
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Finding Minimum-Weight Link-Disjoint Paths with a Few Common Nodes

Binglin Tao, Mingyu Xiao,∗ Jingyang Zhao
School of Computer Science and Engineering

University of Electronic Science and Technology of China
taobl@std.uestc.edu.cn, myxiao@gmail.com, 1176033045@qq.com

Abstract

Network survivability has drawn certain interest in network
optimization. However, the demand for full protection of a
network is usually too restrictive. To overcome the limitation
of geographical environments and to save network resources,
we turn to establish backup networks allowing a few common
nodes. It comes out the problem of finding k link-disjoint
paths between a given pair of source and sink in a network
such that the number of common nodes shared by at least two
paths is bounded by a constant and the total link weight of
all paths is minimized under the above constraints. For the
case k = 2, where we have only one backup path, several
fast algorithms have been developed in the literature. For the
case k > 2, little results are known. In this paper, we first es-
tablish the NP-hardness of the problem with general k. Moti-
vated by the situation that each node in a network may have a
capability of multicasting, we also study a restricted version
with one more requirement that each node can be shared by
at most two paths. For the restricted version, we build an ILP
model and design a fast algorithm by using the techniques of
augmenting paths and splitting nodes. Furthermore, experi-
mental results on synthetic and real networks show that our
algorithm is effective in practice.

Introduction

Dealing with network failures has become an urgent and
important research topic due to the rapid development of
network and the extensive establishment of network fa-
cilities in the past decades. In general, we can protect
from network failures by increasing the degrees of internal
nodes (Steiglitz, Weiner, and Kleitman 1969; Kerivin and
Mahjoub 2005; Kuipers 2012), limiting average distances or
hop counts between nodes (Gouveia, Simonetti, and Uchoa
2011), and increasing the connectivity (Cohen and Nutov
2013; Kortsarz and Nutov 2016) in the network.

One of the most effective and widely used methods to
protect networks from failures is to establish a backup net-
work (or path) for each primary network (or path) with some
requirements like node degrees and connectivity (Yallouz,

∗The corresponding author.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Rottenstreich, and Orda 2016; Yallouz and Orda 2017; John-
ston, Lee, and Modiano 2015; Wei, Shen, and Bose 2014;
Choudhury, Bhadra, and De 2019). It becomes a funda-
mental problem in network protection to pre-compute and
reserve both primary and backup paths (or networks) be-
tween a specific pair of source and sink nodes in the net-
work in advance during the configuration phase (Beshir
and Kuipers 2009; Sherali, Özbay, and Subramanian 1998;
Wei, Shen, and Bose 2014). Usually, the primary and backup
paths need to meet some performance requirements, e.g.
Quality of Service (such as disjointness, delay, cost, fail-
ure probability, and power level limits), which is typically
quantified by the sum of some link weights. Nonetheless, a
working path with some disjoint backup paths will not suf-
fer from malfunction caused by only a single link failure, in
reality (Wang and Doucette 2018).

The disjointness can be regarded as a constraint on nodes
or links in the network. Although node-disjoint paths can
protect from both node and link failures, link-disjoint paths
are more widely used and studied in network protection.
Recently, the concept of “partially disjoint paths” was pro-
posed, in which the paths are link-disjoint but also have a
constraint on the number of common nodes shared by at
least two paths.

Hu et al. (1998) proposed a new type of switches, namely
Splitter-and-Delivery Switch (SAD). It has both point-to-
point and multicasting capability in networks to satisfy the
demand of data transmission from a source to several des-
tinations, which means the nodes in one source-destination
path can be shared by other source-destination paths, saying
common nodes. Common nodes can be considered as shared
resources, such as power, spectrum, optical channel, buffer
memory, etc. Yallouz et al. (2018) mentions that common
nodes along an established link-disjoint pair of paths can
save time to retransmit the data from the closest nodes in-
stead of the source when failures occur. However, the num-
ber of common nodes usually can not be very large due to the
hardware constraints in switches and the occurrence proba-
bility of node failures. Some models to save the spare re-
sources by limiting the number of common nodes in the net-
works are also considered in (Le, Molnár, and Palaysi 2014;
Din and Lai 2015). Therefore, the number of common nodes

938

in paths or networks is a critical criterion for both protecting
from link and node failures.

In order to both protect networks from link and node fail-
ures and also save resources, in this paper, we consider the
problem of finding k link-disjoint paths between a given pair
of source and sink nodes of minimum total weight with a
bounded number of common nodes. For k = 2, we have
only one backup path. Fast polynomial algorithms for this
case were developed in the literature (Yallouz et al. 2018;
Guo et al. 2018). However, we may need more than one
backup path or network (Wang and Doucette 2018; John-
ston, Lee, and Modiano 2015). For the case k ≥ 3, although
it was mentioned in the literature, we are not aware of any
nontrivial result. In this paper, we establish the computa-
tional complexity of this problem with general k. In detail,
our contribution is summarized as follows.

The Contribution

We make the following primary contributions in this paper:

• We prove the NP-hardness of the problem of finding k
link-disjoint shortest paths with at most δ common nodes,
answering a question in previous papers (Guo et al. 2018).
The NP-hardness is established by a reduction from the
known NP-hard problem — the densest δ subgraph prob-
lem in bipartite graphs.

