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Abstract

Due to the discrepancy of diseases and symptoms, patients
usually visit hospitals irregularly and different physiological
variables are examined at each visit, producing large amounts
of irregular multivariate time series (IMTS) data with missing
values and varying intervals. Existing methods process IMTS
into regular data so that standard machine learning models
can be employed. However, time intervals are usually de-
termined by the status of patients, while missing values are
caused by changes in symptoms. Therefore, we propose a
novel end-to-end Dual-Attention Time-Aware Gated Recur-
rent Unit (DATA-GRU) for IMTS to predict the mortality
risk of patients. In particular, DATA-GRU is able to: 1) pre-
serve the informative varying intervals by introducing a time-
aware structure to directly adjust the influence of the previous
status in coordination with the elapsed time, and 2) tackle
missing values by proposing a novel dual-attention structure
to jointly consider data-quality and medical-knowledge. A
novel unreliability-aware attention mechanism is designed to
handle the diversity in the reliability of different data, while a
new symptom-aware attention mechanism is proposed to ex-
tract medical reasons from original clinical records. Extensive
experimental results on two real-world datasets demonstrate
that DATA-GRU can significantly outperform state-of-the-art
methods and provide meaningful clinical interpretation.

Introduction

The widely-used electronic health records (EHR) produces
a large quantity of health data, providing valuable oppor-
tunities to develop advanced machine learning methods to
improve healthcare service (Shickel et al. 2017; Liu et al.
2018a). One important task is to predict the mortality risk
of patients based on their historical EHR data. Accurate pre-
diction results help doctors evaluate early treatment effects
and design effective treatment plans (Liu et al. 2018b).

This task is challenging since EHR data consists of irreg-
ular multivariate time series (IMTS), as illustrated in Fig.1.
At different stages of diseases, patients visit hospitals under
varying intervals due to the dynamics of health status. More-
over, different physiological variables are examined at dif-
ferent visits because of the changes in symptoms, e.g., when
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Figure 1: Illustration of irregular multivariate time series
(IMTS). The time intervals between successive visits vary
significantly from each other. Meanwhile, certain physio-
logical variables are not examined at some visits, causing
missing values.

a certain symptom disappears, corresponding variables are
no longer examined, resulting in missing values. The vary-
ing time intervals between successive visits and missing
values raise two key challenges in using IMTS to achieve
accurate mortality risk prediction results. In addition, these
properties provide valuable information in improving pre-
diction performance since they usually reflect the health sta-
tus and symptoms of patients.

Machine learning methods have been successfully ap-
plied in many areas, e.g., speech recognition (Afouras et
al. 2018), computer version (Ye et al. 2019a; 2019b; 2019c;
Fu et al. 2019), natural language processing (Camburu et al.
2018), energy prediction (Yuan et al. 2017; 2015; Kang et
al. 2017). The state-of-the-art sequence modeling methods
are recurrent neural networks (RNNs) (Chung et al. 2014;
Pang et al. 2019; Gao et al. 2019). The major limitation of
standard RNN is that it is designed for data with constant
intervals (Baytas et al. 2017), which cannot handle the ir-
regular time-series data. Most clinical prediction methods
convert IMTS into equally spaced by discretizing the time
axis into non-overlapping intervals with a hand-designed in-
terval (Tan et al. 2019; Xu et al. 2018; Tan et al. 2018;
Che et al. 2017; Lipton, Kale, and Wetzel 2016). Then miss-
ing values are filled via imputation methods. However, when
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the manually selected interval is long, it may cause the loss
of temporal information; Conversely, it may increase the
missing data rate when the interval is short. Thus, a learning-
based method is introduced to obtain an optimal interval in
InterpNet (Shukla and Marlin 2019). However, when Interp-
Net finally specifies the interval, it still unavoidably intro-
duces additional noise or causes information loss, because
different patients could have very different numbers of vis-
its. Moreover, these methods usually assume that there is an
expected fixed time interval. This assumption may not valid
in practice due to the dynamics of diseases.

A better way to handle IMTS data is to directly model
the unequally spaced data. Time-aware LSTM (T-LSTM) in-
corporates irregular time intervals to adjust the hidden sta-
tus in the memory cell (Baytas et al. 2017). However, T-
LSTM is designed for ICD-9 codes, which cannot address
the missing data problem in real-valued variables. The re-
cently proposed GRU-D tries to handle both problems (Che
et al. 2018). GRU-D introduces observed records and corre-
sponding timestamps into standard GRU to impute missing
values as the decay of previous input values toward the over-
all mean over time. However, GRU-D only combines the
empirical mean value and the previous observation to im-
pute missing values. This strategy cannot capture the global
structure information of sequence data. Furthermore, GRU-
D ignores the diversity in the reliability of different data
points, especially the relatively larger unreliability of im-
puted records compared with actual records. As a result, it
assigns equal weights to actually observed data and imputed
data, which seriously damages its performance.

