
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

ConCare: Personalized Clinical Feature
Embedding via Capturing the Healthcare Context

Liantao Ma,1,3 Chaohe Zhang,1,3 Yasha Wang,1,2∗ Wenjie Ruan,4 Jiangtao Wang,4

Wen Tang,5 Xinyu Ma,1,3 Xin Gao,1,3 Junyi Gao1,2

1Key Laboratory of High Confidence Software Technologies, Ministry of Education, Beijing, China
2National Engineering Research Center of Software Engineering, Peking University, Beijing, China

3School of Electronics Engineering and Computer Science, Peking University, Beijing, China
4School of Computing and Communications, Lancaster University, UK

5Division of Nephrology, Peking University Third Hospital, Beijing, China
{malt, wangyasha}@pku.edu.cn, {wenjie.ruan, jiangtao.wang}@lancaster.ac.uk, tanggwen@126.com

Abstract

Predicting the patient’s clinical outcome from the historical
electronic medical records (EMR) is a fundamental research
problem in medical informatics. Most deep learning-based
solutions for EMR analysis concentrate on learning the clini-
cal visit embedding and exploring the relations between vis-
its. Although those works have shown superior performances
in healthcare prediction, they fail to explore the personal char-
acteristics during the clinical visits thoroughly. Moreover,
existing works usually assume that the more recent record
weights more in the prediction, but this assumption is not suit-
able for all conditions. In this paper, we propose ConCare
to handle the irregular EMR data and extract feature inter-
relationship to perform individualized healthcare prediction.
Our solution can embed the feature sequences separately by
modeling the time-aware distribution. ConCare further im-
proves the multi-head self-attention via the cross-head decor-
relation, so that the inter-dependencies among dynamic fea-
tures and static baseline information can be effectively cap-
tured to form the personal health context. Experimental re-
sults on two real-world EMR datasets demonstrate the ef-
fectiveness of ConCare. The medical findings extracted by
ConCare are also empirically confirmed by human experts
and medical literature.

Introduction
Performing personal health evaluation for each individual
patient is always the goal that physicians pursue. Electronic
Medical Records (EMR) now provide the possibility to re-
alize these goals. EMR is a type of multivariate time se-
ries data that records patients’ visits in hospitals (e.g., di-
agnoses, lab tests. As shown in Figure 1) and static baseline
information (e.g., gender, primary disease. As shown in Fig-
ure 2). Recently deep learning-based models have demon-
strated state-of-the-art performance in mining the massive
EMR data (Ma et al. 2020; Lee et al. 2017; Gao et al. 2019;
Liu et al. 2018; 2019). Usually, existing works incorporate
multiple dynamic features (e.g., lab test values) to learn
the visit embedding and the health status through the en-
tire clinical visits by sequential models (Ma et al. 2017).
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Figure 1: Dynamic medical features. The physician conducts
the necessary lab tests for the patient at each visit.
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Figure 2: Static baseline information. Such characteristics
are usually used to evaluate the basic condition of the patient
and the prognosis in the clinical practice.

Although the state-of-the-art performance has been demon-
strated in these works, the personal characteristics through
clinical visits have not yet been fully taken into considera-
tion on the healthcare prediction. Specifically, there are two
research challenges, i.e., how to extract the different mean-
ings of the particular clinical features for patients in diverse
conditions, and how to evaluate the impact of irregular visit
time intervals in the healthcare prediction.

• I1: Extracting Personal Health Context: A certain
value of a clinical feature (e.g., blood glucose) may im-
ply different meanings to patients with diverse static base-
lines (e.g., diagnosis of diabetes as a primary disease, as
shown in Figure 2). In order to evaluate the health sta-
tus of the patient comprehensively, physicians need to
take a look at the static clinical baseline information. Be-
sides, not only the static baseline information, but also
the dynamic clinical feature sequence (as shown in Fig-
ure 1) can be treated as the health context of the patient.
For example, when plasma concentrations of creatinine
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and urea begin a hyperbolic rise, both of them and the
GFR (i.e., Glomerular Filtration Rate) value are usually
associated with systemic manifestations (uremia) for pa-
tients with chronic kidney disease (Anna Malkina 2018).
Thus, considering the particular condition of the patient,
the way of attending the medical features in the whole
prediction process should be individualized. Some exist-
ing works try to model the relationship between clinical
visits (Ma et al. 2017), dynamic features (Bai et al. 2018;
Choi et al. 2016) or incorporate the static information
(Lee et al. 2018). However, none of the existing models
explored the interdependencies among dynamic records
as well as static baseline information via a global view. In
practice, it is critical to explore the inherent relationship
between clinical features to build the personal healthcare
context and perform the prediction individually.