• We also study the problem with one more constraint: each
node can be shared by at most two paths. This constraint
is natural and useful to control node failures (Yallouz et
al. 2018; Wang and Zhu 2018). We build an ILP formu-
lation for this problem. Furthermore, inspired by the aug-
menting path technique for finding k link-disjoint short-
est paths in (Busacker and Gowen 1960) and the splitting
node technique, we design a fast algorithm with a desir-
able running time bound.

• Simulation study shows that the fast algorithm is effective
in practice and also much faster than the ILP algorithm.

Related Work

The shortest path problem is one of the most famous and
fundamental problems. The extension to find k node-disjoint
paths between two nodes minimizing the total weight was
first considered in (Suurballe 1974), where a polynomial al-
gorithm was proposed. The link-disjoint version of the prob-
lem can be reduced to the node-disjoint version (Suurballe
and Tarjan 1984). Several problems of finding k link-disjoint
paths with different constraints were proposed. Due to load
balance, Guo et al. (2013) considered the problem of find-
ing two link-disjoint paths to minimize the cost of the short-
est path, which was proved to be NP-hard. In the context of
networks with a low occurrence of failure, Li et al. (1990)
proposed an NP-hard problem that aims at finding a link-
disjoint path pair such that the weight of the longest path
is minimized. In order to prune low-capacity links, Shen
et al. (2004) considered the problem of finding a widest
link-disjoint path pair, which has the maximum bandwidth
or capacity. The problem of finding several paths with a
bounded number of nodes and links was firstly considered in

(Seymour and Kar 2013), where the authors gave a heuris-
tic algorithm in wireless sensor networks. Later, Yallouz
et al. (2018) gave an O(|E||V |2 + |V |3 log |V |)-time algo-
rithm for finding a pair of link-disjoint paths with at most δ
common nodes (minimizing the total weight) in a network
G = (V,E). The running time bound was further improved
to O(δ|E|+|V | log |V |) by Guo et al. (2018). This reference
also inquired methods to solve the problem of finding more
than two link-disjoint paths with bounded common nodes.

Problem Models

A network is represented by a directed graph G(V,E),
where V is the set of nodes and E is the set of links. We
may use 〈u, v〉 to denote a link from node u to node v. Each
link e ∈ E is assigned with a positive weight w(e) ∈ R

+

which represents an additive metric such as delay, distance,
etc. We may also associate a cost for a link e: c(e) ∈ R.
A path in the network is an ordered set of different nodes
P = 〈s0, s1, ..., sk〉 such that si ∈ V for i ∈ [0, k] and
〈sj , sj+1〉 ∈ E for j ∈ [0, k − 1]. A set of k paths are link-
disjoint if no pair of paths have a common link. For a path
or a set of paths P, we use w(P) (resp., c(P)) to denote the
total weight (resp., cost) of all links appearing in paths in P.
Given a set P of paths from a source node s to a sink node
t, a node different from s and t is called a common node if
it appears in at least two paths in P and we use Co(P) to
denote the set of common nodes in P.

Definition 1. (The minimum k link-disjoint paths with
δ common nodes problem, (k, δ)-LDP). Given a network
G = (V,E) with a positive weight on links w : E → R

+,
two integers k and δ, a source node s ∈ V , and a sink node
t ∈ V . The goal of (k, δ)-LDP is to find a set P of k link-
disjoint paths from s to t such that w(P) is minimized under
the constraint |Co(P)| ≤ δ.

Considering that there are some memory and channel lim-
itations on each node in the network, we also define a re-
stricted version of (k, δ)-LDP, in which any node can be
shared by at most two paths in P.

Definition 2. (Restricted (k, δ)-LDP). Given a network
G = (V,E) with a positive weight on links w : E → R

+,
two integers k and δ, a source node s ∈ V , and a sink node
t ∈ V . The goal of Restricted (k, δ)-LDP is to find a set P of
k link-disjoint paths from s to t such that w(P) is minimized
under the constraints that no node in V \ {s, t} is contained
in more than two paths in P and |Co(P)| ≤ δ.

NP-Hardness

As mentioned in the introduction, (2, δ)-LDP has been well
studied and several fast algorithms have been proposed.
However, for general k, the status of (k, δ)-LDP is not clear,
although it was discussed in the literature to extend the ex-
isting algorithms for (2, δ)-LDP to the problem with general
k. Here, we show that (k, δ)-LDP is indeed NP-hard.

In fact, we will prove the NP-hardness of the decision ver-
sion of checking whether there exist k link-disjoint paths
sharing at most δ common nodes in an unweighted net-
work. Our proof is based on a reduction from the known

939

NP-hard problem – the densest δ subgraph problem in bi-
partite graphs. The densest δ subgraph problem is defined
as follows. Given a graph B, and two integers δ and β, the
problem is to check whether the graph B has a subgraph of
δ nodes containing at least β edges. The densest δ subgraph
problem is a well known NP-hard problem (Feige, Kortsarz,
and Peleg 2001) and it remains NP-hard even in bipartite
graphs (Corneil and Perl 1984).

Given an instance I = (B = (VB , EB), δ, β) of the dens-
est δ subgraph problem in bipartite graphs, we construct an
instance I ′ of the decision version of (k, δ)-LDP. Note that
here the graph B is a bipartite graph and we use U and W
to denote the left and right parts of the nodes in B, where
U ∪W = VB .