To address the aforementioned challenges, this paper
presents a novel end-to-end Dual-Attention Time-Aware
Gated Recurrent Unit (DATA-GRU) for IMTS to improve
the mortality risk prediction performance. To preserve in-
formative varying intervals, which reflect dynamics in the
conditions of patients, we introduce a time-aware structure
to handle irregular time intervals. This strategy avoids pro-
cessing IMTS into equally spaced, thus protecting tempo-
ral information in dense records and avoiding introducing
extra noise to sparse records. Since missing values cause
data misalignment, they need to be imputed so as to com-
pose tensor (Comon 2014). However, the imputation pro-
cess would impair medical information contained in missing
values. Therefore, we propose a novel dual-attention struc-
ture with two new attention mechanisms to simultaneously
focus on the data-quality view and the medical-knowledge
view. For the data-quality view, a novel unreliability-aware
attention mechanism is proposed to estimate diversity in the
unreliability of different data and accordingly assign them
learnable attention weights to ensure high-quality data play
more important roles. Our main ideas are that imputed data
normally are less reliable than actual records and different
imputed data could have different degrees of unreliability,
e.g., data inferred from sparse observations are less reliable
than from dense observations. For the medical-knowledge
view, a novel symptom-aware attention mechanism is pro-
posed to directly extract medical information from original
clinical records. Different from other domains, missing val-
ues in EHR data possess important medical considerations.

It should be noted that DATA-GRU is designed in an end-to-
end architecture to ensure the parameters of different parts
are trained jointly to achieve global optimal.

The main contributions of this paper are listed as follows:

• We propose a new end-to-end DATA-GRU network with
two novel structures to handle the two key challenges in
medical IMTS data analysis.

• We introduce a time-aware structure into deep learning
architecture to directly incorporate irregular time inter-
vals to adjust the influence of the previous status. This
strategy preserves the contained useful information on dy-
namic changes in the health status of patients.

• We design a new dual-attention structure to handle miss-
ing values from both data-quality and medical-knowledge
views. Novel unreliability-aware attention is proposed to
assign learnable weights to different data in coordination
with their reliabilities, while new symptom-aware atten-
tion is designed to learn medical information from the
sampling characteristics of original EHR data.

• We empirically show that DATA-GRU outperforms state-
of-the-art methods on two real-world datasets. The case
study indicates that the learned attention weights can pro-
vide meaningful clinical interpretation.

Related Work

Attention methods have been successfully applied in many
tasks, e.g., machine translation (Shankar and Sarawagi
2019) and computer vision (Fu et al. 2019). However, data
in their domains usually have regular time intervals or have
no time attribute, which is unsuitable for the EHR data.

Several works have investigated the attention mechanism
for EHR data. To increase the interpretability of networks,
RETAIN introduces an attention network to detect influen-
tial visits and key variables (Choi et al. 2016). A graph-
based attention model is proposed to learn robust repre-
sentations of EHR data (Choi et al. 2017). Similarly, (Ma
et al. 2018) introduce a knowledge-based attention mecha-
nism to embed nodes in the knowledge graph. Three atten-
tion mechanisms are introduced to measure relationships be-
tween current status and past state in RNN (Ma et al. 2017)
and monitor health conditions (Suo et al. 2017). The atten-
tion mechanism is also used to handle the low measuring
quality problem (Heo et al. 2018). (Song et al. 2018) use
masked self-attention to dispense the recurrence in the net-
work. The attention mechanisms used in these methods can
promote the performance and interpretability of models at
some extents. However, these attention-based methods are
usually designed for regular time-series data (or generated
regular data), thus cannot be applied to the irregularly sam-
pled EHR data, which is a key problem for health data.

Proposed Method

In this section, we present the proposed Dual-Attention
Time-Aware Gated Recurrent Unit (DATA-GRU). We firstly
introduce the notations used in this paper.
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Figure 2: Architecture of DATA-GRU and illustration of dual-attention mechanism. (a) DATA-GRU takes input records xt, time
intervals Δt and unreliability scores ut as inputs. Parts in purple, green, and cyan denote time-aware mechanism, symptom-
aware attention, and unreliability-aware attention, respectively. DATA-GRU handles irregular intervals by converting them into
weights via a decay function to adjust the influence of previous status on current status. (b) DATA-GRU tackles missing values
by designing a novel dual-attention structure to jointly consider data-quality and medical-knowledge.

