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Abstract

The Gradient Boosting Decision Tree (GBDT) is a popular
machine learning model for various tasks in recent years.
In this paper, we study how to improve model accuracy of
GBDT while preserving the strong guarantee of differential
privacy. Sensitivity and privacy budget are two key design
aspects for the effectiveness of differential private models.
Existing solutions for GBDT with differential privacy suf-
fer from the significant accuracy loss due to too loose sen-
sitivity bounds and ineffective privacy budget allocations (es-
pecially across different trees in the GBDT model). Loose
sensitivity bounds lead to more noise to obtain a fixed pri-
vacy level. Ineffective privacy budget allocations worsen the
accuracy loss especially when the number of trees is large.
Therefore, we propose a new GBDT training algorithm that
achieves tighter sensitivity bounds and more effective noise
allocations. Specifically, by investigating the property of gra-
dient and the contribution of each tree in GBDTs, we propose
to adaptively control the gradients of training data for each it-
eration and leaf node clipping in order to tighten the sensitiv-
ity bounds. Furthermore, we design a novel boosting frame-
work to allocate the privacy budget between trees so that the
accuracy loss can be further reduced. Our experiments show
that our approach can achieve much better model accuracy
than other baselines.

1 Introduction

Gradient Boosting Decision Trees (GBDTs) have achieved
state-of-the-art results on many challenging machine learn-
ing tasks such as click prediction (Richardson, Domi-
nowska, and Ragno 2007), learning to rank (Burges 2010),
and web page classification (Pennacchiotti and Popescu
2011). The algorithm builds a number of decision trees
one by one, where each tree tries to fit the residual
of the previous trees. With the development of efficient
GBDT libraries (Chen and Guestrin 2016; Ke et al. 2017;
Prokhorenkova et al. 2018; Wen et al. 2019), the GBDT
model has won many awards in recent machine learning
competitions and has been widely used both in the aca-
demics and in the industry (He et al. 2014; Zhou et al. 2017;
Ke et al. 2017; Jiang et al. 2018; Feng, Yu, and Zhou 2018).
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Privacy issues have been a hot research topic re-
cently (Shokri et al. 2017; Truex et al. 2018; Fredrikson,
Jha, and Ristenpart 2015; Li et al. 2019a; Li, Wen, and He
2019). Due to the popularity and wide adoptions of GBDTs,
a privacy-preserving GBDT algorithm is particularly timely
and necessary. Differential privacy (Dwork 2011) was pro-
posed to protect the individuals of a dataset. In short, a com-
putation is differentially private if the probability of pro-
ducing a given output does not depend much on whether
a particular record is included in the input dataset. Dif-
ferential privacy has been widely used in many machine
learning models such as logistic regression (Chaudhuri and
Monteleoni 2009) and neural networks (Abadi et al. 2016;
Acs et al. 2018). Sensitivity and privacy budget are two key
design aspects for the effectiveness of differential private
models. Many practical differentially private models achieve
good model utility by deriving tight sensitivity bounds and
allocating privacy budget effectively. In this paper, we study
how to improve model accuracy of GBDTs while preserving
the strong guarantee of differential privacy.

There have been some potential solutions for im-
proving the effectiveness of differentially private GBDTs
(e.g., (Zhao et al. 2018; Liu et al. 2018; Xiang et al. 2018)).
However, they can suffer from the significant accuracy loss
due to too loose sensitivity bounds and ineffective privacy
budget allocations (especially across different trees in the
GBDT model).

Sensitivity bounds: The previous studies on individual de-
cision trees (Friedman and Schuster 2010; Mohammed et
al. 2011; Liu et al. 2018) bound the sensitivities by estimat-
ing the range of the function output. However, this method
leads to very loose sensitivity bounds in GBDTs, because
the range of the gain function output (G in Equation (3) in-
troduced Section 2) is related to the number of instances and
the range can be potentially very huge for large data sets.
Loose sensitivity bounds lead to more noise to obtain a fixed
privacy level, and cause huge accuracy loss.

