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Abstract

The success of deep convolutional neural networks is par-
tially attributed to the massive amount of annotated training
data. However, in practice, medical data annotations are usu-
ally expensive and time-consuming to be obtained. Consider-
ing multi-modality data with the same anatomic structures are
widely available in clinic routine, in this paper, we aim to ex-
ploit the prior knowledge (e.g., shape priors) learned from one
modality (aka., assistant modality) to improve the segmenta-
tion performance on another modality (aka., target modality)
to make up annotation scarcity. To alleviate the learning dif-
ficulties caused by modality-specific appearance discrepancy,
we first present an Image Alignment Module (IAM) to nar-
row the appearance gap between assistant and target modality
data. We then propose a novel Mutual Knowledge Distillation
(MKD) scheme to thoroughly exploit the modality-shared
knowledge to facilitate the target-modality segmentation. To
be specific, we formulate our framework as an integration
of two individual segmentors. Each segmentor not only ex-
plicitly extracts one modality knowledge from correspond-
ing annotations, but also implicitly explores another modal-
ity knowledge from its counterpart in mutual-guided manner.
The ensemble of two segmentors would further integrate the
knowledge from both modalities and generate reliable seg-
mentation results on target modality. Experimental results on
the public multi-class cardiac segmentation data, i.e., MM-
WHS 2017, show that our method achieves large improve-
ments on CT segmentation by utilizing additional MRI data
and outperforms other state-of-the-art multi-modality learn-
ing methods.

Introduction

Modern clinical practice usually involves multiple imag-
ing techniques, e.g., magnetic resonance imaging (MRI) and
computed tomography (CT), to acquire a more comprehen-
sive view of particular tissues or organs in disease diagnosis
and surgical planning (Cao et al. 2017). For instance, CT
and MRI are extensively used to provide clear anatomical
information of cardiac structures (Zhuang et al. 2019). As
different imaging modalities are based on different physi-
cal imaging principles, they normally emphasize organs or
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tissues with distinct visual contrast. For example, in MRI
brain scans, MRI-T2 has better visual effects in edema,
while MRI-T1c highlights gross tumor core (Woo, Stone,
and Prince 2014). Therefore, multi-modality learning is pro-
gressively developed in medical imaging domain. In recent
years, deep learning based methods have achieved promis-
ing performance in many medical image analysis tasks, re-
lying on the massive amount of annotated data (Litjens
et al. 2017). However, large annotated datasets are usu-
ally expensive and time-consuming to acquire in medical
domain, since the annotations have to be marked by pro-
fessional medical experts under strict and meticulous in-
spection. Considering different imaging modalities reflect
the same anatomic structures, multi-modality learning has
became a promising direction to make up the annotation
scarcity in automatic medical image analysis. In this paper,
we aim to investigate the effectiveness of utilizing the prior
knowledge (e.g., shape priors) learned from one modality
(aka. assistant modality) to improve the segmentation per-
formance on another modality (aka. target modality), where
no assistant-modality data is required in testing phase.

In general, one intuitive way is joint-training, where the
network is trained with both assistant-modality and target-
modality data. Another straightforward approach is to fine-
tune a deep convolutional neural network (DCNN) learned
from assistant-modality data with the target-modality data,
so that it can transfer the prior knowledge learned from
assistant modality to target-modality tasks. Nevertheless,
the shared cross-modality information can not be well ex-
ploited in either joint-training or fine-tuning, since the rep-
resentative modality-shared features are hard to directly
learn from multi-modality data with large appearance dis-
crepancy. Valindria et al. (2018) proposed to assign each
modality data with its specific feature extractor to alleviate
the negative influences from distinct multi-modality appear-
ances. They presented four dual-stream architectures with
well-designed parameter sharing strategies to explore cross-
modality information, and demonstrated X-shape architec-
ture is more suitable for multi-modality image segmentation.
However, these dual-stream architectures incorporate human
intervention in determining parameter sharing, and would
require special adjustments to generalize to other medical
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analysis tasks. In our problem setting, two modality infor-
mation are involved in the network learning, where the valu-
able modality-shared knowledge should be thoroughly ex-
plored to enhance the generalization of networks, while the
redundant modality-specific appearances should be aligned
to ease network learning.