Notations

Let D = {(Xk, yk)|k = 1, 2, · · · ,K} denote a dataset with
K samples. Each data sample contains a multivariate time
series (MTS) and a target value. We represent MTS of the
kth sample as Xk = (xk

1 , · · · , xkt , · · · , xT k
k) ∈ RTk×N ,

where N is the number of all input features; Tk is the number
of visits in the kth sample; xk

t (1 ≤ t ≤ Tk) denotes records
of input features at time t; xt.nk is the value of the nth fea-
ture of xk

t . The two key challenges for irregular MTS (IMTS)
are: a) time irregularities, which refers to varying inter-
vals between successive visits, i.e., the time intervals dataset
{tt − tt−1|t = 1, 2, · · · , Tk} has multiple values; b) missing
values (i.e., several physiological variables are not examined
at some visits because of the changes in symptoms), due to
which the length of each time-series feature is often shorter
than Tk. Thus, we represent Xk as a time series tkall and a
tuple Sk = (tk, xk), where tkall = [tk1 , tk2 , · · · , tT k

k] is the list
of timestamps of all visits; tk = [tk.1, · · · , tk.n, · · · , tk.N ] is the
list of timestamps for each input feature ( tk.n(1 ≤ k ≤ K)
is a subset of tkall); and xk = [xk.1, · · · , xk

.n, · · · , xk
.N ] is the

corresponding list of recorded input features.

Dual-Attention Time-Aware GRU (DATA-GRU)

The architecture of the proposed DATA-GRU is shown in
Fig.2(a). Compared with standard GRU, DATA-GRU has
two novel components, i.e., time-aware mechanism and
dual-attention mechanism, which simultaneously handles
varying intervals and missing values. The time-aware mech-
anism is introduced to handle irregular intervals. Although
standard GRU (and other variations of RNN) has recursive
formulation and can handle variable-length sequences, but
it can only handle the time-series data with equal intervals
between successive elements. Thus, standard GRU has no

structure to handle irregular intervals with missing values.
However, as mentioned above, processing IMTS data of dif-
ferent patients into equally spaced would seriously damage
data quality, making it nearly impossible to achieve accurate
prediction results. Therefore, we introduce the time-aware
structure to directly handle varying time intervals.

The dual-attention structure is designed to handle miss-
ing values from both data-quality and medical-knowledge
views, as illustrated in Fig.2(b). It is noteworthy that im-
puted values may not always reflect reality and are less
reliable than actual records. To achieve accurate and reli-
able predictions, it is suggested to assign smaller weights
to less reliable data and weaken its role by developing an
unreliability-aware attention mechanism. In addition, unlike
other domains, missing values in EHR data may contain im-
portant medical considerations, e.g., whether certain physio-
logical variables are examined or not may indicate the emer-
gence of specific symptoms and signs. Mining such medical
information will further promote final results. Therefore, a
novel symptom-aware attention is proposed to learn medical
information from the medical-knowledge view. The details
of DATA-GRU are presented in the following sections.

Time-aware mechanism. As mentioned above, we only
impute missing values rather than generating equally spaced
data to avoid noise generation. Most methods utilize sim-
ple imputation methods, e.g., forward filling with past val-
ues and mean value imputation, or their combinations to
handle missing values. However, these methods are inca-
pable of capturing the global structure of time-series data.
Since Gaussian process (GP) can incorporate global struc-
ture information from all available records to conduct im-
putation, we use it to fill missing values in IMTS. For the
kth sample, time series pairs of many variables in the tu-
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ple Sk = (tk, xk), where tk = [tk.1, · · · , tk.n, · · · , tk.N ] and
xk = [xk.1, · · · , xk.n, · · · , xk.N ], are shorter than the list of all
timestamps tkall = [tk1 , tk2 , · · · , tT k

k] due to missing values.
For each variable, we represent actually observed records as
Xk
n and corresponding timestamps as Tk

n. The estimation of
the missing value at time t∗(t∗ ∈ tkall & t∗ /∈ Tk

n) is made
via the computation of the conditional distribution, which is
a Gaussian distribution with a mean function E[x∗] and a
covariance function Con[x∗]:

p(x∗|t∗,Xk
n,Tk

n) ∼ N(u∗, δ2∗) (1)

E[x∗] = k(t∗)T (K(Tk
n,Tk

n) + δ2IN )−1Xk
n (2)

Con[x∗] = k(t∗, t∗)− k(t∗)T (K(Tk
n,Tk

n) + δ2IN )−1k(t∗)
(3)

where K(Tk
n,Tk

n) is the covariance matrix between ob-
served records; k(t∗) is the covariance matrix between the
estimated value and observed records; IN is a unit matrix.