Privacy budget allocations: There have been some pre-
vious studies on privacy budget allocations among different
trees (Liu et al. 2018; Xiang et al. 2018; Zhao et al. 2018).
We can basically divide them into two kinds. 1) The first
kind is to allocate the budget equally to each tree using the
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sequential composition (Liu et al. 2018; Xiang et al. 2018).
When the number of trees is large, the given budget allocated
to each tree is very small. The scale of the noises can be pro-
portional to the number of trees, which causes huge accuracy
loss. 2) The second kind is to give disjoint inputs to different
trees (Zhao et al. 2018). Then, each tree only needs to satisfy
ε-differential privacy using the parallel composition. When
the number of trees is large, since the inputs to the trees can-
not be overlapped, the number of instances assigned to a tree
can be quite small. As a result, the tree can be too weak to
achieve meaningful learnt models.

We design a new GBDT training algorithm to address the
above-mentioned limitations.
• In order to obtain a tighter sensitivity bound, we pro-

pose Gradient-based Data Filtering (GDF) to guarantee
the bounds of the sensitivities, and further propose Geo-
metric Leaf Clipping (GLC) to obtain a closer bound on
sensitivities taking advantage of the tree learning systems
in GBDT.
• Combining both sequential and parallel compositions, we

design a novel boosting framework to well exploit the pri-
vacy budget of GBDTs and the effect of boosting. Our ap-
proach satisfies differential privacy while improving the
model accuracy with boosting.
• We have implemented our approach (named DPBoost)

based on a popular library called LightGBM (Ke et al.
2017). Our experimental results show that DPBoost is
much superior to the other approaches and can achieve
competitive performance compared with the ordinary
LightGBM.

2 Preliminaries

2.1 Gradient Boosting Decision Trees

The GBDT is an ensemble model which trains a number of
decision trees in a sequential manner. Formally, given a con-
vex loss function l and a dataset with n instances and d fea-
tures {(xi, yi)}ni=1(xi ∈ R

d, yi ∈ R), GBDT minimizes the
following regularized objective (Chen and Guestrin 2016).

L̃ =
∑

i

l(ŷi, yi) +
∑

k

Ω(fk) (1)

where Ω(f) = 1
2λ‖V ‖2 is a regularization term. Here λ is

the regularization parameter and V is the leaf weight. Each
fk corresponds to a decision tree. Forming an approximate
function of the loss, GBDT minimizes the following objec-
tive function at the t-th iteration (Si et al. 2017).

L̃(t) =
n∑

i=1

[gift(xi) +
1

2
f2
t (xi)] + Ω(ft) (2)

where gi = ∂ŷ(t−1) l(yi, ŷ
(t−1)) is first order gradient

statistics on the loss function. The decision tree is built from
the root until reaching the maximum depth. Assume IL and
IR are the instance sets of left and right nodes after a split.
Letting I = IL ∪ IR, the gain of the split is given by

G(IL, IR) =
(
∑

i∈IL
gi)

2

|IL|+ λ
+

(
∑

i∈IR
gi)

2

|IR|+ λ
(3)

GBDT traverses all the feature values to find the split that
maximizes the gain. If the current node does not meet the
requirements of splitting (e.g., achieve the max depth or the
gain is smaller than zero), it becomes a leaf node and the
optimal leaf value is given by

V (I) = −
∑

i∈I gi

|I|+ λ
(4)

Like the learning rate in stochastic optimization, a shrink-
age rate η (Friedman 2002) is usually applied to the leaf val-
ues, which can reduce the influence of each individual tree
and leave space for future trees to improve the model.

2.2 Differential Privacy

Differential privacy (Dwork 2011) is a popular standard of
privacy protection with provable privacy guarantee. It guar-
antees that the probability of producing a given output does
not depend much on whether a particular record is included
in the input dataset or not.

Definition 1. (ε-Differential Privacy) Let ε be a positive real
number and f be a randomized function. The function f is
said to provide ε-differential privacy if, for any two datasets
D and D′ that differ in a single record and any output O of
function f ,

Pr[f(D) ∈ O] ≤ eε · Pr[f(D′) ∈ O] (5)

Here ε is a privacy budget. To achieve ε-differential
privacy, the Laplace mechanism and exponential mecha-
nism (Dwork, Roth, and others 2014) are usually adopted
by adding noise calibrated to the sensitivity of a function.

