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Abstract

Alzheimer’s Disease (AD) is a chronic neurodegenerative
disease that severely impacts patients’ thinking, memory and
behavior. To aid automatic AD diagnoses, many longitudinal
learning models have been proposed to predict clinical out-
comes and/or disease status, which, though, often fail to con-
sider missing temporal phenotypic records of the patients that
can convey valuable information of AD progressions. An-
other challenge in AD studies is how to integrate heteroge-
neous genotypic and phenotypic biomarkers to improve diag-
nosis prediction. To cope with these challenges, in this paper
we propose a longitudinal multi-modal method to learn en-
riched genotypic and phenotypic biomarker representations
in the format of fixed-length vectors that can simultaneously
capture the baseline neuroimaging measurements of the en-
tire dataset and progressive variations of the varied counts of
follow-up measurements over time of every participant from
different biomarker sources. The learned global and local pro-
jections are aligned by a soft constraint and the structured-
sparsity norm is used to uncover the multi-modal structure
of heterogeneous biomarker measurements. While the pro-
posed objective is clearly motivated to characterize the pro-
gressive information of AD developments, it is a nonsmooth
objective that is difficult to efficiently optimize in general.
Thus, we derive an efficient iterative algorithm, whose con-
vergence is rigorously guaranteed in mathematics. We have
conducted extensive experiments on the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) data using one geno-
typic and two phenotypic biomarkers. Empirical results have
demonstrated that the learned enriched biomarker representa-
tions are more effective in predicting the outcomes of various
cognitive assessments. Moreover, our model has successfully
identified disease-relevant biomarkers supported by existing
medical findings that additionally warrant the correctness of
our method from the clinical perspective.
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Introduction

As the most prevalent and severe neurodegenerative disor-
der, Alzheimer’s Disease (AD) results in progressive impair-
ment of memory and other cognitive abilities, triggered by
the damage of neurons in the brain. AD usually progresses
along a temporal continuum, initially from a pre-clinical
stage, subsequently to mild cognitive impairment (MCI)
and ultimately deteriorating to AD (Wenk and others 2003;
Brand et al. 2018). It is estimated that 5.7 million individu-
als are living with AD and this number is projected to grow
to 13.8 million by mid-century, fueled in large part by the
aging Baby Boom Generation. The number of AD suffer-
ers worldwide is estimated to be 44 million now and 1 in
85 people will be affected by AD by 2050 (Association and
others 2018).

With all these facts, neuroimaging measurements have
been widely studied to predict disease status and/or cog-
nitive performance (Stonnington et al. 2010; Zhang et al.
2012; Wang et al. 2012b; Yan et al. 2015; Brand et al.
2018). However, there are a few limitations to these pre-
dictive models. These approaches routinely conduct stan-
dard regression and/or classification at each individual time
point separately, failing to take advantage of the longi-
tudinal structure among temporal brain phenotypes. First,
since AD is a progressive neurodegenerative disorder, mul-
tiple records can be obtained to monitor the disease’s pro-
gression. Thus it is beneficial to uncover the temporal re-
lation among these longitudinal biomarkers (Wang et al.
2012c; Wang, Shen, and Huang 2016; Wang et al. 2017;
Brand et al. 2018). Second, while heterogeneous biomarker
measurements, such as voxel-based morphometry (VBM),
FreeSurfer, and single-nucleotide polymorphism (SNP), are
available for predicting disease status and/or cognitive per-
formance, current longitudinal methods (Wang et al. 2012a;
Wang, Nie, and Huang 2013; Wang, Shen, and Huang 2016)
often do not explore this multi-modal structure to boost pre-
diction capabilities. Third, most importantly, the longitudi-
nal biomarkers are often missing at some time points for
participants, since it is difficult to conduct medical scans
consistently across a large group of subjects. Mortality risk
and cognitive impairment hinder older adults from staying
in studies requiring multiple visits and thus result in incom-
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plete data.
To overcome the first limitation of longitudinal data, sev-

