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Abstract

Hurricanes are powerful tropical cyclones with sustained
wind speeds ranging from at least 74 mph (for category 1
storms) to more than 157 mph (for category 5 storms). Ac-
curate prediction of the storm tracks is essential for hurricane
preparedness and mitigation of storm impacts. In this paper,
we cast the hurricane trajectory forecasting task as an on-
line multi-lead time location prediction problem and present
a framework called OMuLeT to improve path prediction by
combining the 6-hourly and 12-hourly forecasts generated
from an ensemble of dynamical (physical) hurricane mod-
els. OMuLeT employs an online learning with restart strategy
to incrementally update the weights of the ensemble model
combination as new observation data become available. It can
also handle the varying dynamical models available for pre-
dicting the trajectories of different hurricanes. Experimental
results using the Atlantic and Eastern Pacific hurricane data
showed that OMuLeT significantly outperforms various base-
line methods, including the official forecasts produced by the
U.S. National Hurricane Center (NHC), by more than 10% in
terms of its 48-hour lead time forecasts.

Introduction

Hurricanes are one of the most powerful storms on Earth that
have the potential to cause devastating losses and destruction
along their paths. For example, the Galveston Hurricane of
1900 is considered the deadliest hurricane in United States,
responsible for at least 8000 deaths (Blake, Landsea, and
Gibney 2011). In 2005, Hurricane Katrina took away more
than 1500 lives and caused at least $108 billion of property
damages (Blake, Landsea, and Gibney 2011). Given their
severe impact, accurate long-range prediction of hurricane
tracks is critical to give ample time for emergency response
teams to take appropriate actions that will minimize property
damages and loss of human lives. Towards this end, dynam-
ical models such as NOAA’s Hurricane Weather Research
and Forecasting (HWRF) system and U.S. Navy Global En-
vironmental Model (NAVGEM) have been widely used as
the primary tool for hurricane forecasting (Vickery, Skerlj,
and Twisdale 2000; Davis et al. 2008). Although the skills
of these models have improved steadily over the years, the

Copyright © 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

forecast errors and variability among the model predictions
still increase with lead time.

Ensemble forecasting seeks to better represent the range
of forecast uncertainties by combining outputs generated by
multiple dynamical models (Zhang and Krishnamurti 1999;
Gneiting and Raftery 2005; Leutbecher and Palmer 2008).
Each dynamical model can produce one or more ensemble
member outputs by perturbing its initial conditions or model
parameters. The ensemble mean or median are commonly
used as the deterministic forecast from the ensemble. These
estimates assume that every member is equally skillful, and
thus, their predictions should be weighted equally. Such an
assumption may not be realistic due to the inherent differ-
ences in the way the ensemble member outputs are gener-
ated. Thus in an operational forecast environment when such
ensemble forecasts are issued on a regular basis, the weight
of each member must be established based on their accu-
racy in predicting the hurricane tracks (DeMaria et al. 2005).
However, determining the appropriate weights is not a trivial
task as the skills of the models may vary from one hurricane
to another. To overcome this challenge, the primary goal of
this paper is to develop an online hurricane trajectory fore-
casting framework that can dynamically update the weights
of the ensemble members based on their past and recent per-
formance when verified against observations.

In the United States, the National Hurricane Center
(NHC) is responsible for monitoring and providing official
forecasts of hurricane trajectories and their intensities to the
public. With a set of dynamical model forecasts as guidance,
the official NHC forecasts are produced based on the expe-
rience and judgment of the forecasters. A secondary goal of
this paper is to investigate the feasibility of using an online
learning approach to generate forecasts that are equally or
more skillful than the official forecasts reported by NHC.