Definition 2. (Sensitivity) Let f : D → Rd be a function.
The sensitivity of f is

Δf = max
D,D′∈D

‖f(D)− f(D′)‖1 (6)

where D and D′ have at most one different record.

Theorem 1. (Laplace Mechanism) Let f : D → Rd be a
function. The Laplace Mechanism F is defined as

F (D) = f(D) + Lap(0,Δf/ε) (7)

where the noise Lap(0,Δf/ε) is drawn from a Laplace dis-
tribution with mean zero and scale Δf/ε. Then F provides
ε-differential privacy.

Theorem 2. (Exponential Mechanism) Let u : (D ×R)→
R be a utility function. The exponential mechanism F is de-
fined as

F (D,u) = choose r ∈ R with

probability ∝ exp(
εu(D, r)

2Δu
)

(8)

Then F provides ε-differential privacy.

The above-mentioned mechanisms provide privacy guar-
antees for a single function. For an algorithm with multiple
functions, there are two privacy budget composition theo-
rems (Dwork, Roth, and others 2014).
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Figure 1: The two-level boosting design of DPBoost

Theorem 3. (Sequential Composition) Let f =
{f1, ..., fm} be a series of functions performed sequentially
on a dataset. If fi provides εi-differential privacy, then f
provides

∑m
i=1 εi-differential privacy.

Theorem 4. (Parallel Composition) Let f = {f1, ..., fm}
be a series of functions performed separately on disjoint sub-
sets of the entire dataset. If fi provides εi-differential pri-
vacy, then f provides max(ε1, ..., εm)-differential privacy.

3 Our Design: DPBoost

Given a privacy budget ε and a dataset with n instances and
d features D = {(xi, yi)}ni=1(xi ∈ R

d, yi ∈ [−1, 1]), we
develop a new GBDT training algorithm named DPBoost
to achieve ε-differential privacy while trying to reduce the
accuracy loss. Moreover, like the setting in the previous
work (Abadi et al. 2016), we consider a strong adversary
with full access to the model’s parameters. Thus, we also
provide differential privacy guarantees for each tree node.

Figure 1 shows the overall framework of DPBoost. We
design a novel two-level boosting framework to exploit both
sequential composition and parallel composition. Inside an
ensemble, a number of trees are trained using the disjoint
subsets of data sampled from the dataset. Then, multiple
such rounds are trained in a sequential manner. For achiev-
ing differential privacy, sequential composition and parallel
composition are applied between ensembles and inside an
ensemble, respectively. Next, we describe our algorithm in
detail, including the techniques to bound sensitivities and ef-
fective privacy budget allocations.

3.1 Tighter Sensitivity Bounds

The previous studies on individual decision trees (Friedman
and Schuster 2010; Mohammed et al. 2011; Liu et al. 2018)
bound the sensitivities by estimating the range of the func-
tion output. For example, if the range of a function output is
[−γ, γ], then the sensitivity of the function is no more than
2γ. However, the range of function G in Equation (3) is re-
lated to the number of instances, which can cause very large
sensitivity if the dataset is large. Thus, instead of estimating
the range, we strictly derive the sensitivity (ΔG and ΔV )
according to Definition 2. Their bounds are given in the be-
low two lemmas.

Lemma 1. Letting g∗ = maxi∈D|gi|, we have ΔG ≤
3λ+2

(λ+1)(λ+2)g
∗2.

Proof. Consider two adjacent instance sets I1 = {xi}ni=1
and I2 = I1 ∪ {xs} that differ in a single instance. Assume

I1 = IL ∪ IR, where IL and IR are the instance sets of
leaf and right nodes respectively after a split. Without loss
of generality, we assume that instance xs belongs to the left
node. We use nl to denote |IL|. Then, we have

ΔG = | (
∑

i∈IL
gi + gs)

2

nl + λ+ 1
− (

∑
i∈IL

gi)
2

nl + λ
|

= | (nl + λ)g2s + 2(nl + λ)gs
∑

i∈IL
gi − (

∑
i∈IL

gi)
2

(nl + λ+ 1)(nl + λ)
|

(9)
Let h(gs,

∑
i∈IL

gi) = (nl+λ)g2s+2(nl+λ)gs
∑

i∈IL
gi−

(
∑

i∈IL
gi)

