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Abstract

Detection of malicious behavior is a fundamental problem in
security. One of the major challenges in using detection sys-
tems in practice is in dealing with an overwhelming number
of alerts that are triggered by normal behavior (the so-called
false positives), obscuring alerts resulting from actual mali-
cious activities. We introduce a novel approach for comput-
ing a policy for prioritizing alerts using adversarial reinforce-
ment learning. Our approach assumes that the attacker knows
the full state of the detection system and the defender’s alert
prioritization policy, and will dynamically choose an optimal
attack. The first step of our approach is to capture the inter-
action between the defender and attacker in a game theoretic
model. To tackle the computational complexity of solving this
game to obtain a dynamic stochastic alert prioritization pol-
icy, we propose an adversarial reinforcement learning frame-
work. In this framework, we use neural reinforcement learn-
ing to compute best response policies for both the defender
and the adversary to an arbitrary stochastic policy of the other.
We then use these in a double-oracle framework to obtain an
approximate equilibrium of the game, which in turn yields a
robust stochastic policy for the defender. We use case studies
in network intrusion and fraud detection to demonstrate that
our approach is effective in creating robust alert prioritization
policies.1

1 Introduction

One of the core problems in security is detection of ma-
licious behavior, such as malicious software and network
traffic. There is a vast literature on different detection ap-
proaches, ranging from signature-based to machine-learning
based (Buczak and Guven 2016; Milenkoski et al. 2015).
Under the pressure of practical considerations such as li-
ability and accountability, these systems are often config-
ured to produce a large amount of alerts in order to be
sufficiently sensitive to capture most attacks. As a conse-
quence, cybersecurity professionals are routinely inundated
with alerts, and must sift through these overwhelmingly
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1Code and models are available under an open source li-
cense from https://github.com/shinington/AlertPrioritization. Due
to space limitation, some content is deferred to an extended ver-
sion available at https://arxiv.org/abs/1906.08805.

uninteresting logs to identify alerts that should be prior-
itized for closer inspection. A considerable literature has
therefore emerged attempting to reduce the number of false
alerts without significantly affecting the ability to detect
malicious behavior (Hubballi and Suryanarayanan 2014;
Salah, Maciá-Fernández, and Dı́az-Verdejo 2013; Ho et al.
2017). Most of these attempt to add meta-reasoning on top of
detection systems to capture broader system state, combin-
ing related alerts, escalating priority based on correlated ob-
servations, or using alert correlation to dismiss false alarms.
Nevertheless, despite significant advances, there are still
vastly more alerts than time to investigate them. With this
state of affairs, alert prioritization approaches have emerged,
but rely predominantly on predefined heuristics, such as
sorting alerts by suspiciousness score or by potential asso-
ciated risk (Vasilomanolakis et al. 2015).

We propose a novel model and principled computational
approach for robust alert prioritization. We model the prob-
lem of robust alert prioritization as a game in which the
defender chooses a stochastic policy for selecting alerts as
a function of observable state, while the attacker chooses
which attacks to execute with full knowledge of the sys-
tem state. Our computational approach first uses neural rein-
forcement learning to compute approximately optimal poli-
cies for either player in response to a fixed stochastic policy
of their counterpart. It then uses these (approximate) best
response oracles as a part of a double-oracle framework. A
key technical challenge in this approach is the combinato-
rial set of defender and attacker actions in each state. We
address this challenge by alternatively representing the as-
sociated policies as neural networks with continuous out-
puts, and folding this into an actor-critic framework. While
this costs us finite-time theoretical convergence guarantees
(since policy space is no longer finite), it enables a practical
and highly effective implementation. Furthermore, our case
studies in network intrusion and fraud detection using real-
world data demonstrate the effectiveness of our approach
compared to state-of-the-art alternatives.
Related Work Reinforcement learning using neural net-
works for value and policy approximation has led to sig-
nificant recent successes across several applications, most
notably game-playing (Mnih et al. 2015; Silver et al. 2016;
2018), and a number of advances in recent years have
made such approaches broadly applicable and highly effec-
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Figure 1: System model. The Attack Oracle computes the at-
tacker’s policy for executing attacks, which is implemented
by the Attack Generator and then triggers alerts observed
by the Attack Detection Environment. The Defense Oracle
computes the defender’s alert prioritization policy, which is
implemented by the Alert Analyzer.