• I2: Capturing the Impact of Time Interval: The pa-
tient goes to the hospital only when he feels sick, and
the physician prescribes lab examinations when it is nec-
essary. Therefore, medical records are produced irregu-
larly in clinical practice. It is assumed by many existing
works (Pham et al. 2016; Baytas et al. 2017; Ma, Xiao,
and Wang 2018; Bai et al. 2018) that the more recent clin-
ical records weight more than previous records in general
on the healthcare prediction. However, under certain cir-
cumstance, historical records also contain valuable clini-
cal information, which may not be revealed in the latest
record (e.g., the blood glucose level was extremely abnor-
mal). For instance, the upper respiratory tract infection
(URTI) record a few years ago has almost no influence
on the current healthcare prediction. However, the histori-
cal diagnosis of cerebrovascular disease indicates that the
patient has been suffering from chronic cerebrovascular
damage, so it is continuously the risk factor during the
rest of the life (Somers et al. 2008). Thus building a more
adaptive time-aware mechanism to flexibly learn the im-
pact of the time interval for each clinical feature is ur-
gently needed.

To jointly tackle the above issues, in this paper, we pro-
pose a multi-channel healthcare predictive model, which can
learn the representation of health status and perform the
health prediction by more deeply considering the personal
health context. ConCare evaluates the health status of pa-
tients mainly from the perspective of clinical features, rather
than visits. It embeds the time series of each feature sep-
arately. The time decay effects of different features can be
extracted separately and flexibly via corresponding learn-
able time-aware parameters. The model explicitly extracts
the interdependencies among time series of dynamic fea-
tures as well as static baseline information, to learn the per-
sonal health context of patients in a global view. ConCare
re-encodes each feature by looking at other features for clues
that can help lead to a better understanding for this feature,
so as to depict the health status more individually. Our main
contributions are summarized as follows:

• We propose a novel health status representation frame-
work called ConCare by fully considering the personal
patient’s health context. The health context is formed by

capturing the interdependencies between clinical features
which are extracted separately. To the best of our knowl-
edge, we are the first research to jointly consider static
baseline information, sequential dynamic features and the
impact of the time interval as personal health context in
the clinical representation learning.

• Specifically, 1) We explicitly extract interdependencies
between clinical features to learn the personal health con-
text and regenerate the feature embedding under the con-
text, by a multi-head self-attention mechanism (address-
ing I1). The cross-head decorrelation is utilized to encour-
age the diversity among heads. 2) We propose a multi-
channel medical feature embedding architecture, which
learns the representation of different feature sequences via
separate GRUs, and adaptively captures the effect of time
intervals between records of each feature by time-aware
attention (addressing I2).

• We conduct the mortality prediction task on two real-
world datasets (i.e., MIMIC-III dataset and end-stage
renal disease dataset) respectively to verify the perfor-
mance. The results1 show that ConCare significantly and
consistently outperforms the baseline approaches in both
tasks. We also reveal several interesting medical impli-
cations. 1) We provide the overall time-decay ratios for
diverse biomarkers by the learnable parameter in time-
aware attention. 2) We provide the adaptive cross-feature
interdependencies, which further suggests possible medi-
cal research between specific features. The obtained med-
ical knowledge has been positively confirmed by human
experts and clinical literature.

Related Work

Exploring Relationship Among Clinical Records

Most existing works only focus on exploring the relationship
between clinical visits, in similar ways as general time series
analysis and natural language processing tasks. For example,
Dipole (Ma et al. 2017) uses bidirectional RNN architecture
and the attention mechanism to capture the relationships of
different visits for the prediction. SAnD (Song et al. 2018)
employs self-attention mechanism, positional encoding, and
dense interpolation strategies to incorporate temporal order
on clinical prediction tasks.