The network G = (V,E) in the instance I ′ is constructed
as follows. There is a copy of graph B, where each edge in
EB is given a direction and becomes a link from the node in
U to the node in W . We introduce two nodes s and t, and
for each node v ∈ U ∪W , we add two new links 〈s, v〉 and
〈v, t〉. For each node ui ∈ U , we introduce β new nodes sij
(j ∈ {1, 2, . . . , β}) and 2β new links 〈s, sij〉 and 〈sij , ui〉
(j ∈ {1, 2, . . . , β}). For each node wi ∈W , we introduce β
new nodes tij (j ∈ {1, 2, . . . , β}) and 2β new links 〈wi, tij〉
and 〈tij , t〉 (j ∈ {1, 2, . . . , β}). So the network G contains
|V | = (β+1)|VB |+2 nodes and |E| = |EB |+2(β+1)|VB |
links. See Figure 1 for an illustration of the construction with
β = 4.

(a) B = (VB , EB) (b) The graph G = (V,E)

Figure 1: The construction of the graph G

In instance I ′, we set s and t as the source and sink nodes,
respectively. The problem is to check whether there are at
least k = |VB |+ β link-disjoint paths from s to t sharing at
most δ nodes.

We prove the following lemma.

Lemma 1. The instance I = (B = (VB , EB), δ, β) of the
densest δ subgraph problem in bipartite graphs is a yes-
instance if and only if the instance I ′ = (G, δ, k = |VB |+β)
of the problem of checking the existence of k link-disjoint
paths sharing at most δ nodes is a yes-instance.

Proof. In G, we distinguish two kinds of paths from s to
t: the path passes through a link corresponding to an edge
in B or not. The node-path, which does not pass through a
link corresponding to an edge in B, is a path of length two

from s to a node in VB and then to t. In Figure 1, 〈s, u1, t〉
is a node-path. An edge-path is a path from s to t pass-
ing through a link corresponding to an edge in B. In Fig-
ure 1, 〈s, s11, u1, w2, t21, t〉 and 〈s, s21, u2, w1, t〉 are two
edge-paths.

We first consider the necessary condition. Assume that G
has a set P of |VB |+β link-disjoint paths from s to t sharing
at most δ common nodes except s and t. We use S to denote
the set of shared nodes. It is easy to see that S is a subset
of VB . We will show that S induces a subgraph of at least
β edges in B. For each node in VB \ S, at most one path in
P contains it since it is not a shared node. So after deleting
VB \ S from G, there are at least |VB | + β − |VB \ S| =
|VB | + β − |VB | + |S| = β + |S| paths in P left in the
graph. We use P ′ to denote the set of paths left in P after
deleting VB \ S. For each node in S, there is at most one
corresponding node-path. So P ′ contains at most |S| node-
paths and contains at least β + |S| − |S| = β edge-paths,
where each edge-path is corresponding to a different edge
in B with two endpoints in S. Therefore, the node set S
induces a subgraph of at least β edges in B and then instance
I is a yes-instance.

On the other hand, we assume that B has a subgraph
SB = (V1, E1) with |V1| = δ nodes and |E1| ≥ β edges,
and then show that there is a set P ′ of k = |VB | + β
link-disjoint paths from s to t sharing at most common δ
nodes in G. For each node v ∈ VB , we add the node-path
〈s, v, t〉 to P ′. For each edge uw ∈ E1, we add an edge-
path 〈s, s′, u, w, t′, t〉 to P ′, where we can choose edge-
paths such that all s′ and t′ are different nodes in these edge-
paths. So P ′ is a set of |VB | + |E1| link-disjoint paths from
s to t. Note that no two node-paths will share a node ex-
cept s and t. Thus, all shared nodes should be endpoints of
some edges in E1, which are the nodes in V1. The number
of shared common nodes is at most |V1| = δ.

Lemma 1 shows that

Theorem 1. It is NP-hard to check the existence of k link-
disjoint paths sharing at most δ common nodes in a network.

Theorem 1 directly implies the NP-hardness of (k, δ)-
LDP.

An ILP Formulation

In this section, we build an integer linear programming for
(k, δ)-LDP and Restricted (k, δ)-LDP. The ILP algorithm
will be used to compare with our fast algorithm for Re-
stricted (k, δ)-LDP in the next section.

First, we consider the ILP formulation for (k, δ)-LDP. For
each link 〈i, j〉 ∈ E, we set a binary variable xij . Link
〈i, j〉 ∈ E is in one path in the solution if and only if
xij = 1. For each node i ∈ V \ {s, t}, we set a binary vari-
able yi to indicate whether node i is shared by at least two
paths in the solution. The ILP formulation for (k, δ)-LDP is

940

given below:

min
∑

〈i,j〉∈E

wijxij (1)

s.t.
∑

j:〈i,j〉∈E

xij −
∑

j:〈j,i〉∈E

xji =

{
0, ∀i ∈ V \ {s, t}
k, i = s
−k, i = t;

(2)∑
i∈V \{s,t}

yi ≤ δ; (3)

∑
j:〈i,j〉∈E

xij ≤ yik + 1, ∀i ∈ V \ {s, t}; (4)

xij , yi ∈ {0, 1}. (5)

Constraint (2) follows from the integer linear pro-
gramming formulation for the minimum cost flow prob-
lem (Ahuja and Magnanti 2018). We regard k paths as k
flows in the network G and set the link capacity to 1 to
ensure the link-disjointness. Constraint (3) ensures that the
number of common nodes among k link-disjoint paths is at
most δ. Constraint (4) requires that the number of paths pass-
ing node i is at most 1 if yi = 0 and the number of paths
passing node i is at most k + 1 if yi = 1.