In this paper, we propose a novel cross-modality im-
age segmentation framework based on knowledge distilla-
tion to utilize assistant-modality (e.g., MRI) priors to im-
prove the segmentation performance on target-modality data
(e.g., CT). To alleviate the difficulties caused by modality-
specific appearance discrepancy and facilitate the learning
of modality-shared knowledge, we first present an Image
Alignment Module (IAM) to reduce the appearance gap
by translating the assistant-modality images to synthetic
target-modality images via adversarial learning (Goodfel-
low et al. 2014). As the core workhorses in our frame-
work, we develop a novel Mutual Knowledge Distillation
(MKD) scheme to better exploit the modality-shared knowl-
edge from both assistant and target modality data for supe-
rior segmentation results. We formulate this scheme as the
cohort of two individual segmentors, which directly learn
feature representations from synthetic target-modality data
and real target-modality data, respectively. Besides explic-
itly learned from segmentation annotations, two segmentors
are also mutually guided by its counterpart outputs implic-
itly via knowledge distillation (Hinton, Vinyals, and Dean
2015). Armed with the mutual guidance, both segmentors
are able to explicitly learn the knowledge from one modal-
ity and implicitly learn the knowledge from another modal-
ity concurrently. Additionally, the ensemble of two segmen-
tors would further integrate the knowledge learned from two
modalities and perform more reliable segmentation in target
modality. The whole framework is optimized in end-to-end
online manner, so that the IAM could receive timely feed-
back from MKD scheme to generate more reasonable syn-
thetic target-modality images with well-preserved shape pri-
ors. We extensively evaluate our method on the MM-WHS
2017 Challenge dataset (Zhuang et al. 2019). Our framework
brings large dice improvements (3.06%) for cardiac seg-
mentation on CT volumes by utilizing additional MRI data,
substantially outperforming other multi-modality learning
methods. The major contributions of this paper are as fol-
lows.

• We present an effective multi-modality learning frame-
work to utilize prior knowledge of one modality to en-
hance the segmentation performance of another modality.

• We propose a novel Mutual Knowledge Distillation
scheme to better exploit modality-shared knowledge with
mutual guidance of segmentor outputs.

• We also present an Image Alignment Module to reduce
cross-modality appearance discrepancy to promote the
learning of modality-shared knowledge.

• We extensively evaluate our method on public multi-
class cardiac segmentation challenge data (Zhuang et
al. 2019). Our method outperforms other state-of-the-art
multi-modality learning methods.

Related Work

Multi-modality Learning in Medical Imaging

Multi-modality learning has been widely studied in medi-
cal field. Many approaches (Fidon et al. 2017; Kamnitsas et
al. 2017; Guo et al. 2018; Nie et al. 2016) proposed differ-
ent feature fusion strategies to utilize complementary visual
reflections of multi-modality data for comprehensive seg-
mentation. For example, Kamnitsas et al. (2017) presented
a dual pathway architecture to incorporate cross-modality
local and global features for brain lesion segmentation from
multi-channel MRI data, while Fidon et al. (2017) designed
a nested architecture to jointly utilize different modality of
MRI brain tumor data and adapt their framework to han-
dle scalable inputs. Guo et al. (2018) compared the effec-
tiveness of feature-level, classifier-level and decision-level
feature fusion for multi-modality tumor segmentation. How-
ever, these methods also require paired multi-modality data
in testing stage to perform thorough feature fusion, while we
aim to exploit the priors of assisted modality to to promote
the performance on another modality by enhancing model
generalization ability, where only target-modality data is re-
quired in the testing phase.

To utilize the prior knowledge between different modal-
ities, Zheng (2015) proposed the marginal space learn-
ing method to transfer assisted modality knowledge to tar-
get modality. Moeskops et al. (2016) investigated how to
utilize multi-modality information under multi-task learn-
ing frameworks. Recently, Valindria et al. (2018) devel-
oped dual-stream encoder-decoder architectures, which as-
sign each modality with specific branch and extract cross-
modality features with delicately designed parameter shar-
ing strategies. With the recent advance in image transla-
tion (Goodfellow et al. 2014; Zhu et al. 2017), many re-
searchers were inspired to tackle medical problems with
modality translation. Zhao et al. (Zhao et al. 2019) integrated
registration between different modality MR images for data
augmentation. Jiang et al. (2018) and Zhang et al. (2018b)
proposed to eliminate the appearance gap of different modal-
ities with generative adversarial network (GAN) for multi-
modal segmentation. Jiang et al. (2018) proposed to train
a GAN to generate meaningful synthetic MRI images first,
and take synthetic images with real ones together as seg-
mentor inputs for lung cancer segmentation, while Zhang
et al. (2018b) proposed to jointly optimize GAN and seg-
mentor, where the updated synthetic information could be
exploited. Different from these methods which directly fuse
multi-modality knowledge by joint training, our framework
takes two branches for synthetic data and real data respec-
tively, and integrates cross-modality knowledge in a mutual-
guided way.