There are also a few novel research works that try to
model the relationship between dynamic features rather than
just the visits. For example, (Bai et al. 2018) uses the self-
attention mechanism to combine all diagnosis records pro-
duced in the visit to form the visit embedding, but it fails to
extract the relationship in a global sequential view. (Gupta
et al. 2018) embeds the feature sequences by a pre-trained
TimeNet, which cannot capture the unique characteristics
for different features, respectively. RETAIN (Choi et al.
2016) employs two RNNs to learn time attention as well as
feature attention, and then sums up the weighted visit em-
bedding to perform the prediction, but it lacks advanced fea-

1We release our code and case studies at GitHub https://github.
com/Accountable-Machine-Intelligence/ConCare
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ture extraction, and its prediction accuracy is limited (Ma,
Xiao, and Wang 2018; Ma et al. 2018a).

Besides the utilization of dynamic sequential data, sev-
eral novel solutions also try to incorporate the static base-
line information. For example, (Lee et al. 2018) proposes
a medical context attention-based RNN that utilizes the de-
rived individual information from conditional variational au-
toencoders. However, none of them explore the interdepen-
dencies between static baseline information and dynamic
records from a global view. The proposed model in this pa-
per, ConCare, can adaptively capture the relationship be-
tween clinical features and perform individualized predic-
tion for patients in diverse health contexts.

Handling the Time Interval between Visits

Although most of the existing works (Ma et al. 2018b;
Choi et al. 2017) simply treat the clinical visits in equal inter-
vals, several novel works (Pham et al. 2016; Ma, Xiao, and
Wang 2018) try to model the importance of clinical visits
with time intervals, by attaching a fixed time-decay ratio to
decay the hidden memory of the previous visit. Those works
omit the different characteristics between features. For ex-
ample, T-LSTM (Baytas et al. 2017) handles irregular time
intervals of visits in longitudinal patient records by enabling
time decay to discount the cell memory content in LSTM.
In order to capture the characteristics of different disease
codes, Timeline (Bai et al. 2018) develops time decay fac-
tors for diseases to form visit representation and feeds it into
an RNN for prediction. But its time-aware effect is still dis-
rupted during the historical visit embedding process due to
the rapid memory forgetting of RNN. And Timeline can only
handle the disease codes as features rather than biomarkers.

Therefore, existing works simply assume that recent
records play more important roles than previous records.
However, according to the clinical practice, some historical
clinical events also strongly indicate the health status un-
der certain circumstances while it may not be revealed in
the latest record. The time-aware mechanism should take the
characteristics of features into consideration and meanwhile,
flexibly retain the vital historical information. ConCare can
capture the impact of time interval in diverse feature se-
quences by a learnable time-aware attention.

Problem Formulation

We assume that the patient’s dynamic clinical records (as
shown in Figure 1) consist of T visits to the hospital. The
number of features in each visit record is N . As a result, such
a clinical sequence can be formulated as a “longitudinal pa-
tient matrix” record where one dimension represents medi-
cal features and the other one denotes visit timestamps (Lee
et al. 2017):

record =

⎛
⎜⎝

r11 · · · r1T
...

. . .
...

rN1 · · · rNT

⎞
⎟⎠ . (1)

The static baseline data (as shown in Figure 2), includ-
ing demographic attributes and historical primary diseases,
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Figure 3: The Framework of ConCare.

is denoted as base. The objective of healthcare predic-
tion is using EMR data (i.e., record and base) to pre-
dict whether a patient suffers from the target health risk
during the period of the treatment procedure, denoted as
y ∈ {0, 1}. This problem is posed as a binary classifica-
tion under a certain time window (e.g., 24 hours), namely,
ŷ = ConCare(record, base).

Solution

Figure 3 shows the framework of the proposed ConCare.
The model treats the clinical information of the patient from
the perspective of features rather than visits. We extract the
context vector of each dynamic feature and static baseline
information separately. Such feature embedding vector are
then re-encoded by taking the information of all features as
healthcare context. The framework comprises of the follow-
ing sub-modules:

• The multi-channel time series embedding module with
time-aware attention is developed to separately learn the
representation of each dynamic feature.

• The feature encoder is adopted to combine all the static
information and dynamic records based on self-attention.

The individualized prediction finally is obtained from all
regenerated feature embeddings with an attention queried by
static baseline information. We will present the details in the
following subsections.