tive (Van Hasselt, Guez, and Silver 2016; Fortunato et al.
2017). These approaches have been extended to consider
problems with continuous actions by Lillicrap et al. (2015),
which is most pertinent to our setting. Our work can be
viewed as an application of multi-agent reinforcement learn-
ing (Littman 1994; Hu and Wellman 2003). While the asso-
ciated literature is broad, the approaches typically consider
unstructured state and action spaces, and would not scale
to our problem. Our work can also be viewed as an exam-
ple of a security game (Sinha et al. 2018), but has a spe-
cial structure that makes it distinct from other such games.
More closely related is recent work on game-theoretic alert
prioritization (Laszka et al. 2017; Schlenker et al. 2017;
Yan et al. 2018); the key difference is that these consider the
game as one-shot, whereas a critical feature of our model is
that policies by both the defender and attacker can condition
on observed system state. In addition, our work follows prior
efforts in cybersecurity in attempting to reduce the num-
ber of false positive alerts, for example, through alert cor-
relation (Salah, Maciá-Fernández, and Dı́az-Verdejo 2013;
Vasilomanolakis et al. 2015); our work is complementary in
that it deals with whatever false positives remain after such
approaches have been applied.

While our model is novel, our technical approach builds
on recent efforts that integrate reinforcement learning with
the double-oracle method (Lanctot et al. 2017; Wang et al.
2019). Lanctot et al. consider a more general problem of
solving normal-form games, but do not explicitly leverage
any special structure such as structured states and actions.
Wang et al. use deep Q-learning to take advantage of struc-
tured states, but their game involves small action sets. In
contrast, one of our principal technical challenges is that the
action and state spaces of both players are combinatorial.

2 System Model

2.1 Overview

As displayed in Figure 1, our system is partitioned into four
major components: a group of regular users (RU), an adver-
sary (also called attacker), a defender, and an attack detec-
tion environment (ADE).

The regular users (RU) are the authorized users of a sys-
tem. In contrast, the adversary is a sophisticated actor who

attacks the target computer system. The attack detection en-
vironment (ADE) models the combination of the software
artifact that is responsible for monitoring the system (e.g.,
network traffic, files, emails) and raising alerts for observed
suspicious behavior, as well as relevant system state. System
state includes attacks that have been executed (unknown to
the defender), and alerts that have been investigated (known
to both the attacker and defender). Crucially, the alerts trig-
gered in the ADE may correspond either to behavior of the
normal users RU, or to malicious behavior (attacks) by the
adversary. We divide time into a series of discrete time pe-
riods. The defender is limited in how many alerts it can in-
vestigate in each time period and must select a small subset
of alerts for investigation, while the adversary is limited in
how many attacks it executes in each time period.

Next, we describe our model of the alert detection envi-
ronment, our threat model, and our defender model.

2.2 Attack Detection Environment (ADE) Model

Our model of ADE is composed of two parts: an alert gener-
ator such as an intrusion detection system and system state.

An alert generator produces a sequence of alerts in each
time period. We aggregate alerts based on a finite predefined
set of types T .

At the end of each time period the system generates a col-
lection of alert counts for each alert type t ∈ T . We assume
that normal or benign behavior generates alerts according to
a known distribution F , where Ft(n) is the marginal prob-
ability that n alerts of type t are generated. We also refer to
this as the distribution of false alarms, since if the defender
were omniscient, they would never trigger such alerts. In
practise, the distribution F can be learned by using past logs
of all alerts over some time period. Since the vast major-
ity of alerts in real systems are in fact false positives, any
unidentified true positives in the logs will have a negligible
impact.

We use three matrices to represent the state of ADE at
time period k. The first represents the counts of alerts not
yet investigated, grouped by type. Formally, we denote this
structure by N(k) = {N (k)

t }t∈T , where N
(k)
t is the num-

ber of alerts of type t ∈ T that were raised but have
not been investigated by the defender. This is observed by
both the defender and the attacker. The second describes
which attacks have been executed by the adversary; for-
mally, M(k) = {M (k)

a }a∈A, where M
(k)
a is a binary indi-

cator where M
(k)
a = 1 iff the attack a was executed, and A

is a finite set which represents possible attack actions. This
matrix is only observed by the attacker. Finally, we repre-
sent which alerts are raised specifically due to each attack.
Formally, S(k) = {S(k)

a,t }a∈A,t∈T , where S(k)
a,t represents the

number of alerts of type t ∈ T raised due to attack a. This is
also only observed by the attacker.