Knowledge Distillation

Our work is also related to knowledge distillation, which
was first proposed for network compression (Hinton,
Vinyals, and Dean 2015). Hinton et al. (2015) proposed to
use the output class probabilities of a static cumbersome
model as soft targets to teach a lightweight student model.
Zagoruyko and Komodakis (2017) further forced the stu-
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Figure 1: Overview of our framework, where magenta and blue represent the data flow of assistant modality (e.g., MRI) and
target modality (e.g., CT) respectively. The generator Ga→t performs assistant-to-target translation and outputs synthesized CT
data. The magenta-to-blue transition arrow represents the knowledge transfer from Ssyn to Sreal guided by Ls→r

kd , while the
blue-to-magenta transition arrow demonstrates the knowledge transfer from Sreal to Ssyn guided by Lr→s

kd . In this way, both
segmentors are mutually guided. In testing, we feed xt into both segmentors and adopt the ensemble prediction as final results.

dent network to mimic middle-level attention maps of the
teacher network besides its output probability maps. Since
classical knowledge distillation approaches always require
a powerful pre-trained teacher model, mutual learning was
proposed to encourage an ensemble of networks to learn
from each other cooperatively throughout the training pro-
cess (Zhang et al. 2018a). Based on this, Wu et al. (2019b)
utilized mutual learning to capture complementary features
in semi-supervised classification. Wu et al. (2019a) applied
mutual learning between contour extraction and edge extrac-
tion for saliency detection. We share a similar philosophy
with mutual learning, but aim to design a cross-modality
learning framework to utilize the shape priors from differ-
ent modalities, which results in a different methodology.

Methodology

In this section, we introduce our proposed cross-modality
image segmentation framework in details. Given a set of
labeled samples {xa

i , y
a
i }Ni=1 from assistant-modality data

Xa, and a set of labeled samples
{
xt
j , y

t
j

}M

j=1
from target-

modality data Xt, we involve both Xa and Xt in network
training, to improve the segmentation performance on tar-
get modality during testing. As illustrated in Figure 1, we
design an Image Alignment Module (IAM) to eliminate
the modality-specific appearance differences, and a Mutual
Knowledge Distillation (MKD) scheme to thoroughly ex-
ploit modality-shared knowledge. The whole framework is
optimized in online mutual learning manner.

Image Alignment Module

Since redundant modality-specific appearances would intro-
duce bias and increase the difficulty in leveraging the valu-
able modality-shared prior knowledge from Xa, we pro-
pose to perform a transformation from assistant-modality
image xa to target-modality image xt. In this way, the syn-
thetic target-modality image xa→t would acquire similar ap-
pearances to target-modality data with unaffected assistant-
modality structures.

Inspired by generative adversarial networks (Goodfellow
et al. 2014), we adopt a generator Ga→t and discrimina-
tor Dt to perform the assistant-to-target image translation
Ga→t : Xa → Xt by adversarial learning. To be specific,
the generator Ga→t takes real assistant-modality image xa

as inputs and produces realistic synthetic target-modality
image xa→t = Ga→t(x

a) to fool the discriminator Dt,
while the discriminator Dt tries to distinguish the synthetic
images from real ones. In this way, the Ga→t and the Dt are
competing while improving each other. The parameters of
Ga→t and Dt are optimized by adversarial loss as

Lt
adv(Ga→t, Dt) =Ext∼Xt [logDt(x

t)]+

Exa∼Xa [log(1−Dt(Ga→t(x
a)))],

(1)
where Ga→t tries to minimize the objective function by gen-
erating more realistic target-modality images, while Dt in-
tends to maximize it by identifying synthetic target-modality
images from real ones.

Since the above mapping alone is weakly-constrained, an
inverse mapping Gt→a : Xt → Xa is introduced to impose
the cycle-consistency constrain (Zhu et al. 2017). Particu-
larly, we attach another generator Gt→a and discriminator
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Da into this module and form a similar minimax game by
adversarial loss in the following

La
adv(Gt→a, Da) =Exa∼Xa [logDa(x

a)]+

Ext∼Xt [log(1−Da(Gt→a(x
t)))].