eral proposed longitudinal prediction models (Wang et al.
2012c; Wang, Shen, and Huang 2016; Wang et al. 2017;
Lu et al. 2018; Brand et al. 2018) uncover the temporal
structure of brain phenotypes. However, these models treat
the temporal biomarkers as a tensor, which inevitably in-
creases the complexity of the prediction problem. To ad-
dress the multi-modal structure of heterogeneous biomarker
measurements, our previous works (Wang et al. 2012a;
Wang, Nie, and Huang 2013; Wang et al. 2013) proposed
to explore the group structure of biomarkers from different
imaging and genetic sources, which, though, conduct stan-
dard regression and/or classification on all the time points
separately, without considering the temporal relation among
brain phenotypes over the disease progression. To handle
the third limitation of data inconsistency, most longitudi-
nal studies of AD only utilize data samples with complete
temporal records for model analysis and ignore the time
points with missing records. But discarding of the sam-
ples with partial data can completely ruin the data set. Re-
cently, several data imputation methods (Xiang et al. 2014;
Li et al. 2019) have been proposed to generate missing
records of longitudinal AD measures. Temporal regression
studies can be then conducted after these data imputation ap-
proaches. However, these data imputation methods can eas-
ily introduce undesirable artifacts, which can significantly
degrade the predictive power of the longitudinal learning
models.

To deal with the longitudinal multi-modal prediction
problem with incomplete temporal inputs, in this paper we
propose to learn an enriched multi-modal biomarker rep-
resentation from heterogeneous genotypic and phenotypic
biomarker measurements, which can elegantly combines the
baseline biomarkers and all the dynamic imaging measures
across time with missing inputs at any time points. It first
learns a global projection from the baseline biomarkers com-
mon to all participants to preserve the global structure of
the entire dataset. Then, for every participant it learns a
local projection from their available follow-up biomarkers
to maintain the individual information of every participant
in the dataset. A soft constraint is used to enforce consis-
tency between the global and local projections. In addition,
a structured-sparsity norm regularization (Wang et al. 2012a;
Wang, Nie, and Huang 2013; Wang et al. 2013) is uti-
lized to explore the multi-modal structure of biomarker mea-
surements from different sources. Finally, taking into ac-
count the varied-sized phenotypes of different participants
over time due to missing records, we replace the tradi-
tional squared �2-norm distances by not-squared �2-norm
distances (Wang, Nie, and Huang 2015) to promote the ro-
bustness of our model against outliers. Using the learned
projection, we transform the inconsistent heterogeneous
biomarker representations with varied lengths into a fixed-
length vector representation, which can simultaneously cap-
ture the information from both baseline measures of the en-
tire dataset and the progressive summary of available follow-
up biomarker measurements of every individual participant
from multi-modal biomarker measurements. With the fixed-

length biomarker representations, we can easily use conven-
tional learning methods to predict the clinical outcomes for
early AD detections.

We have performed extensive experiments on the
Alzheimer’s Disease Neuroimaging Initiative (ADNI)
dataset (Weiner et al. 2010) and achieved obvious predic-
tion capability gains by using the newly learned fixed-length
representation compared to baseline biomarkers. In addi-
tion, we can use our new method to identify disease-relevant
biomarkers that are in accordance with existing medical
research findings, which warrants the correctness of our
method from the clinical perspective.

Problem Formalization and Our Objective

In the sequel of this paper, we use the following notations.
The �p-norm (p ≥ 1) of a vector v ∈ �d is defined as

‖v‖p =
(∑d

i=1 v
p
i

) 1
p

. For a matrix M = [mij ], its trace
is defined as tr(M) =

∑
i mii. The Frobenius norm of M

is defined as ‖M‖2 =
√∑n

i=1

∑m
j=1 |mi,j |2. The group

�1-norm of M introduced in our earlier works (Wang et
al. 2012a; Wang, Nie, and Huang 2013; Wang et al. 2013)

is defined as ‖M‖G1
=

c∑
i=1

k∑
j=1

||mj
i ||2, where we write

M = [m1
1, · · ·,m1

c ; · · ·, · · ·, · · ·; mk
1 , · · ·,mk

c ] ∈ �d×c and
mq

p ∈ �dq indicates the weights of all features in the q-th
view with respect to the p-th diagnosis task.