It should be noted that imputed values may not always
be reliable: 1) compared with actual records, imputed values
are relatively less reliable since they are inferred from actual
records; 2) different imputed data typically have different
degrees of reliability. When imputing the missing value at a
timestamp with intensive observations nearby, the estimated
value is reliable due to the increase of posterior knowledge.
Conversely, data inferred from sparse observations are less
reliable. GP naturally provides covariance functions to quan-
titatively describe unreliability of estimated data. Since ac-
tual records are relatively absolutely reliable compared with
imputed values, we set their unreliability scores to zero.
Thus, we get unreliability scores of different data:

u[x∗] =
{
0, for actually observed records
Con[x∗] > 0, for imputed values

(4)

For each sample, we represent its IMTS as three
data streams: an augmented input record, i.e., Xk

r =
[xk.1, · · · , xk.n, · · · , xk.N ] = [xk

1 , · · · , xkt , · · · , xk
Tk ]

T , which
is a unequally spaced MTS without missing values; an un-
reliability scores matrix Uk

r = [uk
.1, · · · , uk

.n, · · · , uk
.N ] =

[uk
1 , · · · , uk

t , · · · , uk
Tk ]

T , which has the same shape with
Xk
r and quantitatively describes the unreliability degree of

each element in Xk
r ; and a list of time intervals Δk

all =
[Δk

1 , · · · ,Δk
t , · · · ,Δk

Tk
], where Δt = tt − tt−1.

DATA-GRU takes input records xt, time intervals Δt and
unreliability scores ut as inputs, as shown in Fig.2. The time
intervals are directly incorporated into DATA-GRU to adjust
the hidden status in the previous memory cell. To ensure the
influence of previous status fades with the increase of the
time interval, we suggest to utilize a decay function to trans-
form it into weight. We tested several decay functions, e.g.,
wΔt=1/log(e+Δt), wΔt = e−Δt and wΔt=1/Δt, and found
that wΔt=1/log(e+Δt) is slightly better. Therefore, we use it
to transform time intervals into proper weights to adjust hid-
den state. The mathematical formulations for wΔt and hd

t−1
are as follows:

wΔt=1/log(e+Δt) (5)

hd
t−1 = ht−1 � wΔt (6)

For convenience, we name the variant of GRU equipped
with the time-aware mechanism as T-GRU. Compared
with standard GRU, T-GRU can directly analyze unequally
spaced univariate or multivariate time series without the ne-
cessity of processing it into equally spaced data and thus can
preserve the informative varying intervals.

Dual-attention mechanism. Imputed records in aug-
mented data may not always reflect reality and the impu-
tation process could damage medical considerations behind
sampling characteristics of original EHR data, both affecting
risk prediction. To this end, a novel dual-attention structure
is further integrated into T-GRU to handle missing values by
jointly considering data quality and medical knowledge.

Unreliability-aware attention is proposed from the data-
quality view. Since the degrees of unreliability diverse
between actual records and imputed records, and also
vary among different imputed records, we propose an
unreliability-aware attention mechanism to adjust weights
assigned to different data to ensure high-quality data play
important roles to promote prediction performance while the
influence of low-quality data is limited. For convenience, un-
reliability score is converted into reliability score via ct =
1−ut. Since ct is only able to identify the quality of different
elements within each time series but is unable to identify im-
portant variables, we learn unreliability-aware weights from
ct using αu

t = sigmoid(Wuct + bu) and utilize the learned
weights to adjust scores contributed by different elements in
time series of different variables. The expressions are given
below:

ct = 1− ut (7)

αu
t = sigmoid(Wuct + bu) (8)

xu
t = xt � αu

t (9)

The sampling characteristic of original EHR data pos-
sesses important medical considerations. We avoid dam-
aging informative varying intervals in IMTS by introduc-
ing the time-aware structure, which is a big step forward
compared with the typical methods of processing IMTS
into equally spaced. However, the imputation process may
still damage some medical information, i.e., missing val-
ues which are typically caused by changes in the symp-
toms of patients. To this end, from the medical-knowledge
view, we propose novel symptom-aware attention to fur-
ther supplement unreliability-aware attention. To exclude
the impact of imputed records, we filter out all the im-
puted values with an actual records pass filter (ARPF),
which only allows actually observed records to pass through,
namely cst 0/1 = FARPF (ct) = �ct − 0.5� for reliability
scores and xs