2. When gs = g∗ and
∑

i∈IL
gi = nlg

∗,
|h(gs,

∑
i∈IL

gi)| can achieve maximum. We have

ΔG = | (nl + 1)2g∗2

nl + λ+ 1
− n2

l g
∗2

nl + λ
|

= |1− λ2

(nl + λ+ 1)(nl + λ)
|g∗2

≤ |1− λ2

(λ+ 1)(λ+ 2)
|g∗2

=
3λ+ 2

(λ+ 1)(λ+ 2)
g∗2

(10)

Lemma 2. Letting g∗ = maxi∈D|gi|, we have ΔV ≤ g∗

1+λ .

Proof. The proof follows a similar way with the proof of
Lemma 1. The detailed proof is available in Appendix A of
the full version (Li et al. 2019b).

For ease of presentation, we call the absolute value of the
gradient as 1-norm gradient. As we can see from Lemma 1
and Lemma 2, the sensitivities of nodes are related to the
maximum 1-norm gradient. Since there is no a priori bound
on the value of the gradients, we have to restrict the range
of gradients. A potential solution is to clip the gradient by a
threshold, which is often adopted in deep learning (Abadi et
al. 2016; Shokri and Shmatikov 2015). However, in GBDTs,
since the gradient is computed based on distance between
the prediction value and the target value, clipping the gradi-
ents means indirectly changing the target value, which may
lead to a huge accuracy loss. Here, we propose a new ap-
proach named gradient-based data filtering. The basic idea
is to restrict the maximum 1-norm gradient by only filtering
a very small fraction of the training dataset in each iteration.

Gradient-based Data Filtering (GDF) At the begin-
ning of the training, the gradient of instance xi is
initialized as gi = ∂l(yi,y)

∂y |y=0. We let g∗l =

maxyp∈[−1,1]‖∂l(yp,y)
∂y |y=0‖, which is the maximum possi-

ble 1-norm gradient in the initialization. Note that g∗l is in-
dependent to training data and only depends on the loss
function l (e.g., g∗l = 1 for square loss function). Since the
loss function l is convex (i.e., the gradient is monotonically
non-decreasing), the values of the 1-norm gradients tend to
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decrease as the number of trees increases in the training.
Consequently, as we have shown the experimental results
in Appendix B of the full version (Li et al. 2019b), most
instances have a lower 1-norm gradient than g∗l during the
whole training process. Thus, we can filter the training in-
stances by the threshold g∗l . Specifically, at the beginning of
each iteration, we filter the instances that have 1-norm gradi-
ent larger than g∗l (i.e., those instances are not considered in
this iteration). Only the remaining instances are used as the
input to build a new differentially private decision tree in this
iteration. Note that the filtered instances may still participate
in the training of the later trees. With such gradient-based
data filtering technique, we can ensure that the gradients of
the used instances are no larger than g∗l . Then, according to
Lemma 1 and Lemma 2, we can bound the sensitivities of G
and V as shown in Corollary 1.

Corollary 1. By applying GDF in the training of GBDTs,
we have ΔG ≤ 3λ+2

(λ+1)(λ+2)g
∗
l
2 and ΔV ≤ g∗

l

1+λ .

In the following, we analyze the approximation error of
GDF.

Theorem 5. Given an instance set I , suppose I = If ∪ Icf ,
where If is the filtered instance set and Icf is the remaining

instance set in GDF. Let p =
|If |
|I| and ḡf =

∑
i∈If

gi

|If | . We
denote the approximation error of GDF on leaf values as
ξI = |V (I)− V (Icf )|. Then, we have ξI ≤ p(|ḡf |+ g∗l ).