2.3 Threat Model

Adversary’s Knowledge. We consider a strong attacker
who is capable of observing the current state of the ADE.
Additionally, the attacker knows the randomized policy used
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by the defender for choosing which alerts to inspect, and in-
spection decisions in previous rounds, but not the inspection
decision in the current round (which happens after the at-
tack).

Adversary’s Capabilities. In each time period, the ad-
versary can execute multiple actions a from a set of pos-
sible (representative) actions A. Each attack action a ∈ A
stochastically triggers alerts according to the probability dis-
tribution P , where Pa,t(n) is the marginal probability that
action a generates n alerts of type t. These probabilities can
be learned by replaying known attack actions through actual
detectors (as we do in the experiments in Section 5). Let Ea

be the cost of executing an attack a ∈ A. The main limita-
tion to the attacker capabilities is a budget constraint D that
limits how many, and which combination of, attacks can be
executed. Specifically, any attack decision α

(k)
−1 with α

(k)
−1,a

the indicator that the attack a is executed by the attacker in a
given time period k, must abide by the following constraint:∑

a∈A

α
(k)
−1,aEa ≤ D. (1)

For our purposes, it is useful to represent the attacker with
two modules: Attack Oracle and Attack Generator, as seen
in Figure 1. The attack oracle runs a policy, which maps
the observed state of the ADE to attacks that are executed.
In each time period, after observing ADE state, the attack
oracle chooses attack actions, which are then executed by
the attack generator, triggering alerts and thereby modifying
the state of the ADE.

Adversary’s Goals. The adversary aims to successfully
execute attacks: if an attack triggers a collection of alerts,
but none of these are chosen by the defender to be inspected
in the current round, the attack succeeds. Different attacks,
however, entail different consequences and, therefore, differ-
ent rewards to the attacker (and loss to the defender). As a
result, the adversary will ultimately need to balance rewards
to be gained from successful attacks and the likelihood of
being detected. We formalize this in Section 3.

2.4 Defender Model

Defender’s Knowledge. Unlike the adversary, the defender
can only partially observe the state of the ADE. In partic-
ular, the defender only observes N(k), the numbers of re-
maining uninvestigated alerts, grouped by alert type (since
clearly the defender cannot directly observe actual attacks).
In addition, we assume that the defender knows the attack
budget and costs of (representative) attacks. In our experi-
ments, we study the impact of relaxing this assumption (see
Section 5), and provide practical guidance on this issue.

Defender’s Capabilities. The defender chooses subsets
of alerts in N(k) to investigate in each time period k, con-
strained by the defender’s budget B. Formally, let Ct be the
investigation cost of an alert of type t, and let α(k)

+1,t be the
number of alerts of type t chosen to be investigated by the
defender in period k. Then the budget constraint takes the
following mathematical form:∑

t∈T

Ctα
(k)
+1,t ≤ B. (2)

An additional constraint imposed by the problem definition
is that the defender can only investigate existing alerts:

∀t ∈ T : α
(k)
+1,t ≤ N

(k)
t . (3)

Just as with the adversary, it is useful to represent the de-
fender as consisting of two modules: Defense Oracle and
Alert Analyzer, as shown in Figure 1. The defense oracle
runs a policy, which maps partially observed state of the
ADE to the choice of a subset of alerts to be investigated.
In each time period, after observing the set of as yet unin-
vestigated alerts, the defense oracle chooses which alerts to
investigate, and this policy is then implemented by the alert
analyzer, which thereby modifies ADE state (marking the
selected alerts as having been investigated).

Defender’s Goals. The goal of the defender is to guard
a computer system or network by detecting attacks through
alert inspection. To achieve its goal, the defender develops
an investigation policy to allocate its limited budget to in-
vestigation activities in order to minimize consequences of
successful attacks. We define this in the next section.

3 Game-Theoretic Model of

Robust Alert Prioritization

We now turn to the proposed approach for robust alert priori-
tization. We model the interaction between the defender and
attacker as a zero-sum game, which allows us to define and
subsequently compute robust stochastic inspection policies
for the defender. In this section, we formally describe the
game model. We then present the computational approach
for solving it in Section 4.