For Restricted (k, δ)-LDP, we only need to replace Con-
straint (4) with the following Constraint (4′) in the above
ILP. ∑

j:〈i,j〉∈E

xij ≤ yi + 1, ∀i ∈ V \ {s, t}. (4′)

Note that Constraint (4′) requires that the number of paths
passing node i is at most 1 if yi = 0 and the number of paths
passing node i is at most 2 if yi = 1.

In the above ILP, the number of variables is the number
of xij plus the number of yi, i.e., |E|+ |V |−2. The number
of constraints is |V | + 1 + (|V | − 2) + (|E| + |V | − 2) =
|E|+ 3|V | − 3.

A Fast Algorithm for Restricted Version

In this section, we design a fast algorithm for Restricted
(k, δ)-LDP, which runs in O((δ + 1)k|E||V |) time.

Our algorithm uses two major techniques. The first one
is the augmenting path technique for the max-flow prob-
lem (Edmonds and Karp 1972), which is also used to find
successive shortest paths (Busacker and Gowen 1960). So
the initial idea of our algorithm is to iteratively find a path
from s to t with minimum total weight. We can treat this
problem as a shortest path problem by regarding the link
weight as the distance. To guarantee link-disjoint, we will
not allow a new path to pass through a link already used
by previous paths. However, if we directly delete from the
network the links used by previous paths, we may not be
able to find the correct solution. In the example in Figure 2,
we may not be able to find the second path if we delete the
links 〈s, a〉, 〈a, b〉, 〈b, t〉 in path P1 = 〈s, a, b, t〉. So it comes
out the famous technique of residual graphs and augmenting
paths. Once we find a path with a minimum total weight in
the current graph, we construct a residual graph by reversing

the direction of all links in the path and setting the weight of
reversed link as the negative of its weight. In the next step,
we find a path with a minimum total weight in the residual
graph. See Figure 2 for an illustration of the construction
of the residual graph. In Figure 2, path P1 = 〈s, a, b, t〉 is
the minimum weight path in G and path P2 = 〈s, b, a, t〉
is the minimum weight path in the residual graph G′. Then
P1⊕P2 is a pair of link-disjoint paths with minimum weight
in the original graph G. We use P1 ⊕ P2 to denote the com-
bined graph such that a link 〈a, b〉 is in P1 ⊕ P2 if and only
if 〈a, b〉 is in one of P1 and P2 and the reversing link 〈b, a〉
is not in any of P1 and P2. It was proved in (Suurballe 1974)
that by using this technique of residual graphs and augment-
ing paths, we can find a set of k paths between two nodes
with minimum total weight. This algorithm only works for
the problem without constraints on common nodes shared
by the paths. We still have two more constraints: each node
can be shared by at most two paths, and the number of com-
mon nodes shared by the paths is bounded by δ. We will use
the following technique to guarantee these constraints.

(a) P1 = 〈s, a, b, t〉 (b) Residual graph G
′

(c) P2 = 〈s, b, a, t〉 (d) P1 ⊕ P2

Figure 2: An example

The second technique is to split a node to control the num-
ber of paths passing through it. This technique is also used in
Guo et al.’s algorithm for (2, δ)-LDP (Guo et al. 2018). For
a node v in the network, we split it into two nodes v1 and v2
such that only inner links are incident on v1 and only outer
links are incident on v2, where we add 2 parallel links from
v1 to v2 with weight 0. See Figure 3 for an illustration of the
operation of splitting nodes. In order to bound the number of
common nodes, we will also set a cost to each newly added
link between two split nodes, one link with cost 0 and the
other one with cost 1. Thus, we need to find k link-disjoint
paths with the total cost at most δ. In our algorithm, in order
to make the algorithm effective, we may split a node only
when a path passing through it and do not deal with other
“unused” nodes in the network.

The above two techniques are intuitive. However, we need
to combine them well to guarantee the correctness of the
whole algorithm. For the whole algorithm, there are two im-

941

Figure 3: The operation of splitting nodes

portant sub-steps: one is to find a minimum weight path with
a bounded cost; the other one is to construct proper residual
graphs, called restricted residual graphs. The algorithm is
simple and easy to understand. The main steps of the algo-
rithm are presented in Algorithm 1.

Algorithm 1 Algorithm LDP

Require: An instance of Restricted (k, δ)-LDP: a network
G = (V,E) with a positive weight on links w : E →
R

+, two integers k and δ, and two nodes s and t ∈ V .
Ensure: The minimum weight of k link-disjoint paths with

at most δ common nodes in G.
1: Set the initial link cost: c(e) = 0 for each e ∈ E;
2: GR← G; q ← δ; w ← 0;
3: for (i = 1; i = k; i++) do
4: In GR, compute a minimum weight path Ri between

s and t such that the total cost is at most q;
5: Update the bound of the cost q ← q − c(Ri);
6: Update the total weight w ← w + w(Ri);
7: Compute the restricted residual graph with respective

to Ri and update the current network GR;
8: end for
9: Return w.