Proof. With Equation (4), we have

ξI = |
∑

i∈If
gi +

∑
i∈Ic

f
gi

|I|+ λ
−

∑
i∈Ic

f
gi

(1− p)|I|+ λ
|

≤ |
∑

i∈If
gi

|I|+ λ
|+ |( 1

|I|+ λ
− 1

(1− p)|I|+ λ
)
∑

i∈Ic
f

gi|

= p|
∑

i∈If
gi

|If |+ pλ
|+ p| |I|

(|I|+ λ)((1− p)|I|+ λ)

∑

i∈Ic
f

gi|

≤ p|
∑

i∈If
gi

|If | |+ p|
∑

i∈Ic
f
gi

(1− p)|I| | ≤ p(|ḡf |+ g∗l )

(11)

According to Theorem 5, we have the following discus-
sions: (1) The upper bound of the approximation error of
GDF does not depend on the number of instances. This good
property allows small approximation errors even on large
data sets. (2) Normally, most instances have gradient val-
ues lower than the threshold g∗l and the ratio p is low, as also
shown in Appendix B of the full version (Li et al. 2019b).
Then, the approximation error is small in practice. (3) The
approximation error may be large if |ḡf | is big. However, the
instances with a very large gradient are often outliers in the
training data set since they cannot be well learned by GB-
DTs. Thus, it is reasonable to learn a tree by filtering those
outliers.

Geometric Leaf Clipping (GLC) GDF provides the same
sensitivities for all trees. Since the gradients tend to decrease
from iteration to iteration in the training process, there is an
opportunity to derive a tighter sensitivity bound as the iter-
ations go. However, it is too complicated to derive the ex-
act decreasing pattern of the gradients in practice. Also, as
discussed in the previous section, gradient clipping with an
inappropriate decaying threshold can lead to huge accuracy
loss. We need a new approach for controlling this decaying
effect across different tree learning. Note, while the noises
injected in the internal nodes influence the gain of the cur-
rent split, the noises injected on the leaf value directly in-
fluence the prediction value. Here we focus on bounding the
sensitivity of leaf nodes.

Fortunately, according to Equation (4), the leaf values also
decrease as the gradients decrease. Since the GBDT model
trains a tree at a time to fit the residual of the trees that pre-
cede it, clipping the leaf nodes would mostly influence the
convergence rate but not the objective of GBDTs. Thus, we
propose adaptive leaf clipping to achieve a decaying sensi-
tivity on the leaf nodes. Since it is unpractical to derive the
exact decreasing pattern of the leaf values in GBDTs, we
start with a simple case and further analyze its findings in
practice.

Theorem 6. Consider a simple case that each leaf has only
one single instance during the GBDT training. Suppose the
shrinkage rate is η. We use Vt to denote the leaf value of the
t-th tree in GBDT. Then, we have |Vt| ≤ g∗l (1− η)t−1.

Proof. For simplicity, we assume the label of the instance is
-1 and the gradient of the instance is initialized as g∗l . For the
first tree, we have V1 = − g∗

l

1+λ ≥ −g∗l . Since the shrinkage
rate is η, the improvement of the prediction value on the first
tree is −ηg∗l . Thus, we have

|V2| ≤ ‖∂l(−1, y)
∂y

|y=ηV1‖

≈ ‖∂l(−1, y)
∂y

|y=0 + ηV1‖
≤ g∗l (1− η)

(12)

In the same way, we can get |Vt| ≤ g∗l (1− η)t−1.

Although the simple case in Theorem 6 may not fully
reflect decaying patterns of the leaf value in practice, it
can give an insight on the reduction of the leaf values as
the number of trees increases. The leaf values in each tree
form a geometric sequence with base g∗l and common ratio
(1 − η). Based on this observation, we propose geometric
leaf clipping. Specifically, in the training of the tree in iter-
ation t in GBDTs, we clip the leaf values with the thresh-
old g∗l (1 − η)t−1 before applying Laplace mechanism (i.e.,
V ′
t = Vt · min(1, g∗l (1 − η)t−1/|Vt|)). That means, if the

leaf value is larger than the threshold, its value is set to be
the threshold. Then, combining with Corollary 1, we get the
following result on bounding the sensitivity on each tree in
the training process.
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Corollary 2. With GDF and GLC, the sensitivity of leaf
nodes in the tree of the t-th iteration satisfies ΔVt ≤
min(

g∗
l

1+λ , 2g
∗
l (1− η)t−1).

We have conducted experiments on the effect of geomet-
ric clipping, which are shown in Appendix B of the full ver-
sion (Li et al. 2019b). Our experiments show that GLC can
effectively improve the performance of DPBoost.