3.1 Strategies

The game has two players: the defender (denoted by v =
+1) and the adversary (denoted by v = −1). Each player’s
strategies are policies, that is, mappings from an observed
ADE state to the probability distribution over actions to take
in that state. In a given state, the defender chooses a subset
of alerts to investigate; thus, the defender’s set of possible
actions is the set of all alert subsets that satisfy the con-
straints (2) and (3). The attacker’s choices in a given state
correspond to subsets of actions A to take. Consequently, the
set of adversary’s actions is the set of all subsets of attacks
satisfying constraint (1). Note that the combinatorial nature
of both players’ action spaces and of the state space makes
even representing deterministic policies non-trivial; we will
provide further details on this issue in Section 4. Moreover,
we will consider stochastic policies. An equivalent way to
represent stochastic policies is as probability distributions
over deterministic policies, which map observed state to a
particular action (subset of alerts for the defender, subset of
attacks for the adversary). Henceforth, we call determinis-
tic policies of the players their pure strategies and stochastic
policies are termed mixed strategies, following standard ter-
minology in game theory.

Let π−1 denote the attacker’s policy, which maps the
fully observed state of ADE, O(k)

−1 = 〈N(k),M(k),S(k)〉,
to a subset of attacks. Let α

(k)
−1 = π−1(O

(k)
−1 ), where
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α
(k)
−1 = {α(k)

−1,a}a∈A are (for the moment) binary indica-

tors with α
(k)
−1,a = 1 iff an action a ∈ A is chosen by

the attacker. In other words, the vector α(k)
−1 represents the

choice of actions made by the adversary. Similarly, π+1 de-
notes the defender’s policy, which maps the portion of ADE
state O

(k)
+1 = N(k) observed by the defender to the num-

ber of alerts of each type to investigate. Analogous to the
attacker, α(k)

+1 = π+1(O
(k)
+1 ), where α

(k)
+1 = {α(k)

+1,t}t∈T

are the counts of alerts chosen to be investigated for each
type t. Note that all alerts of type t are equivalent by defi-
nition; consequently, it makes no difference to the defender
which of these are chosen, and we can therefore choose the

fraction
α

(k)
+1,t

N
(k)
t

of alerts of type t uniformly at random. This

will be significant when we consider policy representation
in Section 4.

Let Πv be player v’s set of pure strategies, where each
pure strategy πv ∈ Πv is a policy as defined above. A mixed
strategy of player v is then a probability distribution σv =
{σv(πv)}πv∈Πv over the player’s pure strategies Πv where
σv(πv) is the probability that player v uses policy πv . Since
a mixed strategy σv is a distribution over a finite set of pure
strategies (if we assume that alert counts are bounded), it
satisfies 0 ≤ σv(πv) ≤ 1 and

∑
πv∈Πv

σv(πv) = 1. Let
Σv denote the set of all mixed strategies of player v.

3.2 Utilities

For any strategy profile of the two players, (πv,π−v), we
denote the utility of each player v by Uv(πv,π−v). Since
our game is zero-sum,

∑
v∈{+1,−1} Uv(πv,π−v) = 0.

When player v chooses pure strategy πv ∈ Πv and its op-
ponent −v plays mixed strategy σ−v ∈ Σ−v , then the ex-
pected utility of v is

Uv(πv,σ−v) =
∑

π−v∈Π−v

σ−v(π−v)Uv(πv,π−v). (4)

Similarly, the expected utility of player v when it chooses the
mixed strategy σv ∈ Σv and its opponent plays the mixed
strategy σ−v ∈ Σ−v is

Uv(σv,σ−v) =
∑

πv∈Πv

σv(πv)Uv(πv,σ−v). (5)

Next, we describe how to compute the utility of player v,
Uv(πv,π−v), when its policy is πv and the opponent’s pol-
icy π−v are given.

Consider arbitrary pure strategies of both players, π+1

and π−1. The game begins with an initial system state
〈N (0),M (0),S(0)〉 = 〈0,0,0〉. The system state is then
updated in each time period k as follows:

1. Alert investigation. The defender first investigates a sub-
set of alerts produced thus far. Specifically, the defender
chooses the number of alerts of each type to investigate
{α(k)

+1,t}t∈T according to its policy π+1(O
(k)
+1 ) given cur-

rent observed state O(k)
+1 . For each attack a ∈ A, let M̃ (k)

a

be an indicator of whether attack a has been executed by

the beginning of time period k, but has not been inves-
tigated. If M (k)

a = 0, we have M̃
(k)
a = 0 as no attack

a ∈ A has been executed. If M (k)
a = 1, then M̃

(k)
a = 1

with probability

p(k)a =
∏
t∈T

{
C(N

(k)
t − S

(k)
a,t , α

(k)
+1,t)

C(N
(k)
t , α

(k)
+1,t)

}
, (6)

where C(n, r) is the number of possible combinations of
r objects from a set of n objects. p(k)a is then the proba-
bility that attack a is not detected by the defender.