In addition to the dynamical models, various statistical
(DeMaria et al. 2005; Reich and Fuentes 2007) and hybrids
of statistical-dynamical models (Kim and Webster 2010;
Vecchi et al. 2011) have been developed. There has also
been growing interest in recent years to apply machine learn-
ing methods to the hurricane trajectory forecasting problem
(Lee and Liu 2000; Kordmahalleh, Sefidmazgi, and Homai-
far 2016; Alemany et al. 2019). However, there are sev-
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Ensemble member forecasts at different lead times, τ
τ = 1 (24 hrs) τ = 2 (48 hrs)

Hurricane Time NHC Best AEMI AEMN CLP5 AEMI AEMN CLP5
hi t track, yi,t xi,t,1

1 xi,t,1
2 xi,t,1

3 xi,t,1
1 xi,t,2

2 xi,t,2
3

SANDY 1 [12.7; -78.7] [14.6; -77.8] N/A [13.4; -80.7] [18.4; -76.4] N/A [14.2; -82.3]
2 [12.9; -78.1] [15.7; -77.7] N/A [14.1; -79.2] [19.8; -76.8] N/A [15.6; -79.9]
3 [14.0; -77.6] [17.8; -76.9] N/A [16.0; -77.5] [22.7; -76.5] N/A [18.0; -77.9]

IRMA 1 [16.4; -32.5] [18.5; -35.3] [18.8; -35.3] N/A [19.1; -39.7] [19.2; -40.0] N/A
2 [17.1; -34.2] [18.4; -38.4] N/A N/A [18.2; -42.9] N/A N/A
3 [17.9; -36.1] [18.4; -40.2] [18.7; -40.5] N/A [17.5; -44.4] [17.6; -45.0] N/A

Table 1: Example of NHC best track data along with the forecasts generated by an ensemble of dynamical models (AEMI,
AEMN, and CLP5) for hurricanes Sandy and Irma at 24 and 48-hour lead times. Let xi,t,τ

j be the τ -th lead-time forecast
generated at time t for hurricane hi by ensemble member j and yi,t be its best track location. N/A denotes missing values.

eral limitations to these machine learning approaches. First,
they are mostly based on auto-regressive or recurrent neu-
ral network models, using only historical observation data.
Due to the inherent error propagation problem (Cheng et al.
2006) in such models, they are mostly suitable for short-
range predictions. Second, due to the chaotic nature of the
weather system and the varying conditions in the atmosphere
and ocean temperature, the historical data alone may not be
enough to train a reliable long-range forecasting model. By
grounding the historical observations with multi-model en-
semble forecasts, it may lead to more reliable predictions.
Third, the previous methods are mostly designed for batch
learning. Thus, they require the model to be re-trained from
scratch whenever new observations become available. An
online learning method is more appealing as it allows the
model to be efficiently updated to fit the new observations
while adapting to the concept drifts present in the data.

Designing an online learning algorithm for hurricane tra-
jectory forecasting is a challenge for several reasons. First,
the models trained for predicting the hurricane’s location at
different lead times must take into account the inherent au-
tocorrelation along the trajectory. Furthermore, they are sus-
ceptible to the partially observed data problem inherent in
multi-lead time forecasting tasks (Xu, Tan, and Luo 2014).
For example, if the model is updated every six hours with
new observation data and the forecast horizon (i.e., maxi-
mum lead time) is 48 hours, it is insufficient to revise only
the latest model. Instead, we must also revise some of the
earlier models, starting from 48 hours ago up to 6 hours
ago, to avoid propagating the errors from the earlier mod-
els into future prediction. Another challenge is that the en-
semble members available may vary from one hurricane to
another (see Table 1). Due to the missing forecasts by some
model members, the online algorithm must adaptively learn
the weights in spite of the varying feature lengths. To ad-
dress these challenges, we propose a novel framework called
OMuLeT (Online Multi-Lead Time Forecasting), which
employs an online learning with restart strategy to incremen-
tally update the weights of the ensemble members. OMuLeT
also employs a novel weight renormalization scheme to han-
dle the varying number of ensemble member forecasts. Ex-
perimental results using the Atlantic and Eastern Pacific hur-
ricane data showed that OMuLeT can improve the 48-hour
lead time official forecast of NHC by more than 10%.

Problem Formulation

We consider the problem of predicting hurricane trajectory
using forecasts generated from a multi-model ensemble with
multiple lead times. Consider a set of N hurricanes, h1 ≤
h2 ≤ · · · ≤ hN , ordered by their start times. For the i-th
hurricane, let yi,t ∈ R

2 denote its location (latitude and lon-
gitude) at time t, where t ∈ {ti,1, · · · , ti,Γi} and Γi denotes
the observed trajectory length for hurricane hi. Furthermore,
at each time t, our goal is to forecast the hurricane’s location
at a future time step t+ τ , where τ ∈ {1, · · · , T} is the lead
time and T is the forecast horizon.