t 0/true = xt � cst 0/1 for input records, such
that sampling characteristics of original EHR data are pre-
served. The filtered data has severe irregularities and the
contained medical information is difficult to extract by us-
ing standard machine learning methods, whose architec-
tures are designed for regular data. Therefore, we utilize the
aforementioned T-GRU to handle the time irregularity prob-
lem to extract deep symptom-aware input values xs

t deep =

TGRU(xs
t 0/true, wΔt) and deep symptom-aware attention

weights αs
t deep = TGRU(αs

t 0/1, wΔt). Then, αs
t deep are
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Table 1: The AUC scores (mean± std) of different levels of mortality risk predictions for MIMIC-III. Red represents the best
performance while Blue and Green indicate the second and third best performance, respectively.
Models In-hospital 1 day 5 days 10 days 15 days 20 days 
LR (Hosmer et al. 2013) 0.815 ± 0.007 0.821 ± 0.009 0.810 ± 0.008 0.798 ± 0.008 0.791 ± 0.007 0.777 ± 0.007 
RF (Breiman 2001) 0.849 ± 0.007 0.856 ± 0.009 0.842 ± 0.008 0.834 ± 0.007 0.823 ± 0.007 0.820 ± 0.007 
IndRNN (Li et al. 2018) 0.888 ± 0.006 0.894 ± 0.007 0.888 ± 0.007 0.875 ± 0.006 0.867 ± 0.006 0.858 ± 0.006 
GRU-raw (Chung et al. 2014) 0.885 ± 0.005 0.888 ± 0.007 0.874 ± 0.007 0.867 ± 0.006 0.857 ± 0.006 0.852 ± 0.006 
GRU (Chung et al. 2014) 0.883 ± 0.006 0.892 ± 0.007 0.881 ± 0.006 0.875 ± 0.006 0.866 ± 0.006 0.859 ± 0.006 
T-LSTM (Baytas et al. 2017) 0.863 ± 0.006 0.896 ± 0.007 0.872 ± 0.007 0.856 ± 0.007 0.851 ± 0.006 0.840 ± 0.006 
T-LSTM-ND (Baytas et al. 2017) 0.885 ± 0.005 0.899 ± 0.007 0.890 ± 0.006 0.874 ± 0.006 0.863 ± 0.006 0.855 ± 0.006 
GRU-D (Che et al. 2018) 0.900 ± 0.005 0.923 ± 0.006 0.895 ± 0.006 0.875 ± 0.006 0.876 ± 0.006 0.866 ± 0.006 
InterpNet (Shukla and Marlin 2019) 0.903 ± 0.005 0.925 ± 0.005 0.901 ± 0.005 0.887 ± 0.005 0.879 ± 0.005 0.872 ± 0.005 
T-GRU-raw 0.889 ± 0.005 0.901 ± 0.006 0.887 ± 0.006 0.874 ± 0.006 0.860 ± 0.006 0.856 ± 0.006 
T-GRU-raw+s 0.897 ± 0.005 0.925 ± 0.005 0.900 ± 0.005 0.882 ± 0.006 0.871 ± 0.005 0.863 ± 0.005 
T-GRU 0.893 ± 0.005 0.902 ± 0.006 0.898 ± 0.006 0.881 ± 0.006 0.868 ± 0.006 0.861 ± 0.006 
T-GRU+u 0.913 ± 0.005 0.927 ± 0.005 0.910 ± 0.005 0.897 ± 0.005 0.885 ± 0.005 0.878 ± 0.005 
DATA-GRU 0.919 ± 0.004 0.934 ± 0.005 0.921 ± 0.005 0.907 ± 0.004 0.898 ± 0.005 0.893 ± 0.004  

used to adjust weights assigned to xs
t deep. The expressions

are as follows:
cst 0/1 = FARPF (ct) = �ct − 0.5� (10)

xs
t 0/true = xt � cst 0/1 (11)

xs
t deep = TGRU(xs

t 0/true, wΔt) (12)
αs
t deep = TGRU(αs

t 0/1, wΔt) (13)
xs
t = xs

t deep � αs
t deep (14)

Interpretable embedding. To utilize information from
both views, we combine them via an embedding layer. We
select rectified linear unit (ReLU) as the activation function
because it enables the learned representations to be inter-
pretable. The expression is given below:

xadjust
t = ReLU(Wemb[xu

t ;x
s
t ] + bemb) (15)

The adjusted previous hidden status as given in Eq. (6)
and the adjusted input as given in Eq. (15) are then injected
into a standard GRU:

zt = δ(Wzx
adjust
t + Uzh

d
t−1 + bz) (16)

rt = δ(Wrx
adjust
t + Urh

d
t−1 + br) (17)

h̃t = tanh(Wxadjust
t + U(rt � hd

t−1) + b) (18)
ht = (1− zt)� hd

t−1 + zt�h̃t (19)
where δ(•) is sigmoid function; Wz , Uz , Wr, Ur, W and U
are trainable matrices; bz , br and b are trainable vectors.

