∈ C

n×d(n > d), sparse
representation problem is to seek the possible coeffi-
cients α ∈ C

d with the fewest non-zeros satisfying
an equation x = Dα (Olshausen and Field 1997). To
solve this problem, many different norm minimizations
are usually considered as sparsity constraints, e.g., �0,
�p(0 < p < 1), �1 and �2,1-norms (Donoho and Elad 2003;
Hoyer 2004; Bruckstein, Donoho, and Elad 2009;
Kim and Xing 2012). Moreover, it also has been
successfully applied into many areas, especially in
signal processing, image processing, machine learn-
ing, and computer vision, such as compressive
sensing, image denoising/debluring/inpainting/super-
resolution/classification/clustering, and visual track-
ing (Beck and Teboulle 2009; Yang et al. 2012;

Li, Kong, and Fu 2017; Sun, Cong, and Xu 2018;
Sun et al. 2018; Luo et al. 2018).

Low-rank representation (LRR). Suppose a given data
observation matrix U ∈ C

n×m can be decomposed as a
low-rank matrix Z ∈ C

n×m and sparse (or Gaussian) noise
matrix E ∈ C

n×m, U = Z + E, low-rank problem is to
recover the low-rank and sparse (or Gaussian) components
both accurately (perhaps even exactly) and efficiently. Ro-
bust principal component analysis (RPCA) (Candés et al.
2011) can recover both the low-rank and the sparse com-
ponents exactly under some suitable assumptions. RPCA is
extended into multiple subspaces, called low-rank represen-
tation (LRR) (Liu et al. 2013). RPCA and LRR have been
used in many important applications, such as, video surveil-
lance, face recognition, subspace clustering, ranking and
collaborative filtering (Candés et al. 2011; Liu et al. 2013;
Li et al. 2016; 2017; He, Tan, and Wang 2014).

Sparse identification of nonlinear dynamics (SINDy).
Sparse representation with underlying dynamical systems is
used to discover governing nonlinear equations from data
observations (Bruntona, Proctor, and Kutz 2016). In SINDy,
the spatial time series data u(x, t) with location x ∈ [a, b]
and time t ∈ [c, d] are collected into a matrix U ∈ C

n×m,
where the intervals [a, b] and [c, d] are divided into n spatial
locations and m time points. Next, the collected data is used
to construct an overcomplete library D ∈ C

n×m×d, which
includes d linear, nonlinear and partial derivatives terms. Fi-
nally, the �0 or �1 sparse coding methods are employed to
find the nonlinear and partial derivative terms of the govern-
ing PDEs that most accurately represent partial derivative
data Ut of the collected data U . In the final step, they em-
ploy the �0 or �1 sparse coding methods to find the nonlin-
ear and partial derivative terms of the governing PDEs that
most accurately represent partial derivative data Ut of the
collected data U . In this method, many SINDy variants have
been proposed, for example, exhibiting multiscale physical
phenomenon by discovering nonlinear multiscale systems
(Champion, Brunton, and Kutz 2019), and characterizing
hybrid (switching) behaviors by using Hybrid-SINDy (Man-
gan et al. 2019). In addition, SINDy has been widely applied
to discover nonlinear equations for biological network sys-
tems (Mangan et al. 2016), fluid flows (Loiseau and Brunton
2018), model predictive control (Kaiser, Kutz, and Brunton
2018), convection in a plasma (Dam et al. 2017) and chemi-
cal reaction dynamics (Hoffmann, Frohner, and Noé 2019).

More importantly, some variants of SINDy, such as se-
quential threshold ridge regression (STR) (Rudy et al. 2017;
Schaeffer 2017), have been successfully applied to under-
stand the underlying physical laws by identifying nonlinear
PDEs from time series measurements with Gaussian noise.
Moreover, group sparse coding is extended to discover para-
metric PDEs as the time-series measurements usually obey
unknown PDEs with time-evolving parameters, called se-
quential grouped threshold ridge regression (SGTR) (Rudy
et al. 2019). In addition, deep learning has been applied into
the data-driven discovery of PDEs (Sirignano and Spiliopou-
los 2018; Xu et al. 2019).