(2)
The cycle-consistency constraint forces the synthetic im-
ages could be translated back to the input images, mean-
ing the reconstructed assistant-modality image x̂a =
Gt→a (Ga→t (x

a)) should be similar to xa. And the re-
constructed target-modality image x̂t = Ga→t (Gt→a (x

t))
should also be closer to xt. Specifically, the cycle-
consistency loss is defined as

Lcyc (Ga→t, Gt→a) =Exa∼Xa ‖x̂a − xa‖1 +
Ext∼Xt

∥
∥x̂t − xt

∥
∥
1
.

(3)

Overall, the full objective functions to optimize Ga→t and
Gt→a are summarized as

La→t
gan = Lt

adv + λcycLcyc, (4)

Lt→a
gan = La

adv + λcycLcyc, (5)

where λcyc is a hyperparameter to balance training. Noted
that the generator Ga→t is co-optimized with the following
Mutual Knowledge Distillation scheme to preserve shape in-
variance in end-to-end manner, which will be concretely de-
scribed in Section . Through this module, the appearances of
assistant-modality data are aligned with target modality, and
the modality-shared prior knowledge could be better inves-
tigated in the following step.

Mutual Knowledge Distillation

To thoroughly exploit modality-shared knowledge, we de-
velop a novel Mutual Knowledge Distillation (MKD)
scheme to facilitate the network learning. We formulate
it as a cohort of two segmentation networks, i.e., syn-
thetic segmentor Ssyn and real segmentor Sreal, where Ssyn

and Sreal receive direct supervision from synthetic target-
modality image xa→t and real target-modality image xt,
respectively. During training, we not only encourage each
segmentor to explicitly learn one modality knowledge from
corresponding annotations, but also guide it to implicitly ex-
plore another modality knowledge from its peer segmentor
outputs. With mutual guidance, both segmentors could ex-
plore feature representations of two modalities in explicit
and implicit ways.

For explicit learning, the segmentors are optimized with
the supervised segmentation loss with respect to the ground
truth. Specifically, the synthetic segmentor Ssyn mainly
learns assistant-modality features from synthetic target-
modality image xa→t with assistant-modality annotation
ya, while the real segmentor Sreal mainly exploits target-
modality information from real target-modality image xt

with target-modality ground truth yt. The supervised seg-
mentation loss is formulated as the combination of cross-

entropy loss Lce and dice loss Ldice:

pa→t
syn = Ssyn

(
xa→t

)
,

ptreal = Sreal

(
xt
)
,

Lsyn
sup = Lce

(
ya, pa→t

syn

)
+ Ldice

(
ya, pa→t

syn

)
,

Lreal
sup = Lce

(
yt, ptreal

)
+ Ldice

(
yt, ptreal

)
,

(6)

where ya and yt are the segmentation ground truth of assis-
tant modality and target modality, respectively.

For implicit learning, we propose to utilize the outputs
of each segmentor as guidance for its counterpart, so that
synthetic segmentor Ssyn and real segmentor Sreal are mu-
tually guided by each other and interactively explored the
dark knowledge (i.e., output category similarity) from each
other (Furlanello et al. 2018) (Hinton, Vinyals, and Dean
2015). To make real segmentor exploit the guidance from
synthetic segmentor, we feed synthetic target-modality im-
age xa→t into real segmentor Sreal to produce the probabil-
ity map pa→t

real = Sreal (x
a→t), and encourage it to be sim-

ilar to synthetic segmentor output pa→t
syn with the synthetic-

to-real knowledge distillation loss Ls→r
kd (i.e., the magenta

filled circle in Figure 1). Since Ssyn is directly supervised
by synthetic target-modality annotations, the guidance (i.e.,
pa→t
syn ) is trustworthy. Furthermore, as Ssyn is equipped with

assistant-modality priors, this synthetic-to-real knowledge
distillation scheme would transfer knowledge from Ssyn to
Sreal and facilitate Sreal to integrate the cross-modality in-
formation effectively. Similarly, we also feed real target-
modality images xt into synthetic segmentor Ssyn to ob-
tain the probability map ptsyn = Ssyn (x

t). By narrowing
down the differences between ptsyn and real segmentor out-
put ptreal, Ssyn takes the informative guidance from Sreal

by real-to-synthetic knowledge distillation loss Lr→s
kd (i.e.,

the blue filled circle in Figure 1). With the training going
on, both segmentors are mutually guided to gradually ex-
plore the knowledge of another modality from its counter-
part. We formulate the knowledge distillation loss as the
cross-entropy between two probability maps, following pre-
vious work (Hinton, Vinyals, and Dean 2015):

Ls→r
kd = Lce

(
pa→t
syn , pa→t

real

)
,

Lr→s
kd = Lce

(
ptreal, p

t
syn

)
.