Objective Function. We use a softmax layer to generate
the mortality risk scores from the hidden status at the last
timestamp of the observation window:

ỹt = softmax(Wpredht + bpred) (20)
where Wpred and bpred are trainable matrix and vector.

We use cross-entropy as the objective function to calcu-
late the classification loss between the true mortality label ỹ
and the predicted label ỹt for each patient:

Loss(ỹ, ỹt) =
1

Tk

Tk∑
t=1

(ỹ log ỹt + (1− ỹ) log(1− ỹt))

(21)
During the training process, the losses for all the patients in
each minibatch are summed up to obtain the total loss for
back propagation.

Experiments

Data Description and Experimental Settings

We conduct experiments on two real-world datasets, i.e.,
MIMIC-III (Johnson et al. 2016) and eICU Collaborative
Research Dataset (Pollard et al. 2018).

MIMIC-III consists of medical records of 58K patients
collected at Beth Israel Deaconess Medical Center over 11
years. We use the 20 most frequent laboratory parameters
and the 30 most frequent chartevents as inputs. We set the
observation window as 5 days and utilize all the patients
meeting the following three conditions: 1) adult (aged 18
years or above); 2) at least one of the 20 laboratory parame-
ters is not empty; 3) at least one of the 30 chartevents is not
empty. We finally get a cohort of 34,660 patients. We con-
duct two kinds of prediction tasks: in-hospital mortality risk
prediction (predict the likelihood of death for a patient dur-
ing the treatment in hospital) and short-term mortality risk
prediction (predict the likelihood of death for a patient a few
days after the end of the observation window).

eICU consists of medical records of 200,859 patients col-
lected from 208 critical care units in the United States be-
tween 2014 and 2015. We utilize the 50 most frequent lab-
oratory parameters as inputs. We conduct in-hospital mor-
tality risk prediction with different lengths of observation
window (increase from the first day to the first 6 days after
admission). We utilize all the adult patients with at least 2
visits within the observation window.

For both datasets, 70% of patients are randomly chosen as
the training set and the rest patients are used as the test set.
The experimental results are evaluated in terms of the area
under the receiver operator characteristic curves (AUC).

Comparing Methods

• Logistic Regression (LR) and Random Forests (RF):
As baselines, LR (Hosmer Jr, Lemeshow, and Sturdivant
2013) and RF (Breiman 2001) are used to model means of
IMTS data since they are unable to model variable length
sequences.

• Independent Recurrent Neural Network (IndRNN):
Different from standard RNNs, neurons in IndRNN are
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Table 2: The AUC scores (mean ± std) of in-hospital mortality risk prediction with different observation windows for eICU.
Red represents the best performance while Blue and Green indicate the second and third best performance, respectively.
Models 1 day 2 days 3 days 4 days 5 days 6 days 
LR (Hosmer et al. 2013) 0.738 ± 0.003 0.768 ± 0.003 0.781 ± 0.003 0.792 ± 0.003 0.800 ± 0.003 0.801 ± 0.003 
RF (Breiman 2001) 0.775 ± 0.004 0.792 ± 0.004 0.801 ± 0.003 0.813 ± 0.003 0.823 ± 0.003 0.820 ± 0.003 
IndRNN (Li et al. 2018) 0.820 ± 0.003 0.838 ± 0.003 0.852 ± 0.003 0.862 ± 0.003 0.867 ± 0.003 0.877 ± 0.002 
GRU-raw (Chung et al. 2014) 0.756 ± 0.004 0.825 ± 0.003 0.845 ± 0.003 0.857 ± 0.003 0.867 ± 0.003 0.875 ± 0.003 
GRU (Chung et al. 2014) 0.816 ± 0.003 0.836 ± 0.003 0.852 ± 0.003 0.866 ± 0.003 0.869 ± 0.003 0.875 ± 0.002 
T-LSTM (Baytas et al. 2017) 0.793 ± 0.003 0.819 ± 0.003 0.836 ± 0.003 0.845 ± 0.003 0.860 ± 0.003 0.869 ± 0.003 
T-LSTM-ND (Baytas et al. 2017) 0.820 ± 0.004 0.839 ± 0.004 0.854 ± 0.004 0.867 ± 0.004 0.874 ± 0.004 0.879 ± 0.004 
GRU-D (Che et al. 2018) 0.737 ± 0.004 0.803 ± 0.004 0.827 ± 0.003 0.849 ± 0.003 0.858 ± 0.003 0.861 ± 0.003 
InterpNet (Shukla and Marlin 2019) 0.720 ± 0.004 0.805 ± 0.004 0.834 ± 0.003 0.847 ± 0.003 0.854 ± 0.003 0.857 ± 0.003 
T-GRU-raw 0.768 ± 0.004 0.830 ± 0.003 0.847 ± 0.003 0.861 ± 0.003 0.870 ± 0.003 0.876 ± 0.002 
T-GRU-raw+s 0.777 ± 0.004 0.832 ± 0.003 0.851 ± 0.003 0.863 ± 0.003 0.870 ± 0.003 0.880 ± 0.002 
T-GRU 0.822 ± 0.003 0.844 ± 0.003 0.859 ± 0.003 0.870 ± 0.003 0.875 ± 0.003 0.881 ± 0.002 
T-GRU+u 0.826 ± 0.003 0.854 ± 0.003 0.866 ± 0.003 0.877 ± 0.002 0.883 ± 0.003 0.891 ± 0.002 
DATA-GRU 0.836 ± 0.003 0.859 ± 0.003 0.872 ± 0.003 0.884 ± 0.002 0.890 ± 0.002 0.896 ± 0.002  