Discussion. In the process of collecting and analyzing the
data, however, both the time series data U and the partial
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derivative data Ut are often corrupted by noise (e.g., Gaus-
sian noise and/or outliers). The noise, especially those from
the outliers, make PDEs discovery a challenge. Although
STR and SGTR are robust to the Gaussian noise (Rudy et al.
2017; 2019; Schaeffer 2017), the outliers can lead to failed
or limited discovery of the governing PDEs. Here, we de-
velop a robust low-rank PDEs discovery framework to ef-
fectively handle the outliers with high magnitude Gaussian
noise. Moreover, our robust low-rank discovery framework
can also be extended into SINDy and its variants.

Robust Low-rank PDEs Discovery
In this section, we develop a robust low-rank PDEs dis-
covery approach by first formalizing it as an optimization
problem, and proposing a double low-rank sparse regression
(DLrSR) algorithm to solve this optimization problem.

Problem Formalization
We consider a general partial differential equation in the fol-
lowing form (Rudy et al. 2017; 2019)

ut= N (u, ux, uxx, · · · , x, μ)
=

∑d
i=1 Ni(u, ux, uxx, · · · )ξi,

(1)

where N (·) is a nonlinear function of u(x, t) and its partial
differentiations, μ is a constant μ or time-evolving param-
eters μ(t) : [0, T ] → R, and ξ is a constant coefficient ξ
or time-evolving coefficients ξ(t). Actually, N (·) has poly-
nomial nonlinearities, which are common in many of the
canonical models of the natural sciences. For example, we
consider d = 7 candidate terms [N1, · · · ,N7] = [u, ux,
uxx, uux, u

2ux, uuxx, u
2uxx], Burgers’ equation is N =∑7

i=1 Niξi(t) = −uux +μ(t)uxx, where [ξ1(t), · · · , ξ7(t)]
= [0, 0, μ(t),−1, 0, 0, 0]. (Parametric) PDE-FIND (Rudy et
al. 2017; 2019) is to find the parameters (i.e., μ(t) and −1)
from data measurements by using (group) sparse coding.

Mathematically, a data matrix U ∈ C
n×m with location

x ∈ [a, b] and time t ∈ [0, T ] is discretely and corruptly
collected from the natural function u(x, t) that we assume
satisfies the PDE in Eq. (1). Based on our low-rank observa-
tions of U and its differentiation Ut in Figure 1, we suppose
that both U and Ut may be decomposed as

U = Z + E1, Ut = D(Z,Q)ξ + E2, (2)

where Z and D(Z,Q)ξ have low-rank, E1 and E2 are
sparse; here, all components are of arbitrary magni-
tude. D(Z,Q) ∈ C

n×m×d is a large library of can-
didate terms that may appear in N , and Q is de-
noted as a matrix containing additional information that
may be relevant, such as dependencies on the abso-
lute value of U . Similar to PDE-FIND, D(Z,Q) =
[1, U, U2, · · · , Q, · · · , Ux, UUx, · · · , Q2U3Uxxx].

In this paper, we seek to robustly discover the parame-
ters from the data measurements with sparse noise. It is ad-
dressed by solving the optimization problem as follows:

min
ξ,Z,E1,E2

‖Z‖∗ + ‖D(Z,Q)ξ‖∗ + λ1R(ξ)

+ λ2‖E1‖1 + λ3‖E2‖1, (3)

s.t. U = Z + E1, Ut = D(Z,Q)ξ + E2,

where R(ξ) is a sparse regularization of the parameters ξ,
such as, �0 norm ‖ξ‖0, �1 norm ‖ξ‖1, and group sparse norm∑m

j=1 ‖ξ(j)‖22.

Optimization
Since both the nuclear norm ‖D(Z,Q)ξ‖∗ and the sparse
regularization term R(ξ) include the variable ξ, we intro-
duce an auxiliary variable X to separate them and the prob-
lem (3) is written as

min
ξ(t),Z,X,E1,E2

‖Z‖∗ + ‖X‖∗ + λ1R(ξ) + λ2‖E1‖1

+ λ3‖E2‖1 + λ4

2
‖X −D(Z,Q)ξ‖2F, (4)

s.t. U = Z + E1, Ut = X + E2,

Clearly, the problem (4) is nonconvex due to the dependence
between D(Z,Q) and Z. To solve this challenging problem,
we consider the following augmented Lagrangian function:

L =‖Z‖∗ + ‖X‖∗ + λ1R(ξ(t)) + λ2‖E1‖1 + λ3‖E2‖1+
λ4

2
‖X −D(Z,Q)ξ‖2F +

η1
2
‖U − Z − E1 + Y1/η1‖2F

+
η2
2
‖Ut −X − E2 + Y2/η2‖2F), (5)

where Y1 and Y2 are the Lagrange multipliers with penalty
parameters η1 and η2. We develop a double low-rank sparse
regression (DLrSR) framework shown in Figure 2 to solve
the problem in Eq. (5), which includes the following three
steps. Step 1 is to separate the clean data matrix Z and the
sparse noise matrix E1 by using robust principal component
analysis (Candés et al. 2011). In step 2, Z is used to build the
the library D(Z,Q). In step 3, we use the proposed low-rank
sequential (grouped) threshold ridge regression (LrSTR) to
robustly find the PDE equations.