Remark 1. In Step 4, when there is no path between s and
t with the cost at most q, the algorithm will stop and report
⊥ to report that there is no solution. We will explain Step 4
and Step 7 in detail below.

Remark 2. With some modifications, the algorithm can
also output the k link-disjoint paths. We use R′

i to denote the
corresponding path resulted from Ri by identifying the two
split nodes into the original one, where Ri is the minimum
weight path computed in Step 4. Then the graph R′

1 ⊕ · · · ⊕
R′

k can be decomposed into k link-disjoint paths from s to
t in G, which is the set of paths we are seeking for. We use
{P1, . . . , Pk} to denote the solution set.

Shortest Paths With Bounded Cost. In Step 4, we need
to compute a minimum weight path with total cost bounded
by a given value. For the minimum weight path problem
without the cost constraint, the problem becomes the short-
est path problem since we can regard the weight as the dis-
tance and we can use classic shortest path algorithms to
solve it. When adding the cost constraint, the problem be-
comes hard. Joksch et al. (1966) gave a dynamic program-
ming algorithm to solve it. To improve the running time
bound, we can also modify the famous Bellman–Ford al-
gorithm to solve it in O((δ + 1)|V ||E|) time: for each node
v ∈ V \ {s, t}, each integer l ∈ [0, n] and integer d ∈ [0, δ],
compute the minimum weight path from s to v with cost at
most d and length at most l links in a dynamic programming

way.
There is also a way to accelerate the algorithm. For the

first time to execute Step 4, we can compute a minimum
weight path P1 without considering the cost constraint be-
cause all the link costs are zero for the current network. For
this case, it is to solve the shortest path problem and we
use the fast Dijkstra’s algorithm with running time bound
O(|E|+|V | log |V |). The idea is adopted in the experimental
parts, although it can improve the theoretical running time
bound.

Restricted Residual Graph. We introduce how to build
our residual graph in Step 7, which is modified from the tra-
ditional residual graph for the max flow problem. In fact,
we also need to split nodes and set costs for links. We mark
all nodes in the initial network as “un-split”. The restricted
residual graph obtained from the current graph GR with re-
spective to a path P is constructed as follows. First, for each
un-split node v in P , split it into two “split nodes” v1 and
v2 such that all inner links are incident on v1 and all outer
links are incident on v2, add one link e1 = 〈v1, v2〉 from v1
to v2 with weight w(e1) = 0 and cost c(e1) = 1, and add
one link e2 = 〈v2, v1〉 from v2 to v1 with weight w(e2) = 0
and cost c(e2) = 0. Note that we only split “un-split” nodes.
Second, for each link e in P , reverse its direction and set
the weight and cost as the negative of them, i.e., −w(e) and
−c(e). We use GRP to denote the operation of the above
two steps, i.e., first split un-split nodes with respect to P and
then reverse the direction of links in P). So the restricted
residual graph is GRP . See Figure 4 for an illustration of
the construction.

(a) Path P = 〈s, v, u, t〉 (b) Splitting node v

(c) Reversing links in P

Figure 4: The construction of the residual graph

Analysis

Next, we analyze our algorithm LDP.

Theorem 2. Algorithm LDP runs in O((δ + 1)k|E||V |)
time.

Proof. Steps 1 and 2 of the algorithm take linear time. Step
4 uses O((δ + 1)|V ||E|) time, Steps 5 and 6 can be done in
constant time, and Step 7 can be done in linear time. Steps
4-7 will be executed for k iterations. So the running time
bound of the algorithm is O((δ + 1)k|V ||E|).

942

Lemma 2. Let I be an instance of Restricted (k, δ)-LDP
and v be an arbitrary node different from s and t in the net-
work. Let I ′ be the new instance after splitting v into two
nodes v1 and v2 such that all inner links are incident on v1
and all outer links are incident on v2 and adding two paral-
lel links from v1 to v2 with weight 0. Then I has a solution
with weight at most W if and only if I ′ has a solution with
weight at most W .

This lemma says the equivalence of the instances before
and after splitting a node. The new “split” nodes in I ′ are still
allowed to be shared by two paths. However, this will not af-
fect the equivalence since we are going to seek link-disjoint
paths. The correctness of this lemma is easy to observe. We
can take the two split nodes as a single “big” node and then
the instances are identified. Note that, in the construction of
the restricted residual graph in Step 7 of Algorithm LDP, af-
ter splitting a node we reverse the direction of one of the
parallel links because we consider the operation of reversing
links in the path together.
Lemma 3. Let I be an instance of Restricted (k, δ)-LDP. Let
P = {P1, . . . , Pk} be a set of k link-disjoint paths from s to
t in G with p ≤ δ common nodes. If P is an optimal solution
to Restricted (k, δ)-LDP then the restricted residual graph
G′ = GP1 · · ·Pk does not contain a directed cycle with
cost at most δ − p and negative weight.