In the task of learning enriched biomarker representa-
tions, our goal is to learn a fixed-length biomarker repre-
sentation vector from baseline scans and available follow-
up measurements. We denote biomarker records of a par-
ticipant as Xi = {xi,Xi}, where i = 1, 2, · · · , n de-
notes the index of the participants in the ADNI cohort.
Here xi ∈ �d denotes the baseline records of the i-th
participant and d denotes the dimensions of the features.
Xi =

[
xi
1, . . . ,x

i
ni

] ∈ �d×ni collects all the available
follow-up biomarker records of the i-th participant, and ni

denotes the number of available follow-up records of i-th
participant after baseline. Here we note that ni varies over
the participants in the dataset due to inconsistent/missing
temporal records of different participants. Both the base-
line records and available follow-up records are the con-
catenation of Voxel-based morphometry (VBM) measure-
ment, Freesurfer (FS) measurement and Single-nucleotide
polymorphism (SNP). Mathematically, we have the base-
line as xi = [xiV BM

,xiFS
,xiSNP

] and the follow-ups as
xi
j = [xi

jV BM
,xi

jFS
,xi

jSNP
] where 1 ≤ j ≤ ni for the i-th

participant.
Because the biomarker records in the ADNI dataset

are a concatenation of genotypic and phenotypic measure-
ments, they reside in a high-dimensional space, leading to
the failure of many traditional machine learning models
due to the curse of dimensionality. Thus we first project
the high-dimensional biomarker representation into a low-
dimensional subspace. To keep the most useful information,
Principal component analysis (PCA) (Jolliffe 2011) is the
right tool to learn a projection W0 ∈ �d×r (usually r � d)
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that maps the baseline neuroimaging measurement of the i-
th patient’s xi into a low dimensional space. Mathematically,
PCA minimizes the reconstruction errors via the projection
W0 by optimizing the following the objective:

J Global (W0) =

n∑
i=1

∥∥xi −W0W
T
0 xi

∥∥2
2
,

s.t. WT
0 W0 = I.

(1)

Commonly, the biomarker records of one individual par-
ticipant do not experience drastic changes over a short time,
thus we want to preserve the local consistency in the pro-
jected space for the participant as well. To uncover the local
consistency among the follow-up records of every partici-
pant, we preserve the local pairwise affinities of the scans
in the projected subspace using locality preserving projec-
tions (LPP) (He and Niyogi 2004). That is, given a pairwise
similarity matrix of the measurements of the i-th partici-
pant Si ∈ �ni×ni , LPP preserves the local relationships and
maximizes the smoothness of the manifold of the data in the
embedding space by minimizing the following objective:

J Local (Wi) =
∑

xi
j ,x

i
k∈Xi

sijk
∥∥WT

i x
i
j −WT

i x
i
k

∥∥2
2
,

s.t. WT
i Wi = I.

(2)

First, from a multi-modal perspective, the features of a
specific modality can be more or less discriminative for dif-
ferent clusters. To untangle the modality structure, we use
the group �1-norm (G1-norm) introduced in (Wang et al.
2012a; Wang, Nie, and Huang 2013; Wang et al. 2013) for
regularization. Because the group �1-norm uses the �2-norm
within each modality and the �1-norm between modalities, it
enforces the sparsity between different learning tasks. More-
over, in certain cases, even if most features in one modality
are not discriminative for a group of objects, a small num-
ber of features in the same modality can still be highly dis-
criminative. Second, because Wi is learned from one in-
dividual participant of a dataset, it can only characterize
the AD progression of that single participant. To align the
learned projections Wi for all the participants of the dataset
for 1 ≤ i ≤ n, we approximate them by W0 learned
from the baseline measurements of the entire dataset. Tak-
ing into account these facts, we propose the following objec-
tive that can integrate the global and local consistencies of
neuroimaging records and fuse multi-modal genotypic and
phenotypic measurements over time:

J�22
(W) = min

W

n∑
i=1

∥∥xi −W0W
T
0 xi

∥∥2
2

+ γ1

n∑
i=1

∑
xi
j ,x

i
k∈Xi

sijk
∥∥WT

i x
i
j −WT

i x
i
k

∥∥2
2

+ γ2

n∑
i=1

‖W0 −Wi‖22 + γ3

n∑
i=0

‖Wi‖G1
,

s.t. WT
i Wi = I (0 ≤ i ≤ n),

(3)

where W = {W0,W1, · · · ,Wn}.
Finally, considering inevitable outlying samples due to

missing phenotypic records of the participants in the ADNI
cohort, we replace the squared �2-norm distances in Eq. (3)
with their not-squared counterparts as follows for better ro-
bustness (Wang, Nie, and Huang 2015; Liu et al. 2017):

J�2(W) = min
W

n∑
i=1

∥∥xi −W0W
T
0 xi

∥∥
2

+ γ1

n∑
i=1

∑
xi
j ,x

i
k∈Xi

sijk
∥∥WT

i x
i
j −WT

i x
i
k

∥∥
2

+ γ2

n∑
i=1

‖W0 −Wi‖2,1 + γ3

n∑
i=0

‖Wi‖G1
,

s.t. WT
i Wi = I (0 ≤ i ≤ n) .