Step 1 is to ignore the relationship between D(Z,Q) and
Z, and consider the following subproblem:

L1 =‖Z‖∗ + λ2‖E1‖1
+

η1
2
‖U − Z − E1 + Y1/η1‖2F, (6)

which is often called robust Principal Component Analysis
(rPCA). To handle the L1 subproblem (6), we alternately
update the variables {Z,E1, Y1} as follows:

Update the low-rank variable Z by

Z = argmin
Z

‖Z‖∗ + η1
2
‖U − Z − E1 + Y1/η1‖2F,

= J 1
η1

(U − E1 + Y1/η1) , (7)

where J 1
η1

(A) = UAJ 1
η1

(Σ)VA, J 1
η1

(Σ) = diag({σi −
1
η1
}+), the singular value decomposition (SVD) of the ma-

trix A of rank r is A = UAΣVA, Σ = diag({σi}1≤i≤r) and
a+ = max(0, a) (Cai, Candés, and Shen 2010).

Update the sparse outliers variable E1 by

E =argmin
E

λ2‖E1‖1 + η1
2
‖E1 − (U − Z − Y1/η1)‖2F,

=Sλ2
η1

(U − Z − Y1/η1) , (8)
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Figure 2: Steps in the robust PDEs discovery of double low-rank sparse regression (DLrSR) algorithm on Burgers’ equa-
tion. Step 1 separates the outliers E1 from the collected data U ; Step 2 builds a library D(Z,Q) using the clean data Z; Step 3
finds the sparse coefficients ξ by separating the outliers E2 from the partial derivative Ut and mixing the nuclear with �0 norms.

Algorithm 1 rPCA
1: Input: U and λ2

2: Initialize: Y1 = U/J(U), E1 = 0, Z = 0, η1 > 0,
ρ > 0, and ηmax.

3: while not converged do
4: update {Z,E1, Y1} by (7), (8) and (10), respectively,
5: η1 = min{ρη1, ηmax},
6: end while
7: return Z and Y1.

where Sλ2
η1

(·) is the shrinkage-thresholding operator acting

on each element of the given matrix, and is defined as

Sλ2
η1

(a) =

⎧⎨
⎩

a− λ2

η1
, if a > λ2

η1

a+ λ2

η1
, if a < λ2

η1

0, otherwise
. (9)

Update the Lagrange multiplier Y1 by

Y1 =Y1 + η1(U − Z − E1). (10)

The procedure of rPCA is outlined in Algorithm 1.

Step 2 is to build the library D(Z,Q). Based on the clean
data Z solved in (6), the second part is to create the library
D(Z,Q) by using the PDE-FIND algorithm (Rudy et al.
2017).

Step 3 is to propose a low-rank sequential (grouped)
threshold ridge regression (LrSTR) algorithm. To robustly
find the PDE equations, the third part is to consider the fol-

Algorithm 2 Low-rank S(G)TRidge (LrSTR).
1: Input: Ut, D(Z,Q), λ1, λ3 and λ4

2: Initialize: Y2 = Ut/J(Ut), E1 = 0, Z = 0, η2 > 0,
ρ > 0, and ηmax.

3: while not converged do
4: update {X, ξ,E2, Y2} by (12)-(15), respectively,
5: η2 = min{ρη2, ηmax},
6: end while
7: return X , ξ(t), and E2.

lowing subproblem:

L2 =‖X‖∗ + λ1R(ξ) +
λ4

2
‖X −D(Z,Q)ξ‖2F+

λ3‖E2‖1 + η2
2
‖Ut −X − E2 + Y2/η‖2F. (11)

To solve the L2 subproblem (11), we propose a
LrSTR algorithm, which alternately updates the variables
{X, ξ,E2, Y2} as follows:

Update the low-rank variable X by

X = argmin
X

‖X‖∗ + η2 + λ4

2
‖Z − (

η2
η2 + λ4

(Ut

− E2 + Y2/η2) +
λ4

η2 + λ4
D(Z,Q)ξ‖2F,

= J 1
η2+λ4

(
η2(U − E2 + Y2/η2) + λ4D(Z,Q)ξ

η2 + λ4

)
,

(12)

where J 1
η2+λ4

(·) is defined in the Eq. (7).
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Table 1: Summary of robust discovery results for PDEs on four canonical modes. † denotes a failed discovery.
modes methods no noise U+noise {U,Ut}+noise form and discretization

Burgers
STR 0.159%±0.061% ut = −0.744uu†

x ut = −0.740uu†
x ut = −uux + εuxx, ε = 0.1,

x ∈ [−8, 8], n = 256, t ∈ [0, 10],m = 101rSTR 0.124%±0.065% 3.20%±2.198% ut = −0.864uu†
x

DLrSR 0.076%±0.013% 1.271%±0.960% 3.084%±1.285%

KdV
STR 0.957%±0.232% 1©† ut = −2.932uu†

x ut = −6uux − uxxx

x ∈ [−30, 30], n = 512, t ∈ [0, 20],m = 201
rSTR 0.957%±0.232% 9.171%±5.595% 9.840%±5.883%

DLrSR 0.957%±0.232% 9.161%±5.583% 9.203%±5.819%

NLS
STR 0.047%±0.015% 2©† 3©†

iut = − 1
2uxx − |u|2u

x ∈ [−5, 5], n = 512, t ∈ [0, π],m = 501
rSTR 0.047%±0.015% 0.347%±0.029% 4©†

DLrSR 0.047%±0.015% 0.347%±0.029% 0.356%±0.030%

KS
STR 1.275%±1.314% 36.144%±2.939% 5©†

ut = −uux − uxx − uxxxx

x ∈ [0, 100], n = 1024, t ∈ [0, 100],m = 251rSTR 1.221%±1.296% 19.498%±4.650% 5©†
DLrSR 1.218%±1.295% 19.498%±4.650% 39.012%±2.715%

1© ut = −0.056u− 0.341ux − 0.070uxxx; 3© iut = (−0.003 + 0.000i)u2|u|uxx;
4© iut = (0.032 + 0.032i)u|u|uxx + (0.006− 0.000i)u2|u|uxx; 5© ut = −0.174uux − 0.085uxxxx;

2© iut = −(0.487 + 0.490i)uuxx + (0.345 + 0.349i)u|u|uxx − (0.052 + 0.053i)u|u|2uxx.

Algorithm 3 Double Low-rank Sparse Regression (DLrSR)
1: Input: U , λ1, λ2, λ3 and λ4.
2: obtain {Z,E1} by rPCA(U ,λ2) in Algorithm 1,
3: build D(Z,Q) by PDE-FIND (Rudy et al. 2017),
4: obtain {X, ξ,E2} by LrSTR(Ut, D(Z,Q), λ1, λ3, λ4)

in Algorithm 2,
5: return {Z,X, ξ, E1, E2}.

Update the group sparse variable ξ by

ξ = argmin
ξ

λ1R(ξ) +
λ4

2
‖Z −D(Z,Q)ξ‖2F, (13)

where ξ is solved by sequential threshold ridge regression
(STR) (Rudy et al. 2017) or sequential grouped threshold
ridge regression (SGTR) (Rudy et al. 2019).

Update the sparse outliers variable E2 by

E2 =argmin
E2

λ3‖E2‖1 + η2
2
‖E − (U −X − Y2/η2)‖2F,

=Sλ3
η2

(U −X − Y2/η2) , (14)

where Sλ3
η2

(·) is defined in the Eq. (9).

Update the Lagrange multiplier Y2 by
Y2 =Y2 + η2(Ut −X − E2). (15)

The procedure of LrSTR is outlined in Algorithm 2. By
collecting the three parts, the completed optimization pro-
cedure of the double low-rank sparse regression (DLrSR)
is summarized in Algorithm 3. Overall, the convergence of
DLrSR is key to LrSTR as the convergence of rPCA has
been proved in the literature (Candés et al. 2011). Our ex-
periments verify that LrSTR is convergent in Figure 3.