(7)

The objective functions to train Ssyn and Sreal are then
defined as

Lreal
seg = Lreal

sup + λ1
kdLs→r

kd ,

Lsyn
seg = Lsyn

sup + λ2
kdLr→s

kd ,
(8)

where λ1
kd and λ2

kd are hyperparameters. In summary, each
individual segmentor is optimized by the supervised seg-
mentation loss to explicitly learn one modality knowledge,
as well as knowledge distillation loss to implicitly absorb
another modality knowledge, and thus comprehensively in-
vestigates cross-modality information under peer guidance.

Online Mutual Training

Overall, our total objective to train the whole framework can
be formulated as

Lobj = La→t
gan + Lt→a

gan + Lsyn
seg + Lreal

seg . (9)
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Algorithm 1 Training procedure of the proposed approach
Input: A batch of (xt, yt) from target-modality dataset Xt

and (xa, ya) from assistant-modality dataset Xa

Output: The prediction pt of input xt

1: θGa→t
, θGt→a

, θDa
, θDt

, θSsyn
, θSreal

← initialize
2: while not converge do
3: (xt, yt), (xa, ya)← sampled from Xt and Xa

4: Calculate La→t
gan and Lsyn

sup as Eq. (4) and (6)

5: Update θGa→t

+← −ΔθGa→t

(La→t
gan + Lsyn

sup

)

6: Calculate Lt
adv as Eq. (1)

7: Update θDt

+← −ΔθDt
Lt
adv

8: Calculate Lt→a
gan as Eq. (5)

9: Update θGt→a

+← −ΔθGt→a
Lt→a
gan

10: Calculate La
adv as Eq. (2)

11: Update θDa

+← −ΔθDa
La
adv

12: Calculate Lsyn
seg and Lreal

seg as Eq. (8)

13: Update θSsyn

+← −ΔθSsyn
Lsyn
seg

14: Update θSreal

+← −ΔθSreal
Lreal
seg

15: Calculate ptreal and ptsyn
16: return pt ← the ensemble of ptreal and ptsyn

The entire framework is trained in online manner, and we
update all components alternatively in each iteration. Algo-
rithm 1 presents detailed training procedures. We closely
follow the settings in Zhu et al. (2017) to optimize Ga→t,
Dt, Gt→a, and Da, except that the generator Ga→t is op-
timized together with Ssyn by La→t

gan and Lsyn
sup with Ssyn

fixed. This strategy ensures geometric transformation con-
sistency in Ga→t by constraining pixel-level semantic re-
lationship of synthetic target-modality images. Due to that,
Ga→t could generate meaningful synthetic target-modality
data with unaffected shape priors.

For segmentation networks, we alternatively update the
weights of Ssyn and Sreal by the combination of super-
vised segmentation loss and knowledge distillation loss.
From Ssyn view, the real-to-synthetic knowledge distillation
loss provides chances to have a glimpse of real data, which
guides Ssyn to generalize towards a more reliable direction.
From Sreal view, the synthetic-to-real knowledge distilla-
tion loss brings additional knowledge of highly realistic syn-
thetic data as data augmentation and directly enhance its
generalization ability. The real-to-synthetic and synthetic-
to-real knowledge distillation make Ssyn and Sreal mutually
benefit from each other’s guidance in online manner. The en-
semble model is able to explore more informative and com-
prehensive cross-modality knowledge. In testing, we feed xt

into both segmentors and adopt the ensemble prediction as
final results.

Experiments

Dataset and Implementation Details

We evaluate the proposed method on the Multi-modality
Whole Heart Segmentation Challenge 2017 (MM-WHS

2017) dataset, which contains unpaired 20 MRI and 20 CT
volumes as the training data and the annotations of 7 cardiac
substructures including the left ventricle blood cavity (LV),
the right ventricle blood cavity (RV), the left atrium blood
cavity (LA), the right atrium blood cavity (RA), the my-
ocardium of the left ventricle (MYO), the ascending aeorta
(AA), and the pulmonary artery (PA) (Zhuang et al. 2019).
Here, we take MRI as assistant modality and CT as target
modality, as MRI images have better soft tissue contrast and
would provide more detailed heart information for CT seg-
mentation. We randomly split 20 CT volumes into two folds
and perform two-fold cross validation. In each fold, we use
all 20 MRI volumes and 10 CT volumes to train our network.