Let mi be the number of ensemble member forecasts
available for hurricane hi. The set of ensemble member fore-
casts available to predict the location of hi at time t + τ is
represented by the matrix Xi,t,τ ∈ R

2×mi , while its ground
truth location is given by yi,t+τ ∈ R

2. The hurricane tra-
jectory data is given by a set of 2-tuples, {(Xi,t,τ ,yi,t+τ )},
where the superscript i denotes the hurricane, t is the fore-
cast generation time, and τ is the forecast lead time.

Varying Feature Length: One of the key characteristics
of the multi-model ensemble hurricane trajectory data is that
its feature length, i.e., number of ensemble member fore-
casts (mi) associated with each hurricane, may vary from
one hurricane to another . Specifically, although there are
numerous ensemble member forecasts generated over the
years, each hurricane has forecasts obtained from an average
of only 19 ensemble members in our dataset. The unavail-
able ensemble members would create non-random missing
patterns in the data. Imputing the missing values is not a
viable solution due to the high missing rate. Instead, we pro-
pose an approach that can automatically handle the varying
feature length by renormalizing the weights of the ensemble
members.

Temporal Inconsistencies: Outputs from the dynamical
models have varying degrees of temporal inconsistencies.
First, the dynamical models can have different forecast time
intervals. Some models generate their forecasts every 6
hours, while others every 12 hours. To address this prob-
lem, we perform interpolation to impute the missing values
of the 12-hourly forecast intervals to obtain 6-hour forecasts
for all ensemble members. Second, the forecast duration of-
ten varies among the ensemble members. For example, some
members generate their forecasts for only a few days, while
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Figure 1: An illustration of the partially observed labeled
data problem. The red rectangles denote the set of model
forecasts for which ground truth are available at time t.

others may extend longer than a week. In addition, their fore-
cast horizon are also different. For example, some models
produce forecasts with a maximum lead time of 24 hours,
while others may generate forecasts for a lead time up to
120 hours. A novel weight renormalization approach is pro-
posed in this paper to address such temporal discrepancies.

Partially Observed Labeled Data: Another challenge is
that ground truth values for the multi-lead time forecasts are
only partially observed. This problem is illustrated in Figure
1. Let Xi,t−1,1 be the set of ensemble member forecasts gen-
erated for hurricane hi at time t−1 for the lead time τ = 1. If
the current time is t, then the ground truth value yi,t will be
available to verify the accuracy of the forecasts in Xi,t−1,1.
However, for the longer-range forecasts, Xi,t−1,2, Xi,t−1,3,
· · · , Xi,t−1,T , the ground truth values have not been ob-
served. In fact, the ground truth values are only available
for any previous forecast Xi,t−k,τ for which τ − k ≤ 0.
This corresponds to the red rectangles shown in Figure 1.
As time progresses to t+ 1, the true value for yi,t+1 will be
known. Conventional online learning algorithms use the new
observation yi,t+1 to update their latest models only. This is
insufficient for multi-lead time forecasting as the new obser-
vation data may trigger a cascading effect since some of the
earlier models from which the current models are obtained
are also outdated. The models for various lead times gener-
ated at time t must be rolled-back all the way to time t−T+1
and updated again with the new observation data to allevi-
ate the error propagation problem. This strategy is known as
online learning with restart (Xu, Tan, and Luo 2014).

Methodology

We consider an online model of the form

f(Xi,t,τ ) = Xi,t,τwi,t,τ (1)

for predicting the location of hurricane hi at time t + τ ,
where wi,t,τ ∈ R

m is the weight vector associated with m
ensemble member forecasts. Conventional online learning
algorithms (Crammer et al. 2006) typically assume that the

feature matrix Xi,t,τ is either complete or has few missing
values, which can be imputed during preprocessing. How-
ever, due to the varying feature length problem described in
the previous section, some ensemble member forecasts are
not available for the entire duration of a hurricane. Below,
we describe our proposed approach to address this problem.

Weight Renormalization

This section presents the weight renormalization approach
employed by our online learning framework to overcome the
varying feature length problem. Let μ = {μ1, μ2, · · · , μm}
be the set of all ensemble members and Mi ⊆ μ be the
subset of members whose forecasts are available for hurri-
cane hi. Since |Mi| � m, imputing the missing ensemble
member forecasts is not an effective approach given the large
amount of missing values present in the data. Instead, we
present an online learning approach that uses only the en-
semble member forecasts available for the given hurricane
(Mi) and update their weights accordingly when new ob-
servation data becomes available at each time step. Specifi-
cally, we assume the forecasts from each ensemble member
follow a Gaussian distribution centered at the true location.
To illustrate this, Figure 2 shows a normalized histogram of
the trajectory forecast errors for 5 dynamical models when
applied to more than 200 hurricanes in our dataset. Observe
that the forecast error distribution indeed resembles that of
a Gaussian distribution. We also assume that the weights of
the ensemble members form an m-dimensional simplex, i.e.:

Δm = {wi
1, w

i
2, · · · , wi

m

∣∣ ∀i : ∑
j

wi
j = 1, wi

j ≥ 0}.

Given a hurricane hi, our framework performs the follow-
ing steps to incrementally update the weights:
1. We extract the subvector wi

0 ∈ R
mi from the full vector

w ∈ R
m, whose elements contain only the weights of the

mi ensemble members in Mi.
2. We normalize wi

0 to have unit sum as follows:

wi
0 ← wi

0/c, where c = ‖wi
0‖1 =

∑
j

wi
0,j

3. At each time step t = {ti,1, ti,2, · · · , ti,Γi
}:

(a) We use the normalized weights to predict the location
of the hurricane at lead time t + τ , i.e., f(Xi,t,τ ) =
Xi,t,τwi,t,τ , where wi,t,τ is computed from wi

0 ac-
cording to Eqn. (5).

(b) After observing the ground truth location yi,t, we up-
date wi,t,τ using the method described in Section .

4. After the last update at time t = Γi, the updated weights
are renormalized to their original sum:

wi
0 ← cwi

0 (2)

before being replaced into the full vector w. This ensures
that w remains a simplex after the weight update.

The preceding approach enables our framework to update
only the weights of the ensemble members whose fore-
casts are available for hurricane hi. The weights need to be
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(a) Forecast errors along the latitude direction.
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(b) Forecast errors along the longitude direction.

Figure 2: Normalized distribution of trajectory forecast er-
rors (in 50 miles bin) for 5 different dynamical models along
their latitude and longitude directions.

renormalized when replacing them back into the full vector
w. Below, we provide a formal justification for the weight
renormalization approach. For brevity, we assume the hurri-
cane location is a scalar variable, even though the theorem
below can be extended to 2-dimensional location vectors.
Theorem 1. Let y denotes the true hurricane location and
{X1, X2, · · · , XM} be i.i.d. random variables, representing
the forecasts of M ensemble members. Assume each Xj is a
random perturbation around y, i.e.:

Xj = y + ε(0, σ2
j ),

where ε(0, σ2
j ) is a Gaussian distribution with mean 0

and variance σ2
j . Then, the best unbiased linear estimator

(BLUE) for y is z =
∑

j wjXj , where wj =
1
σ2
j

∑M
j=1

1
σ2
j

.

Proof. We consider a linear estimator of the form z =∑
j wjXj . Since {X1, X2, . . . , XM} are i.i.d. variables and

z is unbiased. Therefore:

E(z) =

M∑
j=1

wjE(Xj) =

M∑
j=1

wjy = y ⇒
M∑
j=1

wj = 1 (3)

The variance of the linear estimator is V ar(z) =∑M
j=1 w

2
jσ

2
j . To find the w that minimizes the variance, sub-

ject to the constraint in Eq. (3), we consider the Lagrangian
function L =

∑M
j=1 w

2
jσ

2
j − λ(

∑M
j=1 wj − 1). Taking its

partial derivative w.r.t wk and setting it to 0 yields

∂L

∂wk
= 2wkσ

2
j − λ = 0⇒ wk =

λ

2σ2
k

Following the constraint
∑M

j=1 wj = 1, we can solve for λ
and obtain:

wj =
1

σ2
j

/

M∑
k=1

1

σ2
k

(4)

which completes the proof.

The preceding theorem considers an estimator z com-
puted from M i.i.d. variables. Let z̃ be another estimator
computed using K of the i.i.d. variables in {Xj}. With-
out loss of generality, assume the subset corresponds to
X1, X2, · · · , XK .
Corollary 1. Let y be the true location of the hurricane
and z̃ =

∑K
j=1 w̃jXj be a linear estimator of y, where

each Xj = y + ε(0, σj)
2. Then the best linear unbiased

estimator (BLUE) for y using the K i.i.d. variables is z̃ =∑K
j=1 w̃jXj , where w̃j = cwj and c = 1∑K

j=1 wj
.

The preceding corollary provides the normalization factor
needed to re-scale the weights of the ensemble members.

Geographic Distance Loss Function

Instead of using a squared �2 (Euclidean) loss function,
our framework considers the squared geographic distance
to compute the error in location estimation. Let zi,t,τ =

[zi,t,τ1 , zi,t,τ2 ] be the predicted latitude and longitude po-
sition of hurricane hi at time t for the lead time τ and
yi,t+τ = [yi,t+τ

1 , yi,t+τ
2 ] be the corresponding true location.

The squared geographic distance between the predicted and
true locations, d[zi,t,τ ,yi,t+τ ]2, can be estimated as follows:

R2
e

[
(zi,t,τ1 − yi,t+τ

1 )2 + (zi,t,τ2 − yi,t+τ
2 )2 cos2 yi,t+τ

1

]
,

where Re is the radius of the earth. As Re is a constant that
can be absorbed into the regularizer term of an objective
function, we can set Re = 1 to simplify the notation. Fur-
thermore, by transforming the coordinates of the location to

ỹi,t+τ = [yi,t+τ
1 , yi,t+τ

2 cos yi,t+τ
1 ]

z̃i,t,τ = [zi,t,τ1 , zi,t,τ2 cos yi,t+τ
1 ]

the geographic distance can be further simplified as follows:

d(zi,t,τ ,yi,t+τ )2 = ‖z̃i,t,τ − ỹi,t+τ‖2
which is an �2 loss on the transformed coordinates.

OMuLeT: Proposed Framework

Our proposed framework, named OMuLeT, learns the
weights for the ensemble members in an online fashion.
Let m be the total number of ensemble members and mi

be the number of ensemble members whose forecasts are
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Figure 3: Proposed OMuLeT framework.

available for hurricane hi. To predict the location of hurri-
cane hi at time t+ τ , we use the following linear estimator,
zi,t,τ = Xi,t,τwi,t,τ , where Xi,t,τ ∈ R

2×mi , wi,t,τ ∈ R
mi ,

and 1T
mi

wi,t,τ = 1. OMuLeT assumes the weight vector
wi,t,τ can be decomposed into the following three factors:

wi,t,τ = wi
0 + ui,t + vi,t,τ (5)

where 1T
mi

wi
0 = 1,1T

mi
ui,t = 0,1T

mi
vi,t,τ = 0

The first term, wi
0, is a global weight that retains the weight

information from past hurricanes. The second term, ui,t, is
a hurricane-specific factor that modifies the weight to fit the
current hurricane. The third term, vi,t,τ , is a lead time ad-
justment factor to improve prediction at lead time τ .

The overall framework is shown in Figure 3. Given a
hurricane hi, we first extract the subvector wi

0 from w
and normalize it to have unit sum. Both ui,0 and vi,0,τ

are initialized to a vector of all zeros, 0mi
. As new ob-

servation data becomes available, ui,t and vi,t,τ are up-
dated using the approach to be described below. Note that
wi

0 remains unchanged throughout the time steps t =
{ti,1, ti,2, · · · , ti,Γi−1} and is only updated as follows after
the entire trajectory has been processed:

wi
0 ← wi

0 + ρui,Γi . (6)

The hyperparameter ρ controls the tradeoff between using
the weights from current and past hurricanes. Finally, the
updated weights in wi

0 are renormalized using Eqn. (2) be-
fore they are substituted back into the full vector w.

Online Learning with Restart OMuLeT employs an on-
line learning with restart strategy to address the partially
labeled data problem, as illustrated in Figure 3. When the
ground truth value yi,t is observed at time t, it can be used to
verify the accuracy of earlier forecasts, {Xi,t−1,1, Xi,t−2,2,
· · · , Xi,t−T,T }. Let Wi,t = [wi,t,1,wi,t,2, · · · ,wi,t,T ] be
the weight matrix at time t for each of the T lead times.
In conventional online learning, Wi,t is estimated from
Wi,t−1 using the observed yi,t. In turn, Wi,t−1 was es-
timated from Wi,t−2 using previous observation yi,t−1,
and so on. This strategy may not be sufficient for multi-
lead time prediction as yi,t is used to modify Wi,t−1 only,

even though the data can help improve earlier estimates of
Wi,t−2, Wi,t−3, · · · , Wi,t−T+1. For example, yi,t can also
be used to verify Xi,t−2,2, and thus, improve the estimate of
wi,t−2,2. More importantly, yi,t can verify the accuracy of
earlier forecasts Xi,t−T,T , and thus, improve the estimate of
the weights for the long-range model, wi,t−T,T . By utiliz-
ing yi,t to update wi,t−T,T , this can help alleviate the error
propagation problem encountered in multi-step ahead time
series forecasting. The online learning with restart strategy
employed by OMuLeT allows the algorithm backtracks to
time t− T + 1 and restarts its update for wi,t−T+1,T to ac-
count for the new ground truth data available for Xi,t−T,T .
In turn, the updated weight matrix Wi,t−T is then used to
update Wi,t−T+1, taking into account the new ground truth
data for Xi,t−T+1,T−1. This process is repeated until the
new weight matrix Wi,t is obtained.

Objective Function The weights of our online model are
updated by solving the following optimization problem:

min
ui,t,{vi,t,τ}

1

2

T∑
τ=1

δi,t,τγτd
[
zi,t,τ ,yi,t+τ

]2

+
ω

2

T−1∑
τ=1

∥∥wi,t,τ+1 −wi,t,τ
∥∥2 + μ

2

∥∥ui,t − ui,t−1
∥∥2

+
ν

2

T∑
τ=1

∥∥vi,t,τ − vi,t−1,τ
∥∥2 + η

2

T∑
τ=1

∥∥vi,t,τ
∥∥2

s.t. ∀ t, τ : 1T
mi

ui,t = 0,1T
mi

vi,t,τ = 0, (7)
where d[·] is the geographic distance function described

in Section while δi,t,τ is an indicator function whose value
is equal to 1 if yi,t+τ is observed at time t; otherwise its
value is 0. The first term in the objective function repre-
sents the forecast error. The hyperparameter γ determines
the relative importance of making accurate forecasts at dif-
ferent lead times τ . The second term ensures smoothness in
the model parameters for different lead times whereas the
third and fourth terms are designed to ensure the hurricane-
specific factor ui,t and lead time adjustment factor vi,t do
not change rapidly from their previous values at time t − 1.
The last term in the objective function imposes a sparsity
constraint on the lead time adjustment factor. To implement
the online learning with restart strategy, Eqn (7) must be
solved T + 1 times, starting from t = tc − T to t = tc,
where tc is the current time.

The Lagrange formulation for the problem is

L =
1

2

T∑
τ=1

δi,t,τγτ
∥∥∥X̃i,t,τwi,t,τ − ỹi,t+τ

∥∥∥2
2

+
1

2
Tr

[
Vi,tT (ωL+ ηI)Vi,t

]

+
μ

2

∥∥ui,t − ui,t−1
∥∥2 + ν

2

∥∥Vi,t −Vi,t−1
∥∥2
F

− λ1T
mi

ui,t −
T∑

τ=1

θτ1
T
mi

vi,t,τ (8)

where Vi,t = [vi,t,1,vi,t,2, . . . ,vi,t,T ], λ, θ1, · · · , θT are
the Lagrange multipliers. The objective function can be
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Input: ρ, γ, ω, μ, ν, η
Output: Model parameters w and forecasts z
Initialize: w = 1m/m;
for i = 1, 2, . . . , N do

Extract wi
0 from w

Normalize: wi
0 ← wi

0/c∀t, τ : ui,t = 0mi
,vi,t,τ = 0mi

for t = ti,1, ti,2, · · · , ti,Γi do

Observe yi,t

/* Backtracking and restart step */
for t′ = t− T, t− T + 1, . . . , t do

Solve Ai,t′ϕi,t′ = bi,t′

Solve ui,t′ and {vi,t′,τ} using Eqn. (9)
end
/* Prediction step */
for τ = 1, 2, · · · , T do

Compute wi,t,τ using Eqn. (5)
zi,t+τ = f(Xi,t,τ ) = Xi,t,τwi,t,τ

end

end

Update wi
0 based on Eq. (6)

Renormalize: wi
0 = cwi

0
Substitute wi

0 back into the full vector w
end

Algorithm 1: Proposed OMuLeT Framework

solved by taking the derivative of L with respect to the
model parameters and setting them to zero. A closed-form
solution for the Lagrange formulation is found by solv-
ing a system of linear equations: : Ai,tϕi,t = bi,t, where
ϕi,t = [Δui,t,Δvi,t,1, . . . ,Δvi,t,T , λ, θ1, . . . , θT ]

T .
After obtaining ϕi,t, the weights ui,t and vi,t,τ are up-

dated as follows:

ui,t = ui,t−1 +Δui,t

vi,t,τ = vi,t−1,τ +Δvi,t,τ
(9)

The pseudocode of our framework is shown in Algorithm 1.

Experimental Evaluation

The hurricane best track (ground truth) data and NHC of-
ficial forecasts are available from the NHC website1, while
the ensemble member forecasts were downloaded from the
Hurricane Forecast Model Output website at University
of Wisconsin-Milwaukee2. According to NHC, 46 models
were used in the preparation of their official forecasts. How-
ever, only 28 of them were available at the UWM website,
which will be used as ensemble members in our experi-
ments.

Although the best track data dates back to 1851 for At-
lantic and 1949 for Pacific oceans, both the NHC official
forecasts as well as the ensemble member forecasts have a
much shorter history. After fusing the best track with fore-
cast data, our final dataset contains 212 tropical cyclones

1https://www.nhc.noaa.gov
2http://derecho.math.uwm.edu/models

spanning the years 2012 to 2018. We performed linear in-
terpolation to impute the missing values for ensemble mem-
bers with 12-hourly forecasts to ensure they also generate 6-
hourly forecasts. The maximum forecast lead time T is set
to 48 hours. The hurricane data from 2012 to 2014 (84 tropi-
cal cyclones) are used for training and validation while those
from 2015 to 2018 (128 tropical cyclones) are used for test-
ing. Each trajectory has an average length of 24 time steps
at 6 hourly intervals. In total, there are 2086 observations in
the training and validation periods and 2946 observations in
the test period. The hurricanes are divided into two groups,
those originating from the Atlantic ocean and those from the
Eastern Pacific ocean.

We compared OMuLeT against the following methods:

1. LSTM: Following the approach used in (Alemany et
al. 2019)3, we train an LSTM model (Hochreiter and
Schmidhuber 1997) on the best track data from 1851 (for
Atlantic ocean) and 1949 (for Pacific ocean) to 2014. We
report the test results for the period between 2015 until
2018.

2. Ensemble mean (EM): This corresponds to taking the
average of all the ensemble member forecasts.

3. NHC: This is the gold standard, corresponding to the of-
ficial forecasts generated by NHC.

4. Passive-Aggresive (PA)(Crammer et al. 2006): A well-
known online learning algorithm that updates the weights
of its linear model based on the following equation:

wt+1 = wt + sign(yt − zt)τ txt (10)

5. ORION(Xu, Tan, and Luo 2014): A recently developed
online learning algorithm for multi-lead time prediction.

For a fair comparison, the baseline methods such as PA
and ORION also use the weight renormalization strategy to
deal with the varying feature length problem. The source
code and data used in our experiments are available on our
website4.

Experimental Results

Table 2 summarizes the forecast errors of the different meth-
ods, in terms of their average geographic distance (in miles)
between the true and predicted locations. There are several
interesting conclusions can be drawn from the results shown
in the table. First, the LSTM results were significantly worse
than other methods despite using a longer history of hurri-
cane trajectory data to train the model. This is not surpris-
ing as the historical tracks do not capture the varying at-
mospheric conditions and ocean temperatures that affect the
path of the hurricanes. Furthermore, the parameters of the
LSTM model are fixed after training unlike the online learn-
ing models such as PA, ORION, and OMuLeT that continu-
ously update its parameters with new observation data.

Second, the performance of ensemble mean is comparable
to the NHC official forecasts, which validates the skills of

3We directly predict the trajectory location instead of the grid
from their paper.

4https://github.com/cqwangding/OMuLeT.
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Location Atlantic and Pacific ocean Atlantic ocean only Pacific ocean only
Lead Time 12 24 36 48 12 24 36 48 12 24 36 48
LSTM 142.89 211.42 305.91 537.29 175.62 257.16 361.63 594.01 113.21 161.93 259.31 385.17
EM 26.09 40.20 53.77 68.49 27.74 42.74 57.85 75.39 24.67 38.06 50.33 62.74
PA 26.09 40.07 53.60 68.01 27.68 42.57 57.77 74.87 24.66 38.03 50.29 62.67

ORION 25.50 39.04 51.97 66.27 26.77 41.08 55.55 72.26 24.51 37.46 49.27 61.48
NHC 26.58 40.97 54.41 68.47 28.83 44.03 58.66 75.94 24.65 38.39 50.83 62.25

OMuLeT 24.94 37.08 48.78 59.08 26.53 38.77 51.85 63.61 23.73 36.03 45.85 55.80

Table 2: Comparison of mean geographic distance error (in miles) for various hurricane trajectory forecasting methods.

(a) (b) (c)

Figure 4: Comparison of 48-hour forecasts for Hurricane Irma from 2017/09/08 to 2017/09/09 by different methods.

12 24 36 48

Lead Time (hours)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

P
re

di
ct

io
n 

Im
pr

ov
em

en
t

EM
PA
ORION
NHC

Figure 5: Percentage of forecast improvement of OMuLeT
compared to the baseline methods.

the ensemble members. This is not surprising as the skills of
the dynamical models have continuously improved over the
years and the ensemble members considered in this study
are a subset of those used in the NHC official forecasts.

Third, existing online algorithms such as PA and ORION
do not significantly improve the prediction error of ensemble
mean even though their weights are updated continuously.
PA updates only its latest model whenever new observation
data becomes available unlike ORION and OMuLeT, which

employ the online update with restart strategy to revise some
of their earlier models. Furthermore, ORION was designed
for multi-lead time forecasting at a single location. Extend-
ing the approach to modeling different hurricanes is not ef-
fective as it fails to retain the weight information from past
hurricanes, unlike the weight decomposition approach used
in OMuLeT (see Eqs. (5)) and (6)).

Fourth, OMuLeT consistently outperforms all the base-
line methods irrespective of the forecast lead time. Figure 5
illustrates the forecast improvement of OMuLeT over NHC
and other baselines for different lead times. Observe that the
forecast improvement of OMuLeT over the baseline meth-
ods continues to grow with increasing lead times. More im-
portantly, it outperforms the official NHC forecasts by more
than 10% for the 48-hour lead time forecast.

Figure 4 shows an example of the trajectory forecasts for
Hurricane Irma from September 8 to September 9, 2017.
Observe that OMuLeT’s 48-hour forecasts are closest to the
best track compared to the baseline methods, especially in
Figure 4(a) and 4(b). Despite the large variability among the
ensemble member forecasts, OMuLeT was able to assign the
appropriate set of weights to the ensemble members, which
led to more accurate forecasts.

Figure 6 shows the dynamic weights of the ensemble
members learned using OMuLeT. The plot suggests that
the Global Forecast System (AVNO) generally has higher
weights than others. Other models, such as the Hurricane
Weather Research and Forecast system (HWRF) and U.K.
Met Office Global Model (EGRI), have also become increas-
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Figure 6: Global weight changes over time

ingly skillful in recent years. This result shows the advantage
of using an online learning strategy to continuously adapt
the weights of the ensemble members based on their relative
performance for different hurricanes.

Conclusions

This paper presents a novel online learning framework
called OMuLeT for multi-lead time hurricane trajectory
forecasting. Unlike existing methods, OMuLeT uses multi-
model ensemble member outputs to train its model. It also
employs novel weight renormalization and update strategies
to address the various modeling challenges. Experimental
results showed that our framework significantly outperforms
various baseline methods, including NHC official forecasts,
especially for long-range forecasting. OMuLeT thus pro-
vides a promising approach for early warning systems.

For future work, we plan to investigate alternative ap-
proaches such as Bayesian model average (Raftery et al.
2005) for merging the ensemble member forecasts. How-
ever, such an approach will need to be modified to handle
the multi-lead time trajectory forecasting problem with vast
amount of missing values.
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