Proof. Assume that the residual graph G′ contains a di-
rected cycle C such that c(C) ≤ δ − p and w(C) < 0.
We will prove that the weight of paths in P is not minimum,
which means there is another set P′ of k link-disjoint paths
having at most δ common nodes such that w(P′) < w(P).
Since the original graph G has no negative link weight, we
know that there is no cycle of negative weight in G. So we
know that the cycle C in G′ must contain at least one “re-
versed” link, which is corresponding to a link in a path in P.
So we know that P′ = P1 ⊕ · · · ⊕ Pk ⊕ C is still a set of k
link-disjoint paths from s to t in G. However, the weight of
P′ is less than that of P:

w(P′) ≤ w(P) + w(C) < w(P).

The cost of P satisfies:

c(P′) ≤ c(P) + c(C) < p+ δ − p < δ.

Based on Lemma 3, we can prove the following result.
The detailed proof is omitted due to space limitations.
Theorem 3. The path set returned by Algorithm LDP is a
set of minimum-weight k link-disjoint paths from s to t such
that there are at most δ common nodes and each common
node is shared by two paths.

Remark. We give some explanations on why Algorithm
LDP only works for Restricted (k, δ)-LDP but not for (k, δ)-
LDP. In (k, δ)-LDP, more than two paths in the solution can
share a common node. However, it only contributes to one
common node in the constraint no matter how many paths (at
least two paths) sharing it, which may cause trouble in the
construction of the residual graph and the proof of Lemma 3.

For example, when two paths pass through a common node,
two links between the two split nodes are reversed with costs
being 0 and -1 respectively; when one more path passes
through the common node, we have three links between the
two split nodes reversed with costs all being 0 (since remov-
ing any one path passing through the node will not decrease
the number of common nodes). We will lose some cost “-1”.
Then the cost of a set of paths can not be distributed to links
well.

Experimental Results

In order to evaluate the performance of our Algorithm LDP,
we compare it with the integer linear programming algo-
rithm presented in our previous section, which is denoted
by ILP. In fact, as far as we know, our algorithm is the first
nontrivial (polynomial) algorithm for Restricted (k, δ)-LDP
for general k. We compare our algorithm with an integer
linear programming based algorithm because these kinds of
sequence problems are very suitable for integer linear pro-
gramming based solvers. Note that in (Guo et al. 2018), the
algorithm for (2, δ)-LDP was also compared with an integer
linear programming algorithm.

In our experiments, both LDP and ILP output the same
result on each instance. So we will mainly compare the run-
ning time.
Environments and datasets. Both LDP and ILP are imple-
mented in C/C++, on a PC with Intel Core i5 processor, and
4GB memory. Specifically, the implementation of ILP for-
mulation adopts the Gurobi Optimizer of version 8.1.11. In
the experiments, we generate random graphs (n,m) from
the NetworkX library2 with n nodes and m links. We con-
sider two kinds of networks, P2P networks and communi-
cation networks, from Stanford Large Network Dataset Col-
lection within Stanford Network Analysis Project (SNAP)3.

Evaluation on Random Graphs

In this subsection, random graphs with n nodes and m links
are generated from the NetworkX library with the link
weight uniformly distributed in [1, 100]. During the exper-
iments, we randomly generate 200 different graphs for each
fixed pair of n and m, and for each graph, we randomly
choose two nodes as the source and sink. In real networks,
we may not have changes to use too many backup paths due
to the dynamic of the networks. So we consider k with val-
ues from 2 and 5. Also many protocols, such as TCP/IP, only
allow a data package pass through at most 16 routers from
source to destination (Kurose and Ross 2008). The length of
the path can not be very large and the number of common
nodes can not be very large. So we mainly consider δ from
5 to 12.

The running time displayed in the following figures is the
average running time on 200 instances. In Figure 5, we show
the average running times on two groups of instances with
(n,m) = (1000, 10000) and (n,m) = (10000, 100000) un-
der different values of k and δ. In fact, fluctuations in values

1https://www.gurobi.com/
2https://networkx.github.io/
3http://snap.stanford.edu/data/

943

of k and δ have little effect on the running time of ILP, and
the three lines for ILP are overlapped. From Figure 5, we
can see that LDP is faster than ILP. We also show more com-
pared results on different instances in Table 1.

Figure 5: The results with different values of δ and k

Evaluation on Real Datasets

We also compare our algorithms on some real-world net-
work datasets from SNAP. To be consistent with the exper-
imental environment for simulation results, we also ran our
algorithms with randomly chosen source and sink over 200
times on each instance and report the average running time,
where δ is set as 10. Table 2 shows the running times in sec-
onds of LDP and ILP on different networks, and also the
number of instances having feasible solutions (there exist
satisfied k link-disjoint paths) among the 200 instances in
round brackets. The feasibility of the instances is caused by
the choice of the source and sink nodes. In Table 2, below
the instance name, (n,m) denotes the number of nodes and
the number of links in the network. From this table, we can
see that LDP’s performance is much better than that of ILP
on real-world datasets. Note that when k increases, the run-
ning time of LDP may decrease, because, for large k, the
number of instances having feasible solutions may decrease.