3.2 Privacy Budget Allocations

As in Introduction, previous approaches (Liu et al. 2018;
Xiang et al. 2018; Zhao et al. 2018) suffer from accu-
racy loss, due to the ineffective privacy budget allocations
across trees. The accuracy loss can be even bigger, when
the number of trees in GBDT is large. For completeness,
we first briefly present the mechanism for building a sin-
gle tree t with a given privacy budget εt, by using an
approach in the previous study (Mohammed et al. 2011;
Zhao et al. 2018). Next, we present our proposed approach
for budget allocation across trees in details.

Budget Allocation for A Single Tree Algorithm 1 shows
the procedure of learning a differentially private decision
tree. In the beginning, we use GDF (introduced in Sec-
tion 3.1) to preprocess the training dataset. Then, the de-
cision tree is built from root until reaching the maximum
depth. For the internal nodes, we adopt the exponential
mechanism when selecting the split value. Considering the
gain G as the utility function, the feature value with higher
gain has a higher probability to be chosen as the split value.
For the leaf nodes, we first clip the leaf values using GLC
(introduced in Section 3.1). Then, the Laplace mechanism
is applied to inject random noises to the leaf values. For
the privacy budget allocation inside a tree, we adopt the
mechanism in the existing studies (Mohammed et al. 2011;
Zhao et al. 2018). Specifically, we allocate a half of the pri-
vacy budget for the leaf nodes (i.e., εleaf ), and then equally
divide the remaining budget to each depth of the internal
nodes (each level gets εnleaf ).

Theorem 7. The output of Algorithm 1 satisfies εt-
differential privacy.

Proof. Since the nodes in one depth have disjoint inputs,
according to the parallel composition, the privacy budget
consumption in one depth only need to be counted once.
Thus, the total privacy budget consumption is no more than
εleaf ∗Depthmax + εnleaf = εt.

Budget Allocation Across trees We propose a two-level
boosting structure called Ensemble of Ensembles (EoE),
which can exploit both sequential composition and paral-
lel composition to allocate the privacy budget between trees.
Within each ensemble, we first train a number of trees with
disjoint subsets sampled from the datasetD. Thus, the paral-
lel composition is applied inside an ensemble. Then, multi-
ple such ensembles are trained in a sequential manner using

Algorithm 1: TrainSingleTree: Train a differentially pri-
vate decision tree

Input: I: training data, Depthmax : maximum depth
Input: εt: privacy budget

1 εleaf ← εt
2 // privacy budget for leaf nodes

2 εnleaf ← εt
2Depthmax

// privacy budget for internal nodes

3 Perform gradient-based data filtering on dataset I .
4 for depth = 1 to Depthmax do
5 for each node in current depth do
6 for each split value i do
7 Compute gain Gi according to Equation (3).
8 Pi ← exp(

εnleaf Gi

2ΔG )

/* Apply exponential mechanism */
9 Choose a value s with probability (Ps/

∑
i Pi).

10 Split current node by feature value s.

11 for each leaf node i do
12 Compute leaf value Vi according to Equation (4).
13 Perform geometric leaf clipping on Vi.

/* Apply Laplace mechanism */
14 Vi ← Vi + Lap(0,ΔV/εnleaf )

Output: A εt-differentially private decision tree

the same training set D. As a result, the sequential compo-
sition is applied between ensembles. Such a design can uti-
lize the privacy budget while maintaining the effectiveness
of boosting. EoE can effectively address the side effect of
geometric leaf clipping in some cases, which cause the leaf
values to have a too tight restriction as the iteration grows.

Algorithm 2 shows our boosting framework. Given the
total number of trees T and the number of trees inside an
ensemble Te, we can get the total number of ensembles
Ne = �T/Te. Then, the privacy budget for each tree is
(ε/Ne). When building the t-th differentially private deci-
sion tree, we first calculate the position of the tree in the en-
semble as te = t mod Te. Since the maximum leaf value
of each tree is different in GLC, to utilize the contribution
of the front trees, the number of instances allocated to a
tree is proportional to its leaf sensitivity. Specifically, we
randomly choose ( |D|η(1−η)te

1−(1−η)Te
) unused instances from the

dataset I as the input, where I is initialized to the entire
training dataset D at the beginning of an ensemble. Each
tree is built using TrainSingleTree in Algorithm 1. All the T
trees are trained one by one, and these trees constitute our
final learned model.