Experiments
In this section, we conduct several experiments to verify
the robust PDEs and parametric PDE discoveries by using
our proposed DLrSR method. Due to the limited space, the
hyper-parameter settings (i.e., λ1-λ4) are provided in the
supplementary material.
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Figure 3: Convergence of LrSTR on Burgers’ equation with
no noise, U+sparse noise, and {U,Ut}+sparse noise. Left is
the loss, and right is the nuclear norm of D(Z,Q)ξ.

Robust Discovery of PDEs
In this subsection, we evaluate our DLrSR method to ro-
bustly find the PDEs on four canonical models; Burgers’,
Korteweg-de Vries (KdV), Nonlinear Schrödinger (NLS)
and Kuramoto-Sivashinsky (KS) equations. For fair compar-
ison, we follow the settings in (Rudy et al. 2017) and nu-
merically solve all parametric PDEs by employing the dis-
crete Fourier transform (DFT) to evaluate spatial derivatives
and using the SciPy function odeint (Jones et al. 2001 ) for
temporal integration with n and m. To replicate the effects
of sparse sensor noise, outliers with 90% sparsity (meaning
that 90% of its cells are zeros) are added directly to both
U and Ut (Schaeffer 2017). In particular, the magnitudes of
the outliers E1 of U are equal to 100% (Burgers’ and KdV)
and 2% (NLS and KS) of their standard deviations, and for
the outliers E2 of Ut, the magnitudes are 200% (Burgers’,
KdV and KS) and 100% (NLS), respectively. We also follow
the error metric (Rudy et al. 2017) between the discovered
sparse coefficients ξ and the ground truth ξ̂ to fairly evaluate
the found results, which is defined as: for ξ = ξ,

error = mean(α)± std(α), (16)

where α =
{ |ξj−̂ξj |

|̂ξj | × 100%
}

and j is the effective coeffi-
cient in ξ. Note that a lower value shows a better discovery.
Moreover, we compare DLrSR with two methods. One is the
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Figure 4: Robust coefficients discovery of the Burgers’ equation with a nonlinear term a(t) = −(1 + sin(t)/4). Both U and
Ut are corrupted by the outliers with 90% sparsity, and their magnitudes are 100% and 150% of their standard deviations.
Compared to the ground truth, our DLrSR is much better than SGTR and rSGTR, which fail to discover the equation.

Table 2: Summary of robust discovery results for parametric PDEs on three canonical modes. † denotes a failed discovery.
modes methods no noise U+noise {U,Ut}+noise form and discretization

Burgers
SGTR 1.0274531% 6592.7198%† 9088.3600%† ut = a(t)uux + εuxx, ε = 0.1,

x ∈ [−8, 8], n = 256, t ∈ [0, 10],m = 101

a(t) = −(1 + sin(t)/4)
rSGTR 0.6218406% 6.3265683% 832.45845%†

DLrSR 0.6082473% 6.3265683% 13.335198%

advection
diffusion

SGTR 0.1726398% 2091.9652%† 2441.1882%† ut = c(x)ux + c′(x)ux + εuxx

x ∈ [−5, 5], n = 256, t ∈ [0, 5],m = 256

c(x) = −1.5 + cos(2πx/5)
rSGTR 0.1726290% 0.76343382% 45.833947%
DLrSR 0.1726290% 0.76343382% 5.2214745%

KS
SGTR
rSGTR
DLrSR

1.3595882%
1.3595882%
1.3595882%

56.255372%
13.972810%
13.972810%

58.559030%
16.428652%
13.961776%

ut = a(x)uux + b(x)uxx + c(x)uxxxx

x ∈ [−20, 20], n = 512, t ∈ [0, 200],m = 1024

a(x) = 1 + sin(2πx/20)/4, b(x) = −1 + e−(x−2)2/5/4

c(x) = −1− e−(x−2)2/5/4

state-of-the-art STR (Rudy et al. 2017); another is to com-
bine rPCA with STR, rPCA+STR (rSTR).