independent of each other in the same layer but are con-
nected across different layers (Li et al. 2018).

• T-LSTM and T-LSTM-ND: T-LSTM (Baytas et al.
2017) described in the introduction section. Since T-
LSTM is designed for longitudinal records, it decomposes
data into long and short memory, which may not be suit-
able for ICU data. So we also compare with T-LSTM
without such decomposition structure (T-LSTM-ND).

• GRU-D: GRU-D (Che et al. 2018) described in the intro-
duction section.

• InterpNet: InterpNet (Shukla and Marlin 2019) de-
scribed in the introduction section.

• DATA-GRU variants: Besides above methods, we con-
sider six variants of DATA-GRU to verify the effective-
ness of each component: (a) standard GRU for original
records (GRU-raw) and augmented records (GRU); (b) T-
GRU and T-GRU-raw are GRU and GRU-raw with the
time-aware mechanism; (c) T-GRU-raw+s is T-GRU-raw
with symptom-aware attention; (d) T-GRU+u is T-GRU
with unreliability-aware attention.

Results and Discussion

The AUC scores of DATA-GRU and comparing methods for
MIMIC-III and eICU are provided in Table 1 and Table 2. It
can be seen that the AUC scores of DATA-GRU are continu-
ally larger than that of other methods for both datasets. E.g.,
for the in-hospital mortality prediction of MIMIC-III, the
AUC score of DATA-GRU is 0.919, which is significantly
larger than 0.903 achieved by InterpNet (Shukla and Marlin
2019). These results demonstrate that DATA-GRU achieves
the best performance regardless of the prediction levels and
the lengths of observation window. There are several pos-
sible reasons. Firstly, DATA-GRU introduces a time-aware
structure to directly handle irregular intervals without the
necessity of processing IMTS into equally-spaced, thus suc-
cessfully preserving the contained useful information on the
dynamics of patients’ health status. Secondly, DATA-GRU
designs novel dual-attention consisting of two novel atten-
tion mechanisms to handle missing values, thus capturing

useful information from different views. Furthermore, all the
parameters of DATA-GRU are optimized jointly, ensuring
different components collaborate well to achieve global op-
timal. Besides, several other observations are drawn:

Firstly, DATA-GRU outperforms InterpNet (Shukla and
Marlin 2019) by a large margin. InterpNet is the repre-
sentative of processing IMTS into equally spaced, which
may damage the medical considerations behind the sampling
characteristic of EHR data and do not perform well when the
number of original records is small, e.g., in-hospital mor-
tality prediction for eICU with one day’s observation data.
In comparison, DATA-GRU avoids processing IMTS into
equally spaced by introducing a time-aware structure to han-
dle irregular intervals, achieving better results.

Secondly, DATA-GRU outperforms GRU-D (Che et al.
2018) and T-LSTM (including T-LSTM-ND, Baytas et al.
2017) significantly. This is because GRU-D and T-LSTM are
unable to identify the differences in the reliability of differ-
ent data points and thus cannot adjust the assigned weights.
As a result, imputed values could play equal contributions
with actual records even when they deviate from reality, thus
severely affecting final prediction results.

Thirdly, variations of RNN with the time-aware mecha-
nism generally outperform variations without such mech-
anism. E.g., for MIMIC-III, at the 1-day prediction level,
AUC scores of T-GRU and T-LSTM-ND are 0.902 and
0.899, which are larger than 0.894 and 0.892 achieved by
IndRNN and GRU. These results demonstrate that the intro-
duction of the time-aware mechanism promotes the capac-
ity of handling irregularly spaced data. Experimental results
show that T-LSTM does not perform well for these tasks,
which is probably because its decomposition structure dam-
ages the short-term information in ICU data.