Multi-Channel Clinical Sequence Embedding

In ConCare, we aim to capture the interdependencies be-
tween features based on self-attention mechanism (Vaswani
et al. 2017). Since the self-attention architecture contains
no recurrence, in order to incorporate information about the
order of the sequence, researchers simply utilize the fixed
positional encoding to provide relative position information
for timestamps (Song et al. 2018). However, such positional
embedding capability is limited, especially for the absolute
position understanding, but the logical order of the clinical
sequence actually matters in the medical domain. ConCare
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thus embeds the time series of each feature separately by
multi-channel GRU:

hn,1, ..., hn,T = GRUn(rn,1, ..., rn,T ), (2)
where, the time series of feature n is denoted as rn,: = (rn,1,
...,rn,T ) ∈ RT . Then, the hidden representations is summa-
rized across the whole time span. To capture the impact of
time intervals in each sequence, we propose a time-aware at-
tention mechanism here. Generally, an attention function can
be described as mapping a query and a set of key-value pairs
to an output (Vaswani et al. 2017). The output is computed
as a weighted sum of the values, where the weight assigned
to each value is computed by a compatibility function of the
query with the corresponding key. First, the Query vector is
generated by the hidden representation at the last time step
T , and the Key vectors are generated by each hidden repre-
sentation:

qemb
n,T = W q

n · hn,T , (3)

kemb
n,t = W k

n · hn,t, (4)

where qemb
n,T and kemb

n,t are the Query vector and the Key

vector respectively. W q
n and W k

n are the corresponding pro-
jection matrices to obtain the query and key vectors. Then
we design the time-aware attention weights as follow:

αn,1, αn,2, ..., αn,T = Softmax(ζn,1, ζn,2, ..., ζn,T ), (5)

where

ζn,t = tanh(
qemb
n,T · kemb

n,t

βn · log(e+ (1− σ(qemb
n,T · kemb

n,t )) ·Δt)
).

(6)
This is an alignment model that can quantify how much each
hidden representation contributes to the densely summarized
representation for each feature. Δt is the time interval to
the latest record. σ is the sigmoid function. βn is a feature-
specific learnable parameter trained to control the influence
of the time interval on the corresponding feature. The atten-
tion weight αn,t will be significantly decayed, if:
• the time interval Δt is long, which means that such value

is recorded a long time ago. It is obviously that, the most
recent (i.e., Δt = 0) value of any feature will only be
decayed slightly (i.e., log(e) = 1).

• the time-decay ratio βn is high which means that for par-
ticular clinical feature only recent recorded value matters.
The clinical feature whose influence persists (i.e., βn is
low) will be decayed just slightly.

• the historical record does not actively respond to the cur-
rent health condition (i.e., qemb

n,T · kemb
n,t is small).

Finally, based on the learned weights, we can derive time-
aware contextual feature representation as fn =

∑T
i=1 αn,t ·

hn,t. Furthermore, the demographic baseline data is embed-
ded into the same hidden space of fn

fbase = W emb
base · base, (7)

where W emb
base is an embedding matrix. Thus, all the data of

the patient can be represented by a matrix F (i.e., a sequence
of vectors, where each vector represents one feature of the
patient over time): F = (f1, · · · , fN , fbase)

�.

Learning the Context and Re-encoding the Feature

We capture the interdependencies among dynamic features
through visits as well as static baseline information, and
further re-encode the feature embedding under the personal
context based on self-attention. As the ConCare processes
each feature, self-attention allows it to look at other fea-
tures for clues that can help lead to a better encoding for
this feature. For example, when the model is processing the
feature “blood glucose”, self-attention may allow it to as-
sociate it with “diagnosis of diabetes” in the static baseline
information. Besides, the multi-head mechanism enhances
the attention layer with multiple representation subspaces.
Mathematically, given current feature representations F , the
refined new representations are calculated as:

un = MultiHeadAttention(F )

= [head1(fn)⊕ head2(fn)⊕ ...⊕ headm(fn)]W
O,
(8)

where headm is m-th attention head, ⊕ is the concatenation
operation and WO is a linear projection matrix. Considering
both efficiency and effectiveness, the scaled dot product is
used as the attention function (Vaswani et al. 2017). This fol-
lowing softmax score determines how much each feature
will be expressed at this certain feature. Specifically, headm
is the weighted sum of all value vectors and the weights are
calculated by applying attention function to all the query,
key pairs:

α1, α2, ..., αN+1 = Softmax(
q · k1√
dk

,
q · k2√
dk

, ...,
q · kN+1√

dk
),

(9)

headm(gn) =

N+1∑
i=1

αi · vi, (10)

where q, ki and vi are the query, key, and value vectors and
dk is the dimension of ki. Moreover, q, ki and vi are ob-
tained by projecting the input vectors into query, key and
value spaces, respectively (Wang et al. 2019). They are for-
mally defined as:

q, ki, vi = W q · f,W k · fi,W v · fi, (11)

where W q , W k and W v are the projection matrices and each
headm has its own projection matrices. As shown in Eq.9
and Eq.10 each headm is obtained by letting f attending to
all the fearure positions, thus any feature interdependen-
cies between f and fi can be captured.