2. Attack generation. The adversary produces attacks by ex-
ecuting actions according to its policy {α(k)

−1,a}a∈A =

π−1(O
(k)
−1 ) given the fully observed ADE state O

(k)
−1 .

Then M
(k+1)
a = α

(k)
−1,a for each a ∈ A.

3. Triggering alerts. Each attack a ∈ A can trigger alerts as
follows. For each attack a ∈ A and alert type t ∈ T ,
if M

(k+1)
a = 1, then S

(k+1)
a,t = n with probability

Pa,t(n) for n ≥ 0. This probability can be estimated,
for example, by feeding inputs which include represen-
tative attacks into an attack detector and observing rel-
ative frequencies of alerts that are triggered. In addition,
false alerts are generated according to the distribution Ft,
which we can estimate from data of normal behavior and
associated alert counts. Let f (k)

t be the number of false
alerts of type t ∈ T that have been generated. Then the
total number of alerts of type t in the next time period
k + 1 is N (k+1)

t = f
(k)
t + S

(k+1)
a,t .

In order to define the reward received by the defender in
time period k, we make the following assumption: if any of
the alerts raised by an attack is chosen to be inspected, then
the attack is detected; otherwise, the attack is not detected.
Let La be the loss incurred by the defender when an attack
a ∈ A is not detected. Then the reward of the defender ob-
tained in time period k is

R
(k)
+1 = −

∑
a∈A

La · M̃ (k)
a . (7)

For an arbitrary pure strategy profile of the defender and ad-
versary, (π+1,π−1), the defender’s utility from the game is
the expected total discounted sum of the reward accrued in
each time period:

U+1(π+1,π−1) = E

[ ∞∑
k=0

τk ·R(k)
+1

]
, (8)

where τ ∈ (0, 1) is a temporal discount factor which implies
that future rewards are less important than current rewards.
That is, imminent losses are more important to the defender
than potential future losses. The adversary’s utility is then
U−1(π+1,π−1) = −U+1(π+1,π−1).

3.3 Solution Concept

Our goal of finding robust alert investigation policies
amounts to computing a mixed-strategy Nash equilibrium
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(MSNE) of our game by the well-known equivalence be-
tween MSNE, maximin, and minimax solutions in zero-
sum games (Korzhyk et al. 2011). A mixed-strategy profile
(σ∗

v ,σ
∗
−v) of the two players is an MSNE if it satisfies the

following condition for all v ∈ {+1,−1}
Uv(σ

∗
v ,σ

∗
−v) ≥ Uv(σv,σ

∗
−v) ∀σv ∈ Σv. (9)

That is, each player v chooses a stochastic policy σ∗
v that

is the best response (is optimal for v) when its opponent
chooses σ∗

−v .

4 Computing Robust Alert

Prioritization Policies

4.1 Solution Overview

For given sets of policies, Π+1 and Π−1, a standard ap-
proach to computing the MSNE of a zero-sum game is to
solve a linear program of the following form:

max U∗
v

s.t. Uv(σv,π−v) ≥ U∗
v , ∀π−v ∈ Π−v∑

πv∈Πv
σv(πv) = 1

σv(πv) ≥ 0, ∀πv ∈ Πv

(10)

where in our case the optimal solution σ∗
+1 yields the ro-

bust alert prioritization policy for the defender. However,
our problem entails two principal technical challenges: 1)
the space of policies for both players is intractably large,
and 2) it is even intractable to explicitly represent individ-
ual policies, since they map a combinatorial set of states to
a combinatorial set of actions for both players.

