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Abstract

The Kirchhoff law is one of the most widely used physi-
cal laws in many engineering principles, e.g., biomedical en-
gineering, electrical engineering, and computer engineering.
One challenge of applying the Kirchhoff law to real-world
applications at scale lies in the high, if not prohibitive, com-
putational cost to solve a large number of nonlinear equations.
Despite recent advances in leveraging a convolutional neural
network (CNN) to estimate the solutions of Kirchhoff equa-
tions, the low performance is still significantly hindering the
broad adoption of CNN-based approaches. This paper pro-
poses a high-performance deep-learning-based approach for
Kirchhoff analysis, namely HDK. HDK employs two tech-
niques to improve the performance: (i) early pruning of un-
qualified input candidates and (ii) parallelization of forward
labelling. To retain high accuracy, HDK also applies various
optimizations to the data such as randomized augmentation
and dimension reduction. Collectively, the aforementioned
techniques improve the analysis speed by 8× with accuracy
as high as 99.6%.

Introduction

In various disciplines such as medical engineering and
healthcare devices, scientists can only measure the end-
to-end electrical resistance values that are derived from
the complex, nonlinear transformation of individual resis-
tances (Niu et al. 2018b). Nonetheless, the objective of many
domain-specific applications is to find intrinsic resistance
values, and the orthodox approach is to solve the system of
large numbers of nonlinear equations formed according to
the Kirchhoff law (Kirchhoff Law 2019).

Solving a Kirchhoff-based system of nonlinear equations
poses two technical challenges: (i) the root of unknowns is
not unique because the unknowns appear at the denomina-
tors of the equations; (ii) the computation for finding the root
takes a long, sometimes prohibitive, time. For instance, Niu
et al. (Niu et al. 2018a) reported that forming the Kirchhoff
equations would take hundreds of days even for a small-
scale 40 × 40 electrode array. Although (Niu et al. 2018a)
presented an algorithm to reduce the number of equations

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

from exponential to polynomial, how to efficiently solve
them remains an open challenge to both the biomedical en-
gineering and parallel computing communities.

Inspired by the recent advances in deep learning (DL), re-
searchers started to seek non-analytic paradigms to estimate
the solution, e.g., training a convolutional neural network
(CNN) to accurately predict the unknown resistor distribu-
tion in an electrode array (Tan et al. 2019). This approach
demonstrated to be an effective means to “learn” the nonlin-
ear function between inputs and outputs, as the error rate is
reported as low as 0.49%.

However, before the CNN-based approach can be prac-
tically adopted, one critical issue concerning perfor-
mance must be addressed. Specifically, the CNN-based ap-
proach (Tan et al. 2019) simply simulates the input and out-
put data for the neural network, assuming the training set
is known a priori, which is not the case in the real world.
In fact, it is one of the most challenging problems to ef-
ficiently obtain the training data set for an electrode array
due to the computational complexity of Kirchhoff nonlin-
ear equations. As shown by Niu et al. (Niu et al. 2018a), a
commodity workstation took less than one minute to gen-
erate all the nonlinear equations for a 20×20 electrode ar-
ray, but then the time increased to more than four hours for
a 100×100 electrode array—prohibitively slow in the prac-
tice. This is partly why in (Tan et al. 2019) authors simulated
tens of thousands of training data and tested it on a small-
scale 16 × 15 electrode array1. The slow performance has
significantly hindered CNN-based Kirchhoff analysis from
being broadly adopted in real-world applications.

To overcome the above challenges, this paper proposes a
high-performance DL-based method for Kirchhoff analysis,
namely HDK. HDK employs two specific techniques to im-
prove the performance of DL-based Kirchhoff analysis: (i)
early pruning of unqualified candidate inputs and (ii) paral-
lelization of forward labelling. To retain the high accuracy of
the DL models, HDK also introduces random errors to aug-
ment the training set and at the same time applies dimension

1In literature, an electrode array can be organized in a ring or
a grid topology. Of note, in (Tan et al. 2019), the array is orga-
nized as a 16-electrode ring, which is equivalent to a 16× 15 two-
dimensional array referred to by (Niu et al. 2018a).

997



reduction to the original data. Collectively, the aforemen-
tioned techniques reduce the analytical time from hours to
15 minutes with accuracy as high as 99.6%.

Problem Formulation

Formally, let vector �Z represent the set of measured values,
the goal is to find the vector �R that satisfies �Z = K(�R),
where K(·) indicates the Kirchhoff law. The Kirchhoff law
states that the aggregation of the incoming current flows
must be equal to the aggregation of the outgoing ones. The
law must be applied to each joint on an electronic device,
therefore usually comprising a system of equations, which
is why the constraints are represented by vectors.

(a) Electrode array with n = 3

(b) Converted vertex-based topology (for one path)

Figure 1: A 3× 3 electrode array, where each of the 18 ver-
tices follows the Kirchhoff law.

To make matters more concrete, we exemplify �Z = K(�R)
in a 3×3 electrode array, as shown in Figure 1(a). One set of
axes (A, B, and C) are interconnected to another set (I , II ,
and III) on nine resistances: R11, · · · , R33. In scientific ex-
periments, we could only measure the resistant values from
the endpoints, indicated by Zij’s. For instance, ZB,II is the
measured resistance value between axis B and axis II . An
equivalent, vertex-oriented topology can be achieved; Fig-
ure 1(b) shows the converted topology for a specific path
between the axis A (i.e., i = 1) and axis I (i.e., j = 1).
The actual voltage will not matter as the measurement is all
on the resistances; for the sake of simplicity, we assume the
source voltage is 1 volt, and the end (ground) voltage is 0
volt, as indicated in Figure 1(b). Let Rij indicate the resis-
tance on the i-th x-axis and the j-th y-axis. Without loss of
generality, the end-to-end measured resistance on the first x-
axis and the first y-axis must satisfy the following system of

equations as per the Kirchhoff law:
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
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R32
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R33
U4

R13
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Z11
= 1
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+ U2

R12
+ U4

R13

(1)

where Uk (k ∈ {1, 2, 3, 4}) indicates one of intermediate
voltages at joints, as illustrated in Figure 1(b). The first four
equations represent the four Kirchhoff constraints, and the
last equation calculates the composite resistance between
i = 1 and j = 1.

In practice, only Z’s can be measured, and all U ’s and R’s
are unknowns. Although our goal is to find R values, voltage
values U ’s have to be found as well. Note that Equation 1
speaks of the relation between a single pair of i = 1 and
y = 1 only. The entire network would have nine systems
of nonlinear equations in the form of Equation 1, making
the total number of constraints equals 45. Also, note that
in each equation we have four unknown U ’s, and there are
nine unknown R’s shared by all nine equations. Therefore,
there are a total of 45 unknowns as well. That is, we have the
same number of unknowns and constraints—a well-defined
system of equations to solve. In a more general sense, there
are n2(2n − 1) constraints and n2(2n − 1) unknowns for a
given n× n electrode array.

However, the problem is proven ill-posed, meaning that
the unknown variables cannot be uniquely and stably re-
constructed from measurements alone (Barber and Brown
1984). If we look closer at the unknowns in Equation 1, the
majority comes from the voltages, i.e., n2(2n − 2) of U ’s,
and only a small fraction of them are R’s: n2; unfortunately,
such a small fraction of R’s (i.e., 1

2n−1 ) are the root cause
of the technical challenge because they all appear in the
denominators, which makes the entire system of equations
nonlinear. The problem then becomes ill-posed because:

• Non-uniqueness of Root. According to the rank of an
augmented matrix, we could determine whether a system
of linear equations has no root, a unique root, or infi-
nite numbers of roots. For a system of nonlinear equa-
tions like Equation 1, we know there must be at least one
root because they follow the physical Kirchhoff law. Lit-
erature (Semenov 2015) shows that there exist ways to
find all possible roots; and yet, in this application, there
should be only one real root, and we have no computa-
tional means to verify whether the found root is the real
one.

• Computational Complexity. Unlike a system of linear
equations, most algorithms for solving nonlinear equa-
tions are problem-dependent and a lot more complicated.
Literature (Niu et al. 2018a) shows that solving a system
of nonlinear equations derived from a 20×20 electrode ar-
ray takes more than five hours. In addition, the time-scale
trend follows an exponential pattern: the solving proce-
dure takes about 10 seconds for a 10× 10 electrode array.
Note that, in practice, the scale is much larger than 20;
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our device prototype is 64×64. The computation time in-
creases 2,000 times from n = 10 to n = 20, and will not
be acceptable at n = 64.

Methodology

Early Pruning: Upper-Bound of Input Parameters

In theory, the input data Rs can be arbitrary, although the
values are usually within a specific range depending on the
applications. That is, the parameter space of Rs is infinite:
any positive real numbers are eligible. How to select a mean-
ingful input data range remains an open problem. What we
need here is to prune off the impossible candidates, in the
context of electrode arrays, before selecting the training data
set Rs. We thus must explore the intrinsic properties embed-
ded in this specific engineering application. In the remainder
of this section, we will pursue an analytical model for esti-
mating the input Rs’ range derived from the measured Z
values.

To start with, we introduce a set of parameters, which
constructs a parameterized model for the topology shown in
Figure 1(b). Instead of having a 3 × 3 array, we assume the
dimension n is sufficiently large for practical usages, e.g.,
n = 64 in our prototype device. It follows that there are
(n− 1) horizontal paths between a starting and ending end-
points. Each of these horizontal paths comprises three re-
sistors with two distinct voltages in between, namely Uk

left

and Uk
right, where k (1 ≤ k ≤ n − 1) indicates the path

index, left indicates the left voltage and right indicates the
right voltage (assuming the current flows from left to right).
It should be clear that the three resistors on those (n − 1)
have nothing to do with the dimension of the sample 3 × 3
electrode array: all these paths would have three resistors
anyways regardless of the dimension n (Niu et al. 2018a).
In addition to the horizontal paths, there are (n− 2) “cross”
paths starting from each Uk

left.
If we look closely at the topology from endpoint i to end-

point j in Figure 1(b), the current at U1 is diluted into two
currents toward R22 and R23. On the other hand, the cur-
rent at U2 is aggregated from currents through R22 and R32.
Therefore, we observe a distributive and symmetric divide-
and-conquer workflow in this engineering application. If we
assume, for the sake of analysis simplicity, the resistors fol-
low a uniform distribution in a general n×n electrode array,
then the current must satisfy the following

Iik = (n− 1) · Ikk = Ikj

where we denote the start point as i, end point as j, and Iik
as the current between i and Uk

left. According to Ohm law,
it follows that

Uk
right = (n− 1) · (Uk

left − Uk
right)

Consequently, if n is sufficiently large in practice, we then
have Uk

left ≈ Uk
right. An important implication is then the

resistors between both intermediate voltage points are com-
putationally negligible. Formally, we have

lim
n→∞Rkk = 0 (2)

for a current topology from i to j where k �= i and k �= j.
It should be clear that this conclusion is for the computation
between a specific pair of endpoints; it does not imply the
physical resistor is cut down to zero at large scales.

Equation 2 lays out a cornerstone for further analysis of
the targeting parameter space. With Equation 2, we could
safely eliminate all the Rs in the intermediate positions, i.e.,
those that are not adjacent to either endpoint. Back to the
example in Figure 1(b), it means that we can remove R22,
R23, R32, and R33 when we compute the current from i = 1
to j = 1. It follows that the simplified topology now has only
n horizontal paths: the top one comprises a single Rij , and
each of the remaining (n−1) horizontal paths comprises two
resistors Rik and Rkj . It follows that, again, if we assume a
uniform distribution of R, then according to the Kirchhoff
law between endpoints i and j:

1

Z
=

1

R
+ (n− 1) · 1

2R
or,

R =
n+ 1

2
· Z (3)

Therefore, we can pick the training data Rs in the range of(
0, (n+1)·Z

2

]
, where Z is the measured value and n is the

array size.

Parallel Forward Labelling

We propose to label the data set in the forward direction,
which is parallelized with multiple processes. Convention-
ally, if we have a general relationship K(·) between �R and
�Z s.t. �R = K(�Z) where �Z is the set of measured values
and �R is the set of unknown individual resistances, then we
must have obtained the �R calculated from K(·) along with
the �Z. As discussed above, K(·) is prohibitively expensive
to calculate. Therefore, we ask: can we obtain both �R and
�Z through the inverse function of K(·), namely K ′(·), such
that:

∀r ∈ �R : z = K ′(r) iff r = K(z)

and we hope that the inverse function K ′(·) is significantly
easier to solve than K(·). This is known as a forward prob-
lem.

If we reexamine Equation 1, the inverse function �Z =

K ′(�R) consists of only one unknown in the denominator:
Z11. In fact, we could solve all the unknown U ’s in the first
four equations and calculate Z11 trivially. In other words,
the inverse function K ′(·) can be built by solving n2 sys-
tems, each of which comprises (2n − 2) linear equations
and (2n − 2) unknowns. This is the simplest form for solv-
ing systems of equations: all unknown coefficients are linear,
and the number of unknowns is equal to the number of equa-
tions. Therefore, a much simpler (inverse) function becomes
available for generating the training set.

With a linear number of unknowns and the new topol-
ogy, our next optimization is to parallelize the axis-oriented
Kirchhoff equations. There are n2 possible end-to-end mea-
sured resistance values from an n×n electrode array. Even if
we have reduced the number of equations from n2 to 2n−2,
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there are still a total of 2n2(n − 1) equations from the en-
tire array—we hope that parallelization could significantly
reduce the time for processing these many equations.

The key challenge is how to isolate the shared z-axes be-
tween different paths across pair-wise endpoints, such that
these paths can be calculated in parallel. Although each z-
axis is touched by a single x- and y-axis, respectively, when
those unknowns are boiled down to the Kirchhoff equations,
all of the unknowns are interconnected and cannot be triv-
ially parallelized.

Our approach to parallelizing the Kirchhoff equations is
to leverage an essential property of circuits: as long as the
voltage and underlying individual resistance are kept un-
changed, the measured end-to-end resistance and circuits
value are also unchanged. That is to say, regardless of how
many times we measure the network, the results should be
the same; it does not matter whether we measure all the n2

end-to-end resistance values at once or n2 times—basically
one single pair of (i, j) each time, 1 ≤ i, j ≤ n. Therefore,
we could parallelize the 2n2(n − 1) equations along with
the combinations of x- and y-axis. Indeed, this paralleliza-
tion is still somewhat coarse-grained: we can parallelize the
n2 factor and each thread still needs to process (2n − 2)
equations. In practice, however, n2 could be a fairly large
number and implies a high degree of parallelism. Take our
device prototype for example again where n = 64, the pro-
posed approach can be parallelized by up to 4,096 threads.
Although linear scalability is unlikely in practice due to var-
ious overhead, n2 threads imply strong parallelism; we will
report quantitative results in the evaluation section when we
apply the message passing interface (MPI) to the equations.

Augmentation through Random Errors

In real-world engineering applications, measurement errors
are the norm to exist. To take this factor into account, we
employ a procedure to randomized the �Z’s when we train the
model. Another benefit of doing so is the fast augmentation
of the training set. As discussed before, the training set is
parallelly generated from the inverse calculation based on
the Kirchhoff law. Nevertheless, it still takes tens of minutes
to find a single mapping between a 64× 64 �R and �Z, as we
will see in the evaluation section.

One tricky question for taking this approach is how much
randomization should be applied. In this context, the de-
gree of randomization is two-fold: (i) for a single element,
what is the upper and lower bound of the randomized in-
put and output; and (ii) how many new inputs and outputs
should be generated from the randomization. In engineering
applications, 5% errors are usually acceptable; we control
all the randomized data within 1% of the exact values from
Equation 1. From the application’s perspective, there is no
hard requirement over the number of new inputs and out-
puts. However, the number of extended mappings between
�R and �Z might significantly influence the model accuracy,
as we will see in the evaluation.

Dimension Reduction

One common challenge in data analysis of real-world engi-
neering applications lies in the high dimension. For instance,
the electrode arrays from our wet lab are 64 × 64, total-
ing in 4,096 dimensions. Instead of directly training over
these 4,096 features, we apply principal component analysis
(PCA) to the measurements and hope to improve the accu-
racy of the model.

The critical question in the proposed approach is how
many dimensions we want to reduce the original data. In
theory, the dimensions should be collectively tuned by both
PCA and DL models. That is, the PCA should remain much
information (usually 95+%) with a small subset of dimen-
sions and at the same time, such a small set of dimensions
result in a few neurons in the DL model leading to high accu-
racy in predicting the intrinsic resistance values R’s. We will
experimentally show that the optimal choice of the reduced
dimensions will be application-dependent, and usually re-
sides close to the point where less than 1% – 5% information
is lost from the PCA.

Evaluation

System Implementation

We have implemented the proposed method, mainly
with Python and MPI, and released the source
code hosted at Github: https://github.com/hpdic/
HDK On Electrode Arrays.

Experimental Setup

Test Bed Our experiments are primarily carried out on
the Amazon Web Services (AWS). Table 1 lists the in-
stance types for the evaluation. For the parallel forward la-
belling experiment, we use both of the t2.2xlarge and the
c5.18xlarge instances. For model training, we use only the
t2.2xlarge instance. All instances are installed with Ubuntu
18.04, Anaconda 2019.3, Python 3.7, NumPy 1.15.4, SciPy
0.17.0, mpi4py v2.0.0, and mpich2 v1.4.1.

Table 1: AWS instances used for evaluation.

Instance CPU Memory

t2.2xlarge Intel Xeon E5-2686 32 GB
c5.18xlarge Intel Xeon Platinum 8124M 144 GB

Data Sets and Baseline Systems We evaluate the pro-
posed approach using two data sets. Both data sets are col-
lected from our wet lab with measured Zs using 64×64 elec-
trode arrays. The core data set comprises 100 data points,
which are augmented into 1,400 data points through up-to-
1% random errors.

According to Equation 3, the input Rs should be in the
range of 64+1

2 = 32.5× of the measured Zs. We name the
first data set as cell medium, representing the estimated orig-
inal range of data in a biological experiment. Specifically,
the cell medium data set has its R’s about 15×–25× of the
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measured values. The second data set is called wound sur-
face, representing an application where the electrode array
is applied to a patient’s wound skin in a clinic. The typical
R’s values are about 25×–35× of the measured Zs.

For both data sets, we hold out 20% of the data for pre-
diction, and the remaining 80% for training. We use 10-fold
cross-validation and report the variance in the error bar if it
is noticeable.

We compare the proposed work with two baseline systems
recently published: (i) the conventional Kirchhoff analysis
on electrode arrays (Niu et al. 2018a) and (ii) a CNN-based
Kirhohoff analysis on electrode rings (Tan et al. 2019). The
metrics include scalability, accuracy, and performance.

DL Models The models are trained through Keras (Keras
2019), a high-level API built upon TensorFlow (TensorFlow
2019). Models in Keras are defined as a sequence of layers.
We create a sequential model and add layers one at a time
until the network reaches high accuracy. The number of in-
puts are initially set to input dim = 512 for both models.
In both models, we use a fully-connected network structure
with two hidden layers, and the number of neurons is 2,048.
Table 2 illustrates the network architecture of the DL mod-
els.

Table 2: DL network architecture for 64×64 arrays.

Layer Input Dense-1 Dense-2 Output

Neuron 100–1,400 2,048 2,048 100–1,400

During the training, we initialize the network weights
with a custom initializer (He initialization) as we use the
rectifier relu activation function on the first two layers for a
reduced likelihood of vanishing gradient. We apply no acti-
vation function to the output layer because we aim to train
a regression model instead of a classification model. When
compiling, we use the mean squared error loss function
and the gradient descent algorithm adam that appears to be
highly efficient for our data.

Speedup from Parallel Forward Labelling

This section reports the performance of the parallelized gen-
eration of training data set following the Kirchhoff law.
Specifically, we report that to solve a system of equations
derived from a 64 × 64 array, it takes almost two hours
(6,787 seconds) to solve the system of 126 equations using
a serial implementation, as shown in Figure 2. The major-
ity of computation time comes from the generation of the
equations. To this end, we explore the potential parallelism
at a fine-granularity. Specifically, we break down the equa-
tions into smaller batches, each of which is assigned to a
rank in the message passing interface (MPI) (MPICH Ac-
cessed 2019). This parallelism is only possible because the
converted, vertex-oriented equations can be formed indepen-
dently.

Figure 2 also reports the performance when various levels
of parallelism are applied. Of note, we observe significant
speedup on 2, 4, 8, and 16 threads—exhibiting almost linear

Figure 2: Time for labelling data from �R to �Z.

scalability. However, the improvement becomes marginal
when more threads join the computation, and the speedup
stops at 8.7× with 64 threads. This can be best explained
by the fact that the underlying I/O overhead is maximally
amortized; that is, the I/O bandwidth is almost saturated by
16 concurrent threads. Therefore, we believe scaling out the
application into multiple physical nodes would further im-
prove the performance by having multiple I/O devices; we
will leave this as our future work that focuses on the scala-
bility of DL-based Kirchhoff analysis.

It should be noted that this conclusion should not be gen-
eralized as the experiment consists of 126 equations, and the
underlying hardware is a commodity solid-state disk (SSD)
drive. And yet, regardless of specific applications and hard-
ware, the resource is expected to be saturated at some point.
A general model would be useful and is an interesting re-
search question, which is beyond the scope of this paper.

Sensitivity and Overhead of Dimension Reduction

Figure 3 reports the accuracy when we reduce the original
4,096-dimensional data into various levels. The total num-
ber of data points is 1,200 for all cases; as we discuss be-
fore, 1,200 is sufficient to train accurate models (see Fig-
ure 5). The left-most columns indicate the accuracy of the
models with no dimension reduction over the original data:
96.7% and 94.7% for the cell medium and wound surface
data, respectively. After reducing the dimension to 1,024,
both models are significantly improved to be around 99%
accuracy. The high accuracy then does not change much un-
til a very low dimensionality is reached: for the cell medium
data set, the accuracy drops to 96.8% on 15 dimensions; for
the wound surface data set, the accuracy drops to 97.8%
on 19 dimensions. This can be best explained by the over-
reduction where too much information is lost after PCA.
Both experiments exhibit a convex curve over the accuracy,
which is not accidental: neither high dimensionality nor
overly-reduced dimensionality would be the optimal choice.
We believe this is an interesting research question to find
out the optimal dimensionality for ANN models and will ad-
dress this in our future work.

We report the reduced dimensions with the corresponding
information retained from the PCA in Table 3. The mini-
mums of input and output neurons (i.e., dimensionality) for
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(a) Cell Medium (b) Wound Surface

Figure 3: Accuracy with various dimension reductions.

both data sets are 8 and 10, respectively, when 45% infor-
mation is lost; in order to maintain 99% of the information,
both input and output in two data sets require 19 neurons.
This result is aligned well to our findings on accuracy as
reported in Figure 6: in cell medium, the accuracy reaches
99.3% with only 18 dimensions; in the wound surface, al-
though the accuracy reaches a bit lower than Cell Medium
(97.8%), a slightly higher dimensionality (i.e., 32) leads to
an accuracy of 98.9%, and the 64-dimension becomes highly
accurate, 99.4%.

Table 3: Retained information at reduced dimensions.

Information (%) 55 65 75 85 95 99

Cell Input Dim. (#) 8 10 12 14 17 19
Cell Output Dim. (#) 10 12 14 16 18 19
Wound Input Dim. (#) 8 10 12 15 18 19
Wound Output Dim. (#) 10 12 14 16 19 19

The overhead to reduce the dimensions is 135 seconds
for all cases. The reason why it takes noticeable time is that
mainstream libraries (e.g., scikit-learn (Scikit-learn 2019))
do not support PCA at specific low dimensions, which is
the case for electrode arrays. To that end, we implemented
a PCA module from scratch specifically for this applica-
tion. It should be clear that the overhead at this level, i.e.,
100s seconds, is negligible compared to the overall training
time for the application. The performance of our implemen-
tation is highly dependent on the dimensions of the input
data. When we apply the PCA implementation to smaller
matrices, 2, 048 × 2, 048 matrices take 19 seconds, and
1, 024× 1, 024 matrices take only four seconds.

Effectiveness of Augmentation

Figure 4 shows the error rates of 10-fold cross-validation at
different augmentation scales. The variances are also plotted
as error bars at each point. When the data set is augmented
into 1,400 points, the error rate reaches around 1% with un-
noticeable variances.

Figure 5 reports the prediction accuracy when various de-
grees of augmentation is applied to both data sets (with di-
mensionality = 512), respectively. Both original data sets
comprise of only 100 data points, and we apply the random-
ness to augment the data sets into 200, 400, 600, 800, 1,000,
1,200, and 1,400 data points. With only 100 data points, we

(a) Cell