(4)
Upon solving the optimization problem in Eq. (4), we

learn a fixed-length representation for each participant by
computing {yi = WT

i xi}ni=1, which can be readily fed into
traditional machine learning models.

The Solution Algorithm

Although the motivations of the formulation of our new
method in Eq. (4) is clear and justifiable, it is a non-smooth
objective, which is difficult to efficiently solve in general.
Thus we derive the solution of our objective in this section.

Smoothed Iterative Reweighted Method

We first use the smoothed iterative reweighted method to
convert the optimization problem in Eq. (4) into an eas-
ier problem. The smoothed iterative reweighted method was
first introduced in our earlier work in (Liu et al. 2017) that
solves the following general optimization problem:

min
x

f(x) +
∑
i

‖gi(x)‖2 , (5)

where gi(x) is a vector output function. It can be seen that
our objective in Eq. (4) is a special case of the problem in
Eq. (5).

Because Eq. (5) is not a smooth objective, we turn to solve
the following smooth optimization problem:

min
x

f(x) +
∑
i

√
gTi (x)gi(x) + δ. (6)

It is apparent that Eq. (6) is reduced to Eq. (5), when δ → 0.
By setting the derivative of Eq. (6) with respect to x to zero,
we have:

f ′(x) +
∑
i

gi(x)√
gTi (x)gi(x) + δ

= 0. (7)

Denote
si =

1

2
√
gTi (x)gi(x) + δ

, (8)

then Eq. (7) is rewritten as:

f ′(x) +
∑
i

2sigi(x) = 0. (9)
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Note that si is dependent on x, this equation is difficult to
solve. However, if si is given for every i, then solving Eq. (9)
is equivalent to solving the following problem:

min f(x) +
∑
i

sig
T
i (x)gi(x). (10)

Based on the above analysis, we can use the following iter-
ative algorithm to find the solution of Eq. (7), and thus the
optimal solution of problem in Eq. (6) (Liu et al. 2017).

Algorithm 1: (Liu et al. 2017) The algorithm to solve
the problem (6).

Initialize x;
while not converge do

1. For each i, calculate si according to Eq. (8);
2. Update x by solving the problem (10).

end

The convergence of Algorithm 1 is guaranteed by the fol-
lowing theorem.

Theorem 1 (Liu et al. 2017) The Algorithm 1 will mono-
tonically decrease the objective of the problem (6) in each
iteration.

Equipped with the smoothed iterative reweighted method,
our proposed objective in Eq. (4) can be solved by the itera-
tive procedures in Algorithm 1, where Step 2 is to minimize
the following objective:

J R
�2(W)

= min
W

n∑
i=1

tr
(
xi −W0W

T
0 xi

)T
Di

1

(
xi −W0W

T
0 xi

)

+ γ1

n∑
i=1

tr
(
WT

i XiLiX
T
i Wi

)

+ γ2

n∑
i=1

tr (W0 −Wi)
T
Di

2 (W0 −Wi)

+ γ3

n∑
i=0

tr
(
WT

i D
i
3Wi

)
,

s.t. WT
i Wi = I (0 ≤ i ≤ n).

(11)
Here Di

1 is a diagonal matrix whose j-th diagonal ele-

ment is 1
2

(
e2ij + δ

)− 1
2 , eij is the j-th element of vector

ei = xi − W0W
T
0 xi. Li = Di − S̃i in which Di is a

diagonal matrix whose entries are column (or row) sums
of S̃i, i.e., the j-th diagonal element of Di is

∑
j s̃jk. The

element of S̃i ∈ �ni×ni is computed as s̃ijk = θijks
i
jk,

where θijk = 1
2

(∥∥WT
i x

i
j −WT

i x
i
k

∥∥2
2
+ δ

)− 1
2

and δ → 0.