To address these challenges, we propose an adversarial
reinforcement learning approach which builds on several re-
cent efforts (Lanctot et al. 2017; Wang et al. 2019) that com-
bine a double oracle framework (McMahan, Gordon, and
Blum 2003) with neural reinforcement learning. We start
with an arbitrary small collection of policies for both play-
ers, (Π+1,Π−1), and solve the linear program (10), ob-
taining provisional equilibrium mixed strategies (σ+1,σ−1)
of the restricted game. Next, we query the attack oracle
to compute the adversary’s best response π−1(σ+1) to the
defender’s equilibrium mixed strategy σ+1, and, similarly,
query the defense oracle to compute the defender’s best
response π+1(σ−1) to the adversary’s equilibrium mixed
strategy σ−1. The best response policies are then added to
the policy sets (Π+1,Π−1) of the players, and we then re-
solve the linear program and repeat the process. The process
stops when neither player’s best response policy yields ap-
preciable improvement in utility compared to the provisional
equilibrium mixed strategy (we provide further details in
Section IV.B of the extended version). Note that even though
the double-oracle approach converges in finite time for finite
games, this is a vacuous guarantee in our case, where policy
spaces are enormous. Moreover, as we describe below, our
policy representation in fact induces an infinite space of poli-
cies. However, in our experiments the procedure converged
in fewer than 15 iterations (see Figure 12 in the extended
version).

The main question that remains is how to compute or ap-
proximate the best response oracles for both players. To this

end, we use reinforcement learning techniques with policies
represented using neural networks. Below, we explain our
neural reinforcement learning methods, including the spe-
cific way in which we represent policies, in further detail.

4.2 Approximate Best Response Oracles with
Neural Reinforcement Learning

We now turn to our approach to compute π′
v , the (approxi-

mately) optimal response of player v when its opponent uses
a mixed strategy σ′

−v such that

π′
v = argmax

πv

Uv(πv,σ
′
−v). (11)

This problem poses a major technical challenge, since the
spaces of possible policies for both the defender and the at-
tacker are quite large. To address this, we propose using the
reinforcement learning (RL) paradigm. However, the use of
RL poses two further challenges in our setting. First, for a
given state, each player’s set of possible actions is combi-
natorial: the attacker is choosing subsets of attacks, whereas
the defender is choosing subsets of alerts. Consequently, we
cannot use common methods such as Q-learning (as done
by Wang et al.), which requires explicitly representing the
action-value function Q(x, a) for every possible action a,
even if we approximate this function over states x using,
e.g., a neural network, as is common in deep RL. We can
address this issue by appealing to actor-critic methods for
RL, where the policy is represented as a parametric function
πv;θ with parameters θ. However, this brings up the sec-
ond challenge: actor-critic approaches learn policies using
gradient-based methods, which require that the actions are
continuous. In our case, however, the actions are discrete.

One solution is to learn the action-value function Q(x, a)
over a vector-based representation of actions, such as using
a binary vector to indicate which attacks are used. The prob-
lem with this approach, however, is that the resulting policy
πv ∈ argmaxa∈A Q(x, a) is hard to compute in real time,
since it involves a combinatorial optimization problem in its
own right. We therefore opt for a much more scalable so-
lution that uses the actor-critic paradigm with an alternative
representation of the adversary and defender policies, which
admits gradient-based learning.

First, consider the adversary. Recall that the adversary’s
policy maps a state to a subset of attack actions A, with the
constraint on the total budget used by the chosen actions. In-
stead of returning a discrete subset of actions, we map the
adversary’s policy to a probability distribution over actions,
overloading our prior notation so that α(k)

−1,a now denotes
the probability that action a ∈ A is executed. Now the pol-
icy can be used with actor-critic methods, but it may violate
the budget constraint. To address this final issue, we simply
project the probability distribution into the feasible space at
execution time by normalizing it using the total cost of the
distribution, and then multiplying it by the budget constraint.
Notice that in this process we have relaxed the attacker’s
budget constraint to hold only in expectation; however, this
only makes the attacker stronger. An interesting side-effect
of our transformation of the adversary’s policy space is that
the RL method will now effectively search in the space of
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stochastic adversary policies. An associated benefit is that it
leads to faster convergence of the double oracle approach.

Next, consider the defender. In this case, we can represent
the policy as a mapping to fractions of the total defense bud-
get allocated to each alert type t. In other words, for each
alert type t, the policy will output the maximum fraction of
the defense budget that will be used to inspect alerts of type
t. This makes the mapping continuous, and also obviates the
need to explicitly deal with the budget constraint.

The final nuance is that RL methods are typically de-
signed for a fixed environment, whereas our setting is a
game. However, note that since we are concerned only with
each player’s best response to the other’s mixed strategy, we
can embed the mixed strategy of the opponent as a part of
the environment. Next, we describe our application of actor-
critic methods to our problem, given the alternative repre-
sentations of adversary and defender policies above.