Theorem 8. The output of Algorithm 2 satisfies ε-
differential privacy.

Proof. Since the trees in an ensemble have disjoint in-
puts, the privacy budget consumption of an ensemble is still
(ε/Ne) due to the parallel composition. Since there are Ne

ensembles in total, according to sequential composition, the
total privacy budget consumption is ε/Ne ∗Ne = ε.
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Algorithm 2: Train differentially private GBDTs
Input: D: Dataset, Depthmax : maximum depth
Input: ε: privacy budget, λ: regularization parameter
Input: T : total number of trees, l: loss function
Input: Te: number of trees in an ensemble

1 Ne ← �T/Te // the number of ensembles
2 εe ← ε/Ne // privacy budget for each tree
3 for t = 1 to T do
4 Update gradients of all training instances on loss l.
5 te ← t mod Te

6 if te == 1 then
7 I ← D // initialize the dataset for an ensemble

8 Randomly pick ( |D|η(1−η)te

1−(1−η)Te
) instances from I to

constitute the subset It.
9 I ← I − It

10 TrainSingleTree (dataset = It,
11 maximum depth = Depthmax ,
12 privacy budget = εe,
13 ΔG = 3λ+2

(λ+1)(λ+2)g
∗
l
2,

14 ΔV = min(
g∗
l

1+λ , 2g∗l (1− η)t−1)).
Output: ε-differentially private GBDTs

4 Experiments

In this section, we evaluate the effectiveness and efficiency
of DPBoost. We compare DPBoost with three other ap-
proaches: 1) NP (the vanilla GBDT): Train GBDTs with-
out privacy concerns. 2) PARA: A recent approach (Zhao
et al. 2018) that adopts parallel composition to train mul-
tiple trees, and uses only a half of unused instances when
training a differentially private tree. 3) SEQ: we extend
the previous approach on decision trees (Liu et al. 2018)
that aggregates differentially private decision trees using se-
quential composition. Since the original study does not pro-
vide sensitivity bounds in GBDTs (Liu et al. 2018), we set
ΔG = 3λ+2

(λ+1)(λ+2)g
∗2 and ΔV = gm

1+λ in SEQ using our
GDF technique.

We implemented DPBoost based on LightGBM1. Our ex-
periments are conducted on a machine with one Xeon W-
2155 10 core CPU. We use 10 public datasets in our eval-
uation. The details of the datasets are summarized in Ta-
ble 1. There are eight real-world datasets and two synthetic
datasets (i.e., synthetic cls and synthetic reg). The real-
world datasets are available from the LIBSVM website2.
The synthetic datasets are generated using scikit-learn3 (Pe-
dregosa et al. 2011). We show test errors and RMSE (root
mean square error) for the classification and regression task,
respectively. The maximum depth is set to 6. The regular-
ization parameter λ is set to 0.1. The threshold g∗l is set to
1. We use 5-fold cross-validation for model evaluation. The
number of trees inside an ensemble is set to 50 in DPBoost.

1https://github.com/microsoft/LightGBM
2https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/
3https://scikit-learn.org/stable/datasets/index.html#

sample-generators

Table 1: Datasets used in the experiments.
datasets #data #features task

adult 32,561 123

classification

real-sim 72,309 20,958
covtype 581,012 54

susy 5,000,000 18
cod-rna 59,535 8
webdata 49,749 300

synthetic cls 1,000,000 400
abalone 4,177 8

regressionYearPredictionMSD 463,715 90
synthetic reg 1,000,000 400

We have also tried the other settings for the number of trees
inside an ensemble (e.g., 20 and 40). The experiments are
available in Appendix C of the full version (Li et al. 2019b).