Following data preprocessing procedures of previous
works in this dataset (Chen et al. 2019), the image slices are
sampled in coronal view, cropped centered at heart region,
and resized into 256× 256. Data augmentation methods ap-
plied here include random flipping and rotating. The archi-
tectures of generators and discriminators are closely follow-
ing the setting in Zhu et al. (2017), and the segmentors adopt
the baseline network architecture in (Valindria et al. 2018),
consisting of Unet (2015) with residual blocks (2016). In
training, Adam optimizer is used for the optimization of gen-
erators, discriminators and segmentors with the learning rate
of 2×10−4, except for segmentors which adopt a decay rate
of 0.9 for every two epochs. The hyperparameters λcyc, λ1

kd

and λ2
kd are empirically set as 10, 0.5 and 1, respectively.

Experimental Results

Comparison with other methods. To demonstrate the ef-
fectiveness of our method, we train a segmentor with only
CT data as our baseline and compare our method with other
multi-modality learning methods. The quantitative results in
whole heart segmentation are shown in Table 1. In joint-
training, the segmentor is trained with both CT and MRI data
simultaneously, while in fine-tune, we pretrain a segmen-
tor with MRI data and then update the network parameters
by CT data. We compare with X-shape architecture, which
achieves the best segmentation performance among all dual-
stream architectures in (Valindria et al. 2018). We also com-
pare with Jiang et al. (2018) and Zhang et al. (2018b), which
employ GAN to alleviate multi-modality appearance dis-
crepancy in network training. As Ssyn and Sreal acquire two
modality prior knowledge, we input CT data in both segmen-
tors. Considering complementary information, we adopt the
ensemble prediction as final results. Note that all methods
mentioned above are experimented with the same segmentor
backbone for fair comparison. We use the Dice coefficient as
evaluation metric.

It is observed that with assisted modality data, all multi-
modality learning approaches achieve average dice improve-
ments of all substructures in CT segmentation compared
with baseline, which demonstrates the feasibility of utiliz-
ing assisted modality priors to promote the performance
on target-modality segmentation. However, the mean dice
improvements of fine-tune and joint-training are limited,
i.e., 0.63% and 0.37%, respectively. X-shape method only
achieves comparable results with fine-tune, since separate
branch could only avoid, not directly reduce appearance

779



Table 1: Quantitative comparison between our method and other multi-modality segmentation methods. Here we take CT as
target modality and MR as assistant modality. The dice of all heart substructures and the average of them are reported here.

Method Mean Dice Dice of substructures of heart
MYO LA LV RA RV AA PA

Baseline 0.8706 0.8702 0.8922 0.9086 0.8386 0.846 0.9252 0.8134
Fine-tune 0.8769 0.8716 0.9040 0.9079 0.8443 0.8526 0.9274 0.8305

Joint-training 0.8743 0.8665 0.9076 0.9123 0.8278 0.8492 0.9302 0.8266
X-shape (2018) 0.8767 0.8719 0.8979 0.9094 0.8551 0.8444 0.9343 0.8240

Jiang et al. (2018) 0.8765 0.8723 0.9054 0.9073 0.8338 0.8525 0.9484 0.8156
Zhang et al. (2018b) 0.8850 0.8781 0.9112 0.9134 0.8514 0.8631 0.9430 0.8342

Ours (Ssyn) 0.8849 0.8738 0.9086 0.9169 0.8571 0.8633 0.9412 0.8333
Ours (Sreal) 0.8947 0.8893 0.9131 0.9197 0.8668 0.8758 0.9552 0.8432

Ours 0.9012 0.8934 0.9190 0.9267 0.8747 0.8814 0.9595 0.8538

CT image Baseline Fine-tune Joint-training X-shape Jiang et al. Zhang et al. Ours Ground truth

RALV PAAARVLAMYO

Figure 2: Visual comparison of segmentation results produced by different methods, where the legend for cardiac substructures
is presented on the top. As we can see, our results (second last column) are closer to the ground truth (last column) than others.

gap. Although Jiang et al. (2018) proposed to use GAN
for multi-modality appearance difference reduction, the im-
provement is still limited. The reason may be that they
train the GAN and segmentor in offline manner, where
the segmentor would be incompatible to the generated im-
ages. With the help of online training strategy, Zhang et
al. (2018b) achieve 0.85% mean dice improvements than
Jiang et al. (2018). Compared with Zhang et al. (2018b), our
approach takes advantages of mutual knowledge distillation
scheme and can interactively improves the cross-modality
knowledge exploration of each segmentor Therefore, our
method (last row in Table 1) achieves the highest dice in
all heart substructure segmentation and further outperforms
Zhang et al. (2018b) with 1.62% in mean dice.