The basic idea of the actor-critic method is that we can it-
eratively learn and improve a policy without enumerating
actions by using two parallel processes that interact with
each other: an actor network which develops a policy, and
a critic network which evaluates the policy. Specifically, we
propose DDPG-MIX, an actor-critic algorithm that operates
in continuous action spaces and computes an approximate
best response to an opponent who uses a stochastic policy.
DDPG-MIX is an extension of the Deep Deterministic Pol-
icy Gradient (DDPG) approach proposed by Lillicrap et al.
(2015) to our setting, and the full algorithm is described in
the extended version (Algorithm 1).

4.3 Preprocessing

An important consideration in applying the above ap-
proaches is scalability of training. One way to significantly
improve scalability is through preprocessing, and pruning
alerts for which the (near-)optimal decision is obvious. We
use the following pruning step to this end. Suppose that there
is an alert type t which is generated by benign traffic with
probability at most ε, where ε is very small (for example,
ε = 0, in which case alerts of type t never correspond to
a false positive). In most realistic cases, it is nearly optimal
to always inspect such alerts. Consequently, we prune all
alerts with false positive rate below a small pre-defined ε (in
our implementation, we set ε = 0), and mark them for in-
spection, correspondingly reducing the available budget for
inspecting other alerts.

5 Case Studies

In this section, we present case studies to investigate the ro-
bustness of our proposed approach for alert prioritization.
We conduct our experiments in two applications: network
intrusion detection, which employs a signature-based detec-
tion system, and learning-based fraud detection.

5.1 Experimental Methodology

We use the expected loss (negative utility) of the defender
(equivalently, utility of the adversary) as the metric through-
out our evaluation. Specifically, for a given defense policy,
we evaluate the loss of the defender using several models

of the adversary. First, we used the proposed DDPG-MIX
algorithm, to compute the best response of the adversary,
as anticipated by our approach. In addition, to evaluate the
general robustness of our approach, we employed two alter-
native policies for the adversary: Uniform, a policy which
uniformly distributes the adversary’s budget over attack ac-
tions; and Greedy, a policy which allocates the budget to
attacks in the order of expected adversary utility. Specifi-
cally, the Greedy adversary prioritizes the attack actions ac-
cording to La ·min{ D̃

ca
, 1}, where D̃ is the available attack

budget, adding actions in this priority order until the adver-
sary’s budget is exhausted. The implementation is detailed
in Section V.A of the extended version.

We compare our approach for alert prioritization with sev-
eral baselines. The first is Uniform, a policy which uniformly
allocates the defender’s budget over each alert type. Ad-
ditionally, where feasible, we compare our approach with
two baseline methods for game theoretic alert prioritization:
GAIN (Laszka et al. 2017) and RIO (Yan et al. 2018). In
both, neither player can observe the ADE state, and de-
fender’s policy is a probability distribution over alert type
orderings, with RIO also optimizing inspection budgets for
each alert type.

We first conduct our experiments by assuming that the de-
fender knows the adversary’s capabilities. Subsequently, we
evaluate the robustness of our approach when the defender
is uncertain about the adversary’s capabilities. We also pro-
vide results on the computational cost of our approach in the
extended version (Figure 12).

5.2 Case Study I: Network Intrusion Detection

Our first case study involves a signature-based network in-
trusion detection scenario, using Suricata2, a state-of-the-
art open source network intrusion detection system (NIDS),
combined with the CICIDS2017 dataset (Sharafaldin,
Habibi Lashkari, and Ghorbani 2018). The details of exper-
imental setup are included in Section V.B of the extended
version. The performance of the proposed approach is com-
pared with two alternative policies for alert prioritization:
Uniform, a policy which uniformly allocates the defender’s
budget over alert types, and Suricata priorities, where the de-
fender exhausts the defense budget according to the built-in
prioritization of the Suricata NIDS. Both GAIN and RIO fail
to scale computationally to the size of our NIDS case study.
Throughout, we refer to our proposed approach as ARL.