Conclusion

In this paper, we have established the NP-hardness of (k, δ)-
LDP. We prove that it is still NP-hard to check the existence
of k link-disjoint paths sharing at most δ common nodes in
a network, which indicates that it is also hard to find ap-
proximation solution to (k, δ)-LDP. On the other hand, the
restricted version may be easier. We design a fast polyno-
mial algorithm and an ILP for Restricted (k, δ)-LDP. Exper-
imental results show that our polynomial algorithm is very

Table 1: Running time in seconds on more random graphs

(n, m, δ) Alg. k=2 k=3 k=4 k=5

(50, 250, 5)
LDP 0.006 0.007 0.008 0.007
ILP 0.06 0.06 0.048 0.046

(60, 360, 6)
LDP 0.009 0.012 0.012 0.014
ILP 0.054 0.059 0.054 0.054

(70, 490, 6)
LDP 0.011 0.014 0.023 0.032
ILP 0.064 0.064 0.064 0.064

(80, 640, 8)
LDP 0.016 0.023 0.024 0.030
ILP 0.076 0.081 0.075 0.075

(90, 810, 10)
LDP 0.028 0.030 0.040 0.040
ILP 0.086 0.085 0.085 0.085

(100, 1000, 10)
LDP 0,030 0.037 0.05 0.5
ILP 0.112 0.115 0.098 0.101

(500, 25000, 10)
LDP 0.305 0.417 0.571 0.734
ILP 0.937 0.935 0.943 0.944

(600, 36000, 10)
LDP 0.428 0.577 0.792 0.828
ILP 1.26 1.242 1.265 1.265

(700, 49000,10)
LDP 0.555 0.798 1.087 1.307
ILP 1.718 1.754 1.78 1.782

(800, 64000, 12)
LDP 1.601 2.222 2.511 3.782
ILP 3.881 3.860 3.854 3.890

(900, 81000, 12)
LDP 1.787 2.493 3.486 4.972
ILP 5.231 5.153 5.266 5.133

(1000, 100000, 12)
LDP 2.281 3.382 4.441 5.650
ILP 6.920 7.151 7.040 7.013

effective.
For further study, it is interesting to determine the compu-

tational complexity of (k, δ)-LDP for each constant k ≥ 3.

Acknowledgments

The work is supported by the National Natural Science
Foundation of China, under grants 61972070 and 61802049.
We would like to thank Weibo Lin, Zhenyu Guo and Yi Zhou
for their discussions on this paper.

Table 2: Average running time and the number of feasible
instances for SNAP networks

Networks Alg. k =2 k =3 k =4 k =5
p2p-Gnut.05 LDP 2.33(28) 3.29(30) 3.87(20) 3.99(7)
(8846,31839) ILP 6.59(28) 6.66(30) 6.61(20) 6.62(7)
p2p-Gnut.06 LDP 2.35(43) 3.80(27) 4.57(22) 4.97(3)
(8717,31525) ILP 6.57(43) 6.51(27) 6.49(22) 6.47(3)
p2p-Gnut.08 LDP 1.61(42) 2.13(25) 2.09(11) 1.76(1)
(6301,20777) ILP 4.48(42) 4.46(25) 4.43(11) 4.41(1)
p2p-Gnut.09 LDP 1.92(38) 1.84(13) 2.54(6) 2.70(1)
(8114,26013) ILP 5.80(38) 5.76(13) 5.75(6) 5.74(1)
p2p-Gnut.24 LDP 4.52(23) 5.59(7) 7.16(6) 5.22(1)
(26518,65369) ILP 21.10(23) 21.02(7) 20.98(6) 20.96(1)
p2p-Gnut.25 LDP 3.46(20) 5.74(25) 4.62(3) 3.91(1)
(22687,54705) ILP 17.44(20) 17.47(25) 17.37(3) 17.37(1)
p2p-Gnut.30 LDP 5.73(17) 6.35(12) 8.09(4) 8.34(1)
(36682,88328) ILP 31.31(17) 31.13(12) 31.11(4) 31.04(1)
p2p-Gnut.31 LDP 10.63(18) 11.09(7) 13.66(7) 13.58(2)
(62586,147892) ILP 64.41(18) 64.70(7) 64.26(7) 64.30(2)
Email-EuALL LDP 26.88(13) 30.25(8) 28.80(3) 27.88(0)
(265214,420045) ILP 469.81(13) 468.18(8) 467.16(3) 467.58(0)

References

Ahuja, R. K., and Magnanti, T. L. 2018. Network Flows.
Franklin Classics.