For our approach, both real segmentor Sreal and syn-
thetic segmentor Ssyn enhance the mean dice with 2.41%
and 1.43% compared to baseline. Since Sreal is trained by

direct supervision from real CT annotations, while Ssyn di-
rectly learn from synthetic CT data, the mean dice of Sreal

is slightly better than Ssyn. During training, Sreal learns ex-
plicit knowledge from CT data and implicit priors from MRI
data. Meanwhile, Ssyn absorbs explicit MRI knowledge and
implicit CT priors. Considering the complimentary infor-
mation, the ensemble segmentor acquires 3.06% improve-
ments than baseline in mean dice, which demonstrates the
effectiveness of our method. One intuitive explanation of
why our mutual knowledge distillation performs better than
joint-training is that joint training could be seen as “hard-
parameter” sharing (same parameters) between real and syn-
thetic segmentor, while our Mutual Knowledge Distillation
scheme enables “soft-parameter” sharing, which provides
more flexibility in feature extraction.

It is worth to mention that the effectiveness of our method
is from the cross-modality mutual knowledge distillation,
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Table 2: Ablation study of key components in our method,
where the mean dice of all heart substructures is reported.

Methods Ssyn Sreal Sens

W/o IAM 0.8730 0.8745 0.8829

W/o Ls→r
kd 0.8825 0.8742 0.8879

W/o Lr→s
kd 0.5785 0.8904 0.7937

Ours 0.8849 0.8947 0.9012

Table 3: Performance comparison of different amounts of
assisted modality data in training.

Setting Mean Dice

5-MRI 0.8916
10-MRI 0.8945
20-MRI 0.9012

not solely gains from model ensemble. For single segmen-
tor, our Sreal outperforms Zhang et al. (2018b) with 1.27%
in mean dice with the same segmentor architecture, as shown
in Table 1. Moreover, for ensemble segmentor, we train two
segmentors in Zhang et al. (2018b) with the combination of
synthetic and real CT and use the ensemble prediction as the
final results. This ensemble method achieve the mean dice
of 88.92%, inferior to our final results by 1.2%, validating
the effectiveness of proposed MKD regularization scheme.

Qualitative comparison. The qualitative comparison be-
tween different methods is presented in Figure 2. As ob-
served, without assistant-modality prior knowledge, the net-
work trained only with CT data would misidentify many
substructures. After exploiting assisted modality informa-
tion, the segmentation results are better but still scattered
and fragmentary, especially in fine-tune and X-shape. Ow-
ing to the proposed Mutual Knowledge Distillation scheme,
the predictions of our method have more smooth contours
and are closer to the ground truth compared to others.

Ablation analysis. To investigate the effectiveness of the
key components in our framework, we conduct ablation
studies and the quantitative results are presented in Table 2.
We first remove the Image Alignment Module (IAM) and
directly train Ssyn and Sreal with raw CT and MRI data un-
der the Mutual Knowledge Distillation scheme. As observed
from Table 2, the mean dice of Ssyn and Sreal are simi-
lar to each other. The segmentation performance of Ssyn,
Sreal and Sens are degraded by 1.19%, 2.02% and 1.83%,
respectively, showing the importance of IAM in our frame-
work. We further present some synthesized CT images in
Figure 3. As we can see, the heart structures are clear and
well-preserved during translation. In addition, we also con-
duct experiments with only one-way knowledge distillation
existing in our framework. As shown in Table 2, without
synthetic-to-real knowledge distillation, the results of Ssyn

is comparable with mutual distillation, while the perfor-
mance of Sreal is weaken and compromised. Specifically,
Sreal and Sens decrease 2.05% and 1.33% compared to mu-

tual distillation respectively. In another aspect, with the ab-
sence of real-to-synthetic knowledge distillation, the perfor-
mance of Ssyn is hugely deteriorated and further corrupts
Sens performance. As no real CT data is involved in any
ways for training Ssyn, the Ssyn is completely isolated and
lost. With our proposed mutual knowledge distillation, both
segmentors could gain mutual benefits from each other’s
training.