Di
2 is a diagonal matrix whose j-th diagonal element is

1
2

(∥∥∥wj
0 −wj

i

∥∥∥2
2
+ δ

)− 1
2

, where wj
i is the j-th column

vector of Wi. Di
3 is a block diagonal matrix whose j-th di-

agonal block is 1
2

(∥∥∥Wj
i

∥∥∥2
2
+ δ

)− 1
2

Ik, where Ik ∈ �dj×dj

is an identity matrix. Wj
i ∈ �dj×r is the j-th block of Wi,

where Wi = [W1
i ;W

2
i ; · · · ;Wk

i ].

The Algorithm to Solve Eq. (11)
Before giving our derivation details to solve Eq. (11), we
will first introduce the Alternating Direction Method of Mul-
tipliers (ADMM), which was proposed in (Bertsekas 1996;
Boyd et al. 2011) to solve convex optimization problems by
breaking them into smaller pieces that are easier to handle.

Specifically, given the following objective with the equal-
ity constraint:

min
x,z

f(x) + g(z), s.t. h(x, z) = 0, (12)

Algorithm 2 solves the problem by decoupling it into sub-
problems and optimizing each variable while fixing oth-
ers (Bertsekas 1996; Boyd et al. 2011), where y is the La-
grangian multiplier to the constraint h. It is worth noting
that Algorithm 2 was proved to converge Q-linearly to the
optimal solution (Bertsekas 1996).

Algorithm 2: The ADMM algorithm.
Set 1 < ρ < 2 and initialize μ > 0 and y;
while not converge do

1. Update x by solving
xk+1 = argminx(f(x) +

μ
2 ‖h(x, zk) + yk

μ ‖2);
2. Update z by solving
zk+1 = argminz(g(z) +

μ
2 ‖h(xk+1, z) + yk

μ ‖2);
3. Update y by yk+1 = yk + μh(xk+1, zk+1);
4. Update μ by μ = ρμ.

end

Using ADMM, we rewrite the objective in Eq. (11) as:

J ADMM
�2 (W,P)

= min
W,P

n∑
i=1

tr
(
xi −PPTxi

)T
Di

1

(
xi −W0W

T
0 xi

)

+ γ1

n∑
i=1

tr
(
WT

i XiLiX
T
i Wi

)

+ γ2

n∑
i=1

tr (W0 −Wi)
T
Di

2 (W0 −Wi)

+ γ3

n∑
i=0

tr
(
WT

i D
i
3Wi

)
+

μ

2

∥∥∥∥W0 −P+
1

μ
Λ

∥∥∥∥
2

2

+

n∑
i=0

μ

2

∥∥∥∥Wi −Pi +
1

μ
Λi

∥∥∥∥
2

2

,

s.t. PT
i Pi = I (0 ≤ i ≤ n) ,

(13)
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where P = {P,P0,P1,P2, · · · ,Pn}. Λi ∈
�d×r (0 ≤ i ≤ n) is the Lagrangian multiplier for the
constraint of Wi = Pi. Λ ∈ �d×r is the Lagrangian
multiplier for the constraint of W0 = P. The solution
algorithm using the ADMM is summarized in Algorithm 3.

Algorithm 3: Solve the optimization problem in
Eq. (13).

Initialization:Wi, P, Pi, Λ, Λi (0 ≤ i ≤ n),
1 < ρ < 2, μ, γ1, γ2, γ3 > 0;

while not converge do
1. Update Wi (1 ≤ i ≤ n) using
Wi = (2γ1XiLiX

T
i + 2γ2D

i
2 + 2γ3D

i
3 +

μI)−1
(
2γ2D

i
2W0 + μPi −Λi

)
;

2. Update W0 using W0 = (
∑n

i=1 xi(x
T
i PPT −

xT
i )D

i
1 + γ2

∑n
i=1 D

i
2 + γ3D

i
3 +

μI)−1(γ2
∑n

i=1 D
i
2Wi +

μ
2P+ μ

2P0 − Λ
2 − Λ0

2 );
3. Update Pi (0 ≤ i ≤ n) using Pi = UiV

T
i ,

where Ni = μWi +Λi and
svd (Ni) = UiΣiV

T
i ;

4. Update P using P = (2
∑n

i=1 D
i
1(W0W

T
0 xi −

xi)x
T
i + μI)−1(μW0 +Λ);

5. Update Λi (0 ≤ i ≤ n) using
Λi = Λi + μ (Wi −Pi);

6. Update Λ using Λ = Λ+ μ (W0 −P);
7. Update μ using μ = ρμ;

end
Output: Wi (0 ≤ i ≤ n).