Finally, modeling augmented records usually results in
better results than directly modeling original records, e.g.,
for all the prediction tasks in eICU, T-GRU outperforms
T-GRU-raw and T-GRU+u surpasses T-GRU-raw+s. This
is probably because original EHR data is highly complex
with both missing values and varying intervals, due to
which the contained medical knowledge is difficult to ex-
tract. Conversely, temporal dependencies contained in aug-
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Time (days)
(a1) Unreliability-aware attention weights

Time (days)
(b1) Symptom-aware attention weights

(a2) Unreliability-aware weights at different timestamps (b2) Symptom-aware weights at different timestamps

Figure 3: Visualization of attention weights. (a1) the weight matrix learned by unreliability-aware attention of DATA-GRU,
which shows score assigned to each variable at each visit; (a2) the average weight of different variables at each visit; (b1) and
(b2) provide weight matrix and average weight learned by symptom-aware attention of DATA-GRU.

mented data are easier to capture. In addition, T-GRU+u and
T-GRU-raw+s outperform T-GRU and T-GRU-raw respec-
tively, which demonstrate the effeteness of each attention
mechanism. Furthermore, DATA-GRU consistently outper-
forms T-GRU+u and T-GRU-raw+s, which proves that the
proposed dual-attention can effectively capture information
from different views and improve final results.

Case Study

To demonstrate the benefit of applying DATA-GRU to real-
world risk prediction tasks, we analyze attention weights
learned by unreliability-aware and symptom-aware compo-
nents of DATA-GRU. Fig. 3 shows a case study for predict-
ing the in-hospital clinical outcome of a pneumonia patient
in MIMIC-III based on the EHR data within 5 days after ad-
mission. The patient information is provided in Table 3. In
Fig. 3, X-axis denotes time steps and Y-axis represents the
learned attention score. Fig. 3(a1) shows the attention weight
matrix learned by the unreliability-aware attention mecha-
nism, which demonstrates that different attention scores are
assigned to different elements in different time series. The
average attention score of different variables at each visit
is given in Fig. 3(a2), which shows that the unreliability-
aware mechanism assigns larger weights on the first sev-
eral records. This is because many physiological variables
of the patient are actually examined in these visits. Further-
more, the unreliability-aware attention mechanism can ef-
fectively identify important variables. Fig. 4 shows atten-
tion weights contributed by all the 50 input variables. We
can see that attention scores assigned to these variables are
different. The item IDs of the 5 variables with the largest
weights for the pneumonia patient are 87 (Braden Score),
787 (Carbon Dioxide), 742 (calprevflg), 646 (SpO2), and
51277 (RDW), most of which have been proved to be closely
related to pneumonia (Sin, Man, and Marrie 2005). This
proves that the unreliability-aware attention can effectively
identify important variables and assign larger weights to re-
liable records to help them play important roles.

Fig. 3(b1) shows the attention matrix learned by the
symptom-aware attention mechanism, which can be seen is
different from Fig. 3(a1). This is because the unreliability-

Table 3: Patient information in the case study. All the times-
tamps use admission time of the patient as the benchmark.

Diagnosis In-hospital clinical 
outcome Death time Risk predicted 

by DATA-GRU 

Pneumonia Death 17.99 days 0.906  

ITEM ID of physiological variables
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Figure 4: Attention weights assigned to different variables.

aware attention considers the quality of data, while the
symptom-aware attention focuses on learning medical
knowledge from original clinical records. The average at-
tention score contributed by each visit is provided in Fig.
3(b2), which clearly shows that the symptom-aware atten-
tion focuses on visits in the middle. This is probably be-
cause the time intervals in the middle are small, due to which
the symptoms of the patient change frequently within a cer-
tain period. All these results prove that the proposed dual-
attention mechanism can analyze EHR data from different
views and capture different aspects of information, thus ef-
fectively improving risk prediction results.

Conclusion

This paper proposes a novel DATA-GRU to predict the mor-
tality risk of patients by using IMTS data. A time-aware
mechanism is introduced to directly handle the irregular
time intervals and preserve the contained useful information.
Furthermore, a novel dual-attention mechanism is designed
to tackle missing values in IMTS from both the data-quality
view and the medical-knowledge view. Extensive experi-
mental results and case study demonstrate that DATA-GRU
outperforms existing methods significantly and provides in-
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terpretable prediction results.
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