We also present the qualitative comparison among pre-
dictions of Ssyn, Sreal and our ensemble results in Figure 4.
Since the cohort of Ssyn and Sreal integrates information
from annotations and peer guidance from each other’s out-
puts, the ensemble segmentor could highlight the uniform
predictions while correcting the misleading predictions. For
those inconsistent predictions of Ssyn and Sreal (e.g., last
row in Figure 4), Sens comprehensively considers different
opinions and gives back reliable predictions. Overall, the key
components of our network are tightly incorporated and col-
laboratively devote to remarkable segmentation results.

Real
MRI images

Synthetic
CT images

Figure 3: Generated results of Image Alignment Module,
where MRI structures in synthetic CT images are well-
preserved with clear edges.

Ground truthCT image

MYO LA LV RA RV AA PA

Figure 4: Visual comparison of segmentation results by
Sreal, Ssyn and the ensemble segmentor, which could bal-
ance inconsistent predictions and produce reliable results.

Effect of different amounts of assistant-modality data.
We further investigate the effects of different amounts of
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Table 4: Quantitative comparison between our approach and other multi-modality segmentation methods in whole heart seg-
mentation. Here we take MR as target modality and CT as assistant modality. The dice of all cardiac substructures and mean
dice are reported.

Method Mean Dice Dice of substructures of heart
MYO LA LV RA RV AA PA

Baseline 0.8243 0.8259 0.8153 0.9347 0.8146 0.9140 0.7365 0.7288
Fine-tune 0.8217 0.8336 0.8447 0.9371 0.7893 0.8940 0.7015 0.7516

Joint-training 0.8306 0.8375 0.7893 0.9303 0.8507 0.9119 0.7487 0.7455
X-shape (2018) 0.8337 0.8321 0.8247 0.9347 0.8450 0.9181 0.7278 0.7536

Jiang et al. (2018) 0.8370 0.8309 0.8569 0.9356 0.8582 0.9016 0.7334 0.7422
Zhang et al. (2018b) 0.8375 0.8360 0.8169 0.9317 0.8501 0.9183 0.7435 0.7663

Ours (Ssyn) 0.8382 0.8405 0.8308 0.9337 0.8655 0.9136 0.7351 0.7483
Ours (Sreal) 0.8466 0.8507 0.8582 0.9427 0.8623 0.9091 0.7398 0.7633

Ours 0.8517 0.8525 0.8695 0.9437 0.8655 0.9121 0.7544 0.7640

assistant-modality data in the network training. We conduct
experiments with 5, 10 and 20 MRI volumes as assistant-
modality data in network training and quantitatively evalu-
ate these settings on CT segmentation in Table 3. Like the
previous, we use the same CT volumes and perform two-
fold cross-validation, and randomly pick the corresponding
number of MRI volumes as assisted modality data. Gener-
ally, it is observed that the performance of CT segmentation
is enhanced with the increase of MRI data, as more MRI
data implies more assisted prior knowledge.

Extensive experiments with CT as assistant modality.
To demonstrate the benefit of our proposed mutual knowl-
edge distillation is bidirectional, we conduct another exper-
iments to take CT as assistant modality, while MR as tar-
get modality. All substructure dice and their mean dice are
reported in Table 4. Our method outperforms baseline and
Zhang et al. (2018b) with 2.74% and 1.42% in mean dice,
respectively. Our single segmentor Sreal also achieves better
performance than Zhang et al. (2018b) by 0.91% in average
dice. The results show that our method could be bidirection-
ally applied to both modalities and have no constrain in tar-
get modality chosen.

Conclusion

In this paper, we propose a novel multi-modality image seg-
mentation framework to demonstrate the effectiveness of
exploiting assistant-modality prior knowledge to enhance
the segmentation performance on target modality. In spe-
cific, we first design an Image Alignment Module to re-
duce appearance discrepancy by generating synthetic target-
modality images via adversarial learning. More importantly,
we present the Mutual Knowledge Distillation scheme to
thoroughly exploiting the modality-shared knowledge by ex-
plicitly learning one modality knowledge from segmenta-
tion annotations and implicitly exploring another modality
knowledge with peer guidance. The experimental results on
public multi-modality cardiac segmentation dataset verify
the effectiveness of our method and demonstrate superior
performance against other state-of-the-art methods.
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