Cross-Head Decorrelation

Heads for self-attention are expected to capture dependen-
cies from different aspects. However, in practice, heads may
tend to learn similar dependencies according to (Vaswani et
al. 2017). To overcome this challenge, we encourage diverse
or non-redundant representations (Cogswell et al. 2015;
Chu et al. 2019) by minimizing the cross-covariance of hid-
den activations across different heads. We utilize the cross-
head decorrelation module to expand the model’s ability to
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focus on different features, based on (Cogswell et al. 2015)
which reduces the redundancy of the normal neural network
layer. According to Eq.8, we get ut as the multi-head at-
tention for ft, which is the concatenation of the heads. For
simplicity, here we use u to denote ut as a general case. The
covariances between all pairs of activations i and j of u form
a matrix C:

Ci,j =
1

B

B∑
b=1

(ub
i − μi)(u

b
j − μj), (12)

where B is the batch size and ub
i is the i−th activation of u at

b−th case in the batch. μi =
1
B

∑B
b=1 u

b
i is the sample mean

of activation i over the batch. Covariance between diverse
heads is expected to be minimized. The diagonal of C is
then subtract from the matrix norm to build the cross-head
decorrelation loss term:

Ldecorrelation =
1

2
(‖C‖2F − ‖diag(C)‖22), (13)

where ‖·‖F is the frobenius norm,and the diag() operator
extracts the main diagonal of a matrix into a vector. Af-
ter obtaining the refined representation of each position by
the multi-head attention mechanism, we add a position-wise
fully connected feed-forward network sub-layer. This feed-
forward network transforms the features non-linearly and is
defined as FeedForward(rn) = max(0, un · W1 + b1) ·
W2 + b2. We also employ a residual connection (He et al.
2016) around each of the two sub-layers, followed by layer
normalization (Ba, Kiros, and Hinton 2016). As shown in
Fig.3, the outputs of this subsection from F are denoted as
F ∗ = (f∗

1 , f
∗
2 , ..., f

∗
N , f∗

base)
�.

Healthcare Prediction

A dense health status representation is expected to perform
the final prediction. Here, we introduce an individualized
characterization attention summarization. The Query is ob-
tained by f∗

base and Keys are formed by F ∗ as:

qfinbase = W fin
base · f∗

base, (14)

kfinn = W fin
n · f∗

n, (15)

where W fin
base and W fin

n are the projection matrix respec-
tively. Similar to the first subsection, the attention weights
are calculated as:

αfin
base, α

fin
1 , ..., αfin

N = Softmax(ζfinbase, ζ
fin
1 , ..., ζfinN ),

(16)
ζfinn = tanh(qfinbase · kfinn ). (17)

The health status representation s and the prediction result ŷ
can be obtained by:

s =

N∑
i=1

αfin
i · f∗

i + αfin
base · f∗

base, (18)

ŷ = σ(W fin · s+ bfin), (19)
where W fin and bfin are the weight matrix and bias term,
respectively. And the final loss can be denoted as the combi-
nation of cross-entropy loss and decorrelation loss

L = Lcross−entropy + Ldecorrelation. (20)

Experiment

We conduct the mortality prediction experiments on
MIMIC-III dataset 2 and end-stage renal disease (ESRD)
dataset. The source code of ConCare, statistics of datasets
and case studies are available at the GitHub repository3.

Datasets and Prediction Tasks

• MIMIC-III Dataset. We use ICU data from the publicly
available Medical Information Mart for Intensive Care
(MIMIC-III) database (Johnson et al. 2016). We perform
the in-hospital mortality prediction for patients based on
patients’ demographic data and events produced during
ICU stays (Harutyunyan et al. 2017). We fix a test set of
15% of patients and divide the rest of the dataset into
the training set and validation set with a proportion of
0.85 : 0.15.