Experiments

Data used in the preparation of the experiments were ob-
tained from the ADNI database (Weiner et al. 2010). We
download 1.5 T MRI scans and demographic information
for 821 ADNI-1 participants. We perform voxel-based mor-
phometry (VBM) and FreeSurfer on the MRI data by fol-
lowing (Risacher et al. 2010) and extracted mean modulated
gray matter (GM) measures for 90 target regions of interest
(ROI). These measures are adjusted for the baseline intracra-
nial volume (ICV) using regression weights derived from the
HC participants at the baseline. We also download the longi-
tudinal scores of the participants in five independent cogni-
tive assessments including Alzheimer’s Disease Assessment
Scale (ADAS), Mini-Mental State Examination (MMSE),
Fluency test (FLU), Rey’s Auditory Verbal Learning Test
(RAVLT) and Trail making test (TRAILS). The time points
examined in this study for both imaging biomarkers and cog-
nitive assessments includes baseline (BL), Month 6 (M6),
Month 12 (M12), Month 24 (M24) and Month 36 (M36). All
the participants’ data used in our enriched biomarker rep-
resentation study are required to have a BL MRI measure-
ment, BL cognitive score and at least three available mea-
sures from M6/M12/M24/36. A total of 456 sample subjects
are involved in our study, among which we have 77 AD sam-
ples, and 171 MCI samples and 208 HC samples.

Experimental Settings

To validate the usefulness of our proposed method, we com-
pare the performance to predict cognitive outcomes using
two types of the neuroimaging inputs — the learned en-
riched representation and baseline (BL) biomarker measure-
ment. In our experiments, several methods proven to gen-
eralize well, such as ridge regression (RR), Lasso, sup-
port vector regression (SVR), and convolutional neural net-
works (CNN), are leveraged. For RR, Lasso and SVR mod-
els, we conduct a standard 5-fold cross-validation approach
and compute the root mean square error (RMSE) between
the predicted values and ground truth values of the cog-
nitive scores on the testing data. For the CNN regression
model, we construct a two layer convolution architecture
for the cognitive outcomes prediction and dropout tech-
nique is also leveraged to reduce overfitting in CNN mod-
els and prevent complex co-adaptations on training data.
For the model parameters, reduced dimension r is studied
in {40, 60, . . . , 180, 200} and γ1,γ2 γ3 are fine tuned by
searching the grid of {10−5, . . . , 10−1, 1, 10, · · · , 105}.

Experimental Results

From Table 1, we can see that the proposed enriched neu-
roimaging representation is consistently better than baseline
biomarker representations when we use them in the four
different regression methods – RR, Lasso, SVR and CNN.
This observation can be attributed to the following reasons.
First, the original baseline biomarker representation only
deals with one single cognitive measure. It does not bene-
fit from the correlation across different cognitive measures
over time. Instead, our proposed enriched biomarker repre-
sentation could capture not only the baseline cognitive mea-
surement, but also the temporal information conveyed by
the longitudinal biomarkers over AD progressions. Our en-
riched representation could integrate the neuroimaging mea-
surements at the fixed time point and the dynamic temporal
changes. As AD is a progressively degenerative disease, in-
corporation of future information about subjects benefits the
prediction model. Second, the original baseline neuroimag-
ing measurements are of high dimensionality, which could
be redundant and noisy. Thus the traditional methods may
easily suffer from “the curse of dimensionality”. Via the pro-
jection, we map the baseline cognitive measurement into a
low dimensional space thereby mitigating the issue of high
dimensionality.

Besides of the prediction capability comparison between
original representation and enriched representation, we also
explore prediction performance of our model when integrat-
ing different types of bioimaging data. From Figure 1, we
can see that our proposed enriched biomarker representation
achieves its peak performance when we leverage all avail-
able biomarkers – VBM, FreeSurfer and SNP.