Results. The discovery results of the PDEs are summa-
rized in Table 1. Depending on the different sparse noise,
we have the following three observations. First, DLrSR is
better than STR and rSTR on Burgers’ and KS equations
without sparse noise although all the methods have same
results on KdV and NLS. For example, compared to the
ground truth ut = −uux + 0.1uxx of the Burgers’ equa-
tion, ut = −0.999367uux + 0.100089uxx discovered by
DLrSR is better estimate than ut = −1.000987uux +
0.100220uxx by STR. Second, since U is corrupted by
the sparse noise, STR is worse than DLrSR and rSTR,
which often fail to identify the PDEs equations except
KS. Third, to handle the challenging case that U and Ut

are corrupted by the sparse noise, both STR and rSTR
cannot discover the correct terms in all the PDEs equa-
tions expect KdV using rSTR. Our DLrSR not only iden-
tifies the correct terms, but also shows good discovery re-
sults, for example, ut = −0.956320uux + 0.101799uxx

(Burgers’), ut = −6.23746uux − 1.149225uxxx (KdV),

and ut = (−0.000268 + 0.498145i)uxx + (−0.000132 +
0.996659i)uxxx (NLS). In fact, the KS equation is partic-
ularly challenging to identify with low error on the coeffi-
cients. Although its correct terms are discovered, there is a
high coefficient error. The discovered model of KS is given
by ut = −0.571916uux − 0.623884uxx − 0.633841uxxxx.

Robust Discovery of Parametric PDE
In this subsection, we evaluate our DLrSR method to ro-
bustly find the parametric PDEs on three canonical mod-
els; Burgers’ equation with a time varying nonlinear term,
spatially dependent advection-diffusion (AD) and KS equa-
tions. Similar to (Rudy et al. 2017; 2019), we numerically
solve all parametric PDEs by employing the discrete Fourier
transform (DFT) to evaluate spatial derivatives and using the
SciPy function odeint (Jones et al. 2001 ) for temporal inte-
gration with n and m. To replicate the effects of sparse sen-
sor noise, outliers with 90% sparsity (meaning that 90% of
its cells are zeros) are added directly to both U and Ut (Scha-
effer 2017; Rudy et al. 2019). In particular, the magnitudes
of the outliers of U and Ut are equal to 100% and 150% of
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Figure 5: Robust coefficients discovery of the spatially dependent advection-diffusion equation. Both U and Ut are corrupted by
the outliers with 90% sparsity, and their magnitudes are 100% and 150% of their standard deviations. Compared to the ground
truth, our DLrSR is much better than rSGTR, and SGTR fails to discover the equation.
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Figure 6: Robust coefficients discovery of the spatially dependent Kuramoto-Sivashinsky (KS) equation. Both U and Ut are
corrupted by the outliers with 90% sparsity, and their magnitudes are 0.05% and 150% of their standard deviations. Compared
to the ground truth, our DLrSR is better than SGTR and rSGTR.

their standard deviations, respectively.
Before showing the results, we first consider an error

metric between the discovered sparse coefficients ξ and the
ground truth ξ̂ to evaluate the found results of the parametric
PDEs discovery, which is defined as: for ξ = ξ(t),

error =
‖ξ(t)− ξ̂(t)‖1

‖ξ̂(t)‖1
× 100%, (17)

Note that a lower value shows a better equation discovery.
We compare our DLrSR with two methods. One is the state-
of-the-art SGTR (Rudy et al. 2019); another is to combine
rPCA with SGTR, rPCA+SGTR (rSGTR).

Results. The discovery results of the parametric PDEs are
summarized in Table 2, and the parametric identification of

the Burgers’, AD and KS modes are shown in Figures 4, 5
and 6, respectively. Depending on the different sparse noise,
we have the following three observations. First, SGTR and
rSGTR are worse than our DLrSR on the Burgers’ equa-
tion without sparse noise although they have the same results
on AD and KS. Second, since U is corrupted by the sparse
noise, DLrSR and rSGTR are better than SGTR, which of-
ten fails to identify the modes except KS. Third, our DLrSR
can effectively address the challenging case that U and Ut

are corrupted by the sparse noise, and achieve lower er-
ror than both SGTR and rSGTR. Moreover, Figure 4 shows
that SGTR and rSGTR cannot discover the correct terms in
the Burgers’ modes, and DLrSR identifies the correct terms.
Figures 5 and 6 also show that DLrSR outperforms SGTR
and rSGTR on both AD and KS modes.
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Conclusion
In this paper, we have presented a robust method for identi-
fying the governing laws for physical systems which are of-
ten corrupted by noise, especially outliers. To the best of our
knowledge, our method is the first approach for deriving the
challenging PDEs discovery with outliers. Specifically, we
can separate the clean low-rank data and the outliers. The
DLrSR algorithm exhibits equal or superior performance to
the state-of-the-art STR and SGTR in determining correct
active terms on all the examples with or without outliers.
Even in the cases when both STR and SGTR fail to identify
the correct terms, our DLrSR can still effectively find them.
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