• Real-World ESRD Dataset. We perform the mortal-
ity prediction on an end-stage renal disease dataset. The
cleaned dataset consists of 656 patients with static base-
line information and 13,091 dynamic records. There are
1196 records with positive labels (i.e., died within 12
months) and 10,804 records with negative labels. The
training set is further split into 10 folds to perform the
10-fold cross-validation.

We assess performance using the area under the receiver
operating characteristic curve (AUROC), area under the
precision-recall curve (AUPRC), and the minimum of preci-
sion and sensitivity Min(Se,P+). AUPRC is the most infor-
mative and the primary evaluation metric when dealing with
a highly imbalanced and skewed dataset (Davis and Goad-
rich 2006; Choi et al. 2018) like the real-world EMR data.

Implementation Details and Baseline Approaches

The training was done in a machine equipped with CPU:
Intel Xeon E5-2630, 256GB RAM, and GPU: Nvidia Titan
V by using Pytorch 1.1.0. For training the model, we used
Adam (Kingma and Ba 2014) with the mini-batch of 256 pa-
tients and the learning rate is set to 1e−3. To fairly compare
different approaches, the hyper-parameters of the baseline
models are fine-tuned by grid-searching strategy. We include
several state-of-the-art models as our baseline approaches.

• GRUα is the basic GRU with an addition-based attention
mechanism.

• RETAIN (NeurIPS 2016) (Choi et al. 2016) utilizes a two-
level neural attention mechanism to detect influential vis-
its and significant variables.

• T-LSTM (SIGKDD 2017) (Baytas et al. 2017) handles ir-
regular time intervals by enabling time decay. We modify
it into a supervised learning model.

• MCA-RNN (ICDM 2018) (Lee et al. 2018) utilizes the
derived individual patient information from conditional
variational auto-encoders to construct a medical context
attention-based RNN.
2https://mimic.physionet.org
3https://github.com/Accountable-Machine-Intelligence/

ConCare
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• Transformere (NeurIPS 2017) (Vaswani et al. 2017) is the
encoder of the Transformer, in the final step, we use to
flatten and FFNs to make the prediction.

• SAnD∗ (AAAI 2018) (Song et al. 2018) models clinical
time-series data solely based on masked self-attention.
When performing prediction at every time step, we use
causal padding (Van Den Oord et al. 2016) for the con-
volutional layer to prevent using future information. We
re-implement SAnD by using rt−k+1:t to build input em-
bedding at the measurement position t, instead of the one
proposed in the original paper rt:t+k−1, to avoid the vio-
lation of causality.

For a fair comparison, although most of the comparative
approaches did not take the static baseline information into
consideration which is greatly beneficial for improving the
performance of healthcare prediction, we feed such charac-
teristics as additional input (i.e., concatenate with the raw
input) for them at each visit.

Results of Risk Prediction

Table 1 shows the performance of all approaches on two
datasets. The number in () denotes the standard deviation
of bootstrapping for 100 times on the MIMIC-III dataset
and the standard deviation of 10-fold cross-validation on the
ESRD dataset. The results indicate that ConCare signifi-
cantly and consistently outperform other baseline methods.

We find that ConCare outperforms the approaches that
only utilize the embedding of the health status in visits (i.e.,
ConCareMC− and all comparative approaches). ConCare
also outperforms the approaches which incorporate the static
information. It indicates that capturing the interdependen-
cies among clinical features (including static baseline infor-
mation and dynamic features) and regenerating the feature
embedding under the personal health context is critical for
evaluating the health status.

Moreover, ConCare outperforms the positional
encoding-based approaches (i.e., ConCarePE ,
Transformer-Encoder, SAnD). It demonstrates the su-
perior of multi-channel GRU encoder than the conventional
positional encoding which is difficult to precisely embed
the positional information. ConCare also outperforms the
time-aware approaches (i.e., T-LSTM), which demonstrates
that capturing the time-decay impact of each feature sepa-
rately in a global view is superior to directly decaying the
hidden memory of entire visits. The superior performance
of ConCare than the ConCareDE− (i.e., without the
decorrelation loss) verifies the efficacy of the decorrelation
loss which can encourage the diversity among heads and
improve the performance.

Findings and Implications

This section will discuss the findings and implications of
ConCare in the experiments.