Identification of Disease Relevant Imaging
Biomarkers

Apart from the cognitive outcomes prediction task, another
primary goal of our regression analysis is to identify a subset

821



Table 1: Experiment results comparison between original representation and enriched representation using all available
biomarkers to predict clinical scores of MMSE, FLU, RAVLT, ADAS and TRAILS. We compare four different general re-
gression methods – RR, Lasso SVR and CNN. The root mean squared error (RMSE) value for each cognitive outcome is
calculated for comparison. The reduced dimension r is set to 60.

Cognitive Scores RR Lasso SVR CNN

MMSE Original Representation 0.4188 0.3627 0.475 0.1483

Enriched Representation 0.2928 0.3219 0.3576 0.1418

FLU AMIN Original Representation 1.5515 0.677 0.2523 0.2815

Enriched Representation 1.3091 0.6331 0.1941 0.2469

FLU VEG Original Representation 3.1384 0.7716 0.2313 0.2049

Enriched Representation 2.6735 0.6545 0.2015 0.1722

RAVLT TOTAL Original Representation 3.0850 2.8242 1.4471 0.7862

Enriched Representation 2.3676 2.2019 1.1986 0.7086

RAVLT 30 Original Representation 4.1333 1.6309 0.3926 0.3926

Enriched Representation 3.0221 1.2494 0.3011 0.3501

RAVLT REC Original Representation 6.2365 0.5368 0.6009 0.3923

Enriched Representation 4.5648 0.4030 0.5466 0.3668

ADAS Original Representation 2.3186 1.5073 0.6731 0.9504

Enriched Representation 1.9879 1.3212 0.5985 0.8951

TRAILA Original Representation 85.1665 36.5110 15.8871 7.3400

Enriched Representation 71.7873 34.3885 15.0620 7.2555

TRAILB Original Representation 43.5337 25.3341 13.9827 5.0018

Enriched Representation 36.5486 21.6145 12.1877 4.8303

of biomarkers which are highly correlated to AD progres-
sions. Thus, we examine the biomarkers of each participant
identified by the proposed methods encoded by the cognitive
scores.

From the formulation in Eq. (4), we learn a global projec-
tion W0 which summarize all the most important biomark-
ers across all the participants. Therefore, we plot the weights
of each region of VBM and FreeSurfer from global projec-
tion W0, shown in Figure 2. From Figure 2, we can see
that the bilateral hippocampus, amygdala regions in VBM
and bilateral cerebral white matter regions in FreeSurfer are
found to be in the top selected biomarkers by our model.
The hippocampus is a small organ located within the brain’s
medial temporal lobe and forms an important part of the
limbic system, the region that regulates emotions. The hip-
pocampus is associated mainly with memory, in particular
long-term memory (Mu and Gage 2011). The amygdala per-
forms a primary role in the processing of memory, decision-
making and emotional response (Amunts et al. 2005).

In summary, the identified imaging biomarkers are highly
suggestive and strongly agree with existing medical research
findings with regards to AD, which warrants the correctness
of the discovered imaging cognition associations to reveal
the complex relationships between biomarkers and cognitive
scores. This is important for both theoretical research and

clinical practices for a better understanding of AD mecha-
nism.

Conclusions

Missing data is a critical challenge in longitudinal multi-
modal AD studies. In this paper, we propose a formula-
tion to learn a consistent length representation for all the
participants in ADNI dataset. The enriched fixed length
biomarker representation could capture the global consis-
tency from baseline measurements and local pairwise pat-
tern from available follow-up measurements of each partic-
ipant at the same time from heterogeneous biomarker mea-
surements. Our results show that our enriched representa-
tion beat the performance of the baseline measurement when
predicting the clinical scores. Furthermore, the identified
biomarkers are highly suggestive and strongly agree with
the existing research findings, which warrants the correct-
ness of our approach. This is important for both theoretical
research and clinical practices for a better understanding of
AD mechanism.
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Figure 1: Experiment results using different combinations of heterogeneous neuroimaging sources to predict clinical scores of
MMSE, FLU, RAVLT, ADAS and TRAILS. We compare four different general regression methods – RR, Lasso SVR and CNN.
The root mean squared error (RMSE) value for each cognitive outcome is calculated for comparison. The reduced dimension r
is set to 60.

Figure 2: Weights of imaging markers of VBM (Up) and
FreeSurfer (Down).
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