Results Figure 2 presents our evaluation of the robust-
ness of alert prioritization approaches when the defender
knows the adversary’s capabilities, and the results suggest
that our approach significantly outperforms the other base-
lines. Specifically, the proposed approach is 50% better than
the Uniform policy, which in turn is significantly better than
using Suricata priorities. There are a few reasons why deter-
ministic priority-based approaches perform so poorly. First,
determinism allows attackers to easily circumvent the policy
by focusing on attacks that trigger alerts which are rarely in-
spected. Moreover, such naive deterministic policies also fail

2Available at https://suricata-ids.org/about/open-source/.

951



Figure 2: Network intrusion detection: loss of the defender
when it knows the attack budget. Left: Defender’s loss for
different defense budgets, with attack budget fixed at 120.
Right: Defender’s loss for different attack budgets, with de-
fense budget fixed at 1000.

Figure 3: Network intrusion detection: loss of the defender
when it is uncertain about the adversary’s capabilities. The
defense budget is fixed at 1000. Left: The defender is uncer-
tain about the attack budget, and its estimate of the attack
budget is 120. Right: The defender is uncertain about the at-
tack policies but knows the attack budget being fixed at 120.

to exploit the empirical relationships between attacks and
alerts they tend to trigger. In contrast, by learning a policy of
alert inspection which maps arbitrary alert observations to a
decision about which to inspect, we can make decisions at a
significantly finer granularity.

Evaluating the alert prioritization methods when the
defender is uncertain about the attack budget (Figure 3
(left)), we can observe that the proposed ARL approach still
achieves the lowest defender loss both when the attack bud-
get is underestimated and overestimated, and it is still far
better than the baselines. In addition, Figure 3 (right) shows
that although we assume a very strong adversary, our ARL
approach significantly outperforms the other baselines even
when the adversary is using a different attack policy.

5.3 Case Study II: Fraud Detection

Our second case study involves a learning-based fraud de-
tector developped by using supervised learning on the fraud
dataset3. The details of experimental setup are included in
Section V.C of the extended version. We investigate the per-
formance of the proposed approach by comparing with Uni-
form, GAIN, and RIO alert prioritization policies.

Results Figure 4 shows the results when the defender has
full knowledge of the adversary’s capabilities. We can ob-
serve that the proposed approach (ARL) outperforms other
baselines in all settings, typically by at least 25%. The main

3Available at https://www.kaggle.com/mlg-ulb/creditcardfraud.

Figure 4: Fraud detection: loss of the defender when it
knows the attack budget. Left: Defender’s loss for different
defense budgets, with attack budget fixed at 2. Right: De-
fender’s loss for different attack budgets, with defense bud-
get fixed at 20.

Figure 5: Fraud detection: loss of the defender when it is un-
certain about the adversary’s capabilities. The defense bud-
get is fixed at 20. Left: The defender is uncertain about the
attack budget, and its estimate of the attack budget is 2.
Right: The defender is uncertain about the attack policies
but knows the attack budget being fixed at 2.

reason for the advantage is similar to that in the NIDS set-
ting: the ability to have a policy that is carefully optimized
and conditional on state significantly increases its efficiency.
Interestingly, the alternative game-theoretic alert prioritiza-
tion approaches, GAIN and RIO, are in some cases worse
than the uniformly random policy. The key reason is that
they can be myopic in that they do not consider observed
system state in the decision about which alerts to prioritize,
and such context can be crucial.

Figure 5 (left) investigates the performance of our ap-
proach when the attack budget is uncertain. It can be seen
that ARL remains the best approach to use, despite this un-
certainty. Figure 5 (right) presents our evaluation of the ro-
bustness of ARL compared to other baselines when the at-
tacker is using different policies (Uniform or Greedy) in-
stead of the RL-based policy that is assumed by our ap-
proach. Here, the results are slightly more ambiguous than
we observed in the NIDS domain: when the adversary is us-
ing the Greedy policy, RIO outperforms ARL by 7%. How-
ever, in this case, the adversary can gain a great deal by more
carefully designing its policy. Thus, a rational adversary can
cause RIO to degrade by nearly 21%, where ARL is quite
robust to such adversaries.

6 Conclusion

We introduced a general model of alert prioritization, and
proposed a novel double oracle and reinforcement learning
based approach for finding approximately optimal prioriti-
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zation policies efficiently. Our experimental results based
on case studies with a signature-based network intrusion
detection system and machine learning-based fraud detec-
tion demonstrate that these policies significantly outperform
non-strategic approaches in nearly all cases, and prior strate-
gic methods where these are feasible, even when the as-
sumptions of our threat model are violated.
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