944

Beshir, A., and Kuipers, F. 2009. Variants of the min-sum
link-disjoint paths problem. In 16th Annual Symposium on
Communications and Vehicular Technology in the Benelux
(SCVT 2009), November 19, 2009, 1–6. IEEE/SCVT.
Busacker, R. G., and Gowen, P. J. 1960. A procedure for
determining a family of minimum-cost network flow pat-
terns. Technical report, RESEARCH ANALYSIS CORP
MCLEAN VA.
Choudhury, P. D.; Bhadra, S.; and De, T. 2019. A brief re-
view of protection based routing and spectrum assignment in
elastic optical networks and a novel p-cycle based protection
approach for multicast traffic demands. Optical Switching
and Networking 32:67–79.
Cohen, N., and Nutov, Z. 2013. A (1+ln2)(1+ln2)-
approximation algorithm for minimum-cost 2-edge-
connectivity augmentation of trees with constant radius.
Theor. Comput. Sci. 489-490:67–74.
Corneil, D. G., and Perl, Y. 1984. Clustering and domination
in perfect graphs. Discrete Applied Mathematics 9(1):27–
39.
Din, D.-R., and Lai, I.-R. 2015. Multicast protection prob-
lem on elastic optical networks using segment-base protec-
tion. In 2015 International Conference on Informatics, Elec-
tronics & Vision (ICIEV), 1–6. IEEE.
Edmonds, J., and Karp, R. M. 1972. Theoretical improve-
ments in algorithmic efficiency for network flow problems.
J. ACM 19(2):248–264.
Feige, U.; Kortsarz, G.; and Peleg, D. 2001. The dense k-
subgraph problem. Algorithmica 29(3):410–421.
Gouveia, L.; Simonetti, L.; and Uchoa, E. 2011. Modeling
hop-constrained and diameter-constrained minimum span-
ning tree problems as steiner tree problems over layered
graphs. Math. Program. 128(1-2):123–148.
Guo, L., and Shen, H. 2013. On finding min-min disjoint
paths. Algorithmica 66(3):641–653.
Guo, L.; Deng, Y.; Liao, K.; He, Q.; Sellis, T.; and Hu, Z.
2018. A fast algorithm for optimally finding partially dis-
joint shortest paths. In IJCAI, 1456–1462.
Hu, W. S., and Zeng, Q. J. 1998. Multicasting optical cross
connects employing splitter-and-delivery switch. IEEE Pho-
tonics Technology Letters 10(7):970–972.
Johnston, M.; Lee, H.; and Modiano, E. 2015. A robust op-
timization approach to backup network design with random
failures. IEEE/ACM Trans. Netw. 23(4):1216–1228.
Joksch, H. C. 1966. The shortest route problem with con-
straints. Journal of Mathematical analysis and applications
14(2):191–197.
Kerivin, H., and Mahjoub, A. R. 2005. Design of survivable
networks: A survey. Networks 46(1):1–21.
Kortsarz, G., and Nutov, Z. 2016. A simplified 1.5-
approximation algorithm for augmenting edge-connectivity
of a graph from 1 to 2. ACM Trans. Algorithms 12(2):23:1–
23:20.
Kuipers, F. 2012. An overview of algorithms for net-

work survivability. ISRN Communications and Networking
2012:1–24.
Kurose, J. F., and Ross, K. W. 2008. Computer Networking:
A top-down approach, volume 4. Pearson/Addison Wesley
Boston USA.
Le, D. D.; Molnár, M.; and Palaysi, J. 2014. Multicast rout-
ing in WDM networks without splitters. IEEE Communica-
tions Magazine 52(7):158–167.
Li, C.; McCormick, S. T.; and Simchi-Levi, D. 1990. The
complexity of finding two disjoint paths with min-max ob-
jective function. Discrete Applied Mathematics 26(1):105–
115.
Seymour, Z., and Kar, D. 2013. Finding partially link-
disjoint paths in wireless sensor networks. In European
Wireless 2013; 19th European Wireless Conference, 1–6.
VDE.
Shen, B. H.; Hao, B.; and Sen, A. 2004. On multipath rout-
ing using widest pair of disjoint paths. In 2004 Workshop
on High Performance Switching and Routing, 2004. HPSR.,
134–140. IEEE.
Sherali, H. D.; Özbay, K.; and Subramanian, S. 1998.
The time-dependent shortest pair of disjoint paths problem:
Complexity, models, and algorithms. Networks 31(4):259–
272.
Steiglitz, K.; Weiner, P.; and Kleitman, D. J. 1969. The
design of minimum-cost survivable networks. IEEE Trans-
actions on Circuit Theory 16(4):455–460.
Suurballe, J. W., and Tarjan, R. E. 1984. A quick method for
finding shortest pairs of disjoint paths. Networks 14(2):325–
336.
Suurballe, J. W. 1974. Disjoint paths in a network. Networks
4(2):125–145.
Wang, W., and Doucette, J. 2018. Availability optimiza-
tion in shared-backup path protected networks. Journal of
Optical Communications and Networking 10(5):451–460.
Wang, L., and Zhu, D., eds. 2018. Computing and Combi-
natorics - 24th International Conference, COCOON 2018,
Qing Dao, China, July 2-4, 2018, Proceedings, volume
10976 of Lecture Notes in Computer Science. Springer.
Wei, Y.; Shen, G.; and Bose, S. K. 2014. Span-restorable
elastic optical networks under different spectrum conversion
capabilities. IEEE Trans. Reliability 63(2):401–411.
Yallouz, J., and Orda, A. 2017. Tunable qos-aware network
survivability. IEEE/ACM Trans. Netw. 25(1):139–149.
Yallouz, J.; Rottenstreich, O.; Babarczi, P.; Mendelson,
A.; and Orda, A. 2018. Minimum-weight link-disjoint
node-“somewhat disjoint” paths. IEEE/ACM Trans. Netw.
26(3):1110–1122.
Yallouz, J.; Rottenstreich, O.; and Orda, A. 2016. Tun-
able survivable spanning trees. IEEE/ACM Trans. Netw.
24(3):1853–1866.

945