4.1 Test Errors

We first set the number of ensembles to one in DPBoost and
the number of trees to 50 for all approaches. Figure 2 shows
the test errors of four approaches with different ε (i.e., 1, 2,
4, 6, 8, and 10). We have the following observations. First,
SEQ performs very badly on all the datasets. The test errors
are around 50% in the classification task. With only sequen-
tial composition, each tree in SEQ gets a very small privacy
budget. The noises in SEQ are huge and lead to high test
errors in the prediction. Second, DPBoost can always out-
perform PARA and SEQ especially when the given budget
is small. DPBoost outperforms PARA, mainly because our
tightening bounds on sensitivity allows us to use a smaller
noise to achieve differential privacy. When the privacy bud-
get is one, DPBoost can achieve 10% lower test errors on
average in the classification task and significant reduction
on RMSE in the regression tasks. Moreover, the variance
of DPBoost is usually close to zero. DPBoost is very stable
compared with SEQ and PARA. Last, DPBoost can achieve
competitive performance compared with NP. The results of
DPBoost and NP are quite close in many cases, which show
high model utility of our design.

To show the effect of boosting, we increase the number
of ensembles to 20 and the maximum number of trees to
1000. The privacy budget for each ensemble is set to 5.
For fairness, the total privacy budget for SEQ and PARA
is set to 100 to achieve the same privacy level as DPBoost.
We choose the first five datasets as representatives. Figure 3
shows the convergence curves of four approaches. First,
since the privacy budget for each tree is still small, the er-
rors of SEQ are very high. Second, since PARA takes a
half of the unused instances at each iteration, it can only
train a limited number of trees until the unused instances
are too few to train an effective tree (e.g., about 20 trees for
dataset SUSY). Then, the curve of PARA quickly becomes
almost flat and the performance cannot increase as the iter-
ation grows even given a larger total privacy budget. Last,
DPBoost has quite good behavior of reducing test errors
as the number of trees increases. DPBoost can continue to
decrease the accuracy loss and outperform PARA and SEQ
even more, which demonstrate the effectiveness of our pri-
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(a) adult (b) real-sim (c) covtype (d) susy (e) cod-rna

(f) webdata (g) synthetic cls (h) abalone (i) YearPredictionMSD (j) synthetic reg

Figure 2: Comparison of the test errors/RMSE given different total privacy budgets. The number of trees is set to 50.

(a) adult (b) real-sim (c) covtype (d) susy (e) cod-rna

Figure 3: Comparison of test error convergence. The number of trees is set to 1000.

Table 2: Training time per tree (second) of DPBoost and NP.
datasets DPBoost NP

adult 0.019 0.007
real-sim 2.97 0.82
covtype 0.085 0.044
SUSY 0.38 0.32
cod-rna 0.016 0.009
webdata 0.032 0.013

synthetic cls 1.00 0.36
abalone 2.95 2.85

YearPrediction 0.38 0.12
synthetic reg 0.96 0.36

vacy budget allocation. Also, DPBoost can preserve the ef-
fect of boosting well.

4.2 Training Time Efficiency

We show the training time comparison between DPBoost
and NP. The computation overhead of our approach mainly
comes from the exponential mechanism, which computes a
probability for each gain. Thus, this overhead depends on the
number of split values and increases as the number of dimen-
sions of training data increases. Table 2 shows the average
training time per tree of DPBoost and NP. The setting is the

same as the second experiment of Section 4.1. The training
time per tree of DPBoost is comparable to NP in many cases
(meaning that the overhead can be very small), or about 2
to 3 times slower than NP in other cases. Nevertheless, the
training of DPBoost is very fast. The time per tree of DP-
Boost is no more than 3 seconds in those 10 datasets.

5 Conclusions

Differential privacy has been an effective mechanism for
protecting data privacy. Since GBDT has become a popular
and widely used training system for many machine learn-
ing and data mining applications, we propose a differen-
tially private GBDT algorithm called DPBoost. It addresses
the limitations of previous works on serious accuracy loss
due to loose sensitivity bounds and ineffective privacy bud-
get allocations. Specifically, we propose gradient-based data
filtering and geometric leaf clipping to control the training
process in order to tighten the sensitivity bound. Moreover,
we design a two-level boosting framework to well exploit
both the privacy budget and the effect of boosting. Our ex-
periments show the effectiveness and efficiency of DPBoost.
As future work, we plan to study DPBoost in the federated
learning environment (Li et al. 2019a).
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