Decay Rates For Different Features Figure 4 shows the
decay rates (i.e. the β in Eqn. 6) learned adaptively for dif-
ferent features, which depicts how the importance of previ-
ous values of features fades through time. The darker boxes

Figure 4: Decay Rates For Different Features

mean the importance of previous values of features fades
quickly (i.e., the short-term patterns of the features matter),
and vice versa. The figure indicates that ConCare attends
more on the short-term of serum creatinine (Scr), K, White
Blood Cell Count (WBC), Ca, Carbon-dioxide Combining
Power (CO2CP), Cl, hemoglobin (Hb). According to the
medical commonsense, the above features are relatively fast-
changing indicators, reflecting the patient’s infection status
or dialysis adequacy, etc. Conversely, the weight, albumin,
Na and systemic blood pressure (SBP) need to be attended in
the long-term aspect. According to medical research (Mei-
jers et al. 2008), these features are usually related to nutri-
tion intake and reflect the patient’s condition over a period
of time.

Figure 5: Cross-Feature Interdependencies: Patients Died
with (Left) / without (Right) Diabetes

Cross-Feature Interdependencies Figure 5 shows
cross-feature interdependencies of all patients who died
with/without diabetes respectively. The average attention
weights of one head calculated by the self-attention module
are shown. The ordinates of the two figures are the Query
features and the abscissas are the Key features. The
boxes in the figures show when a Query feature makes a
query, how much each Key feature respond to the Query.
Most of the clinical features are more likely to respond to
themselves, which denoted by the diagonal of two matrices.
It is common medical knowledge that the glucose of a
patient is strongly related to diabetes. By comparing the
two figures, in the box of Glucose-Glucose position, the
model pays much more attention to the glucose in patients
who died with diabetes. Besides, ConCare figures out
that there are relatively high interdependencies between
albumin, hyper-sensitive C-reactive protein (hs-CRP),
glucose and the static information (including age, diagnosis
of diabetes) for patients suffering from diabetes. This is
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Table 1: Results of the Healthcare Prediction Tasks

MIMIC-III Dataset (Bootstrapping) ESRD Dataset (10-Fold Cross Validation)
Methods AUROC AUPRC min(Se, P+) AUROC AUPRC min(Se, P+)
GRUα .8628 (.011) .4989 (.022) .5026 (.028) .8066 (.004) .3502 (.009) .3770 (.006)

RETAIN .8313 (.014) .4790 (.020) .4721 (.022) .7986 (.005) .3386 (.009) .3699 (.011)
MCA-RNN .8587 (.013) .5003 (.028) .4932 (.024) .8021 (.015) .3451 (.041) .3731 (.025)

T-LSTM .8617 (.014) .4964 (.022) .4977 (.029) .8101 (.015) .3508 (.052) .3721 (.045)
Transformere .8535 (.014) .4917 (.022) .5000 (.019) .8082 (.027) .3502 (.062) .3719 (.037)

SAnD∗ .8382 (.007) .4545 (.018) .4885 (.017) .8002 (.026) .3371 (.036) .3591 (.053)
ConCarePE .8566 (.008) .4811 (.024) .5012 (.020) .8124 (.025) .3561 (.047) .3761 (.037)
ConCareMC− .8594 (.008) .4902 (.024) .4947 (.025) .8101 (.023) .3498 (.066) .3766 (.064)
ConCareDE− .8671 (.009) .5231 (.028) .5080 (.023) .8162 (.033) .3525 (.063) .3864 (.034)
ConCare .8702 (.008) .5317 (.027) .5082 (.021) .8209 (.036) .3606 (.084) .3853 (.071)

highly consistent with the medical research (Milan Manani
et al. 2015) and medical experience.

Conclusion

In this work, we proposed a novel medical representation
learning framework, ConCare, which can explicitly extract
the personal healthcare context and perform health predic-
tion individually. Specifically, it extracts the clinical features
by multi-channel GRU with a time-aware attention mecha-
nism. The interdependencies among static baseline informa-
tion and dynamic features are captured to build the health
context and re-encode the clinical information. We con-
ducted experiments on two real-world datasets. ConCare
demonstrated significant prediction performance improve-
ment across both tasks. It provides the time-decay ratios for
different features respectively and indicates the interdepen-
dencies between features as interpretability. All extracted
medical findings have been positively confirmed by experts
and medical literature. The results also remind some possi-
ble medical research opportunities for deeply analyzing the
relationship between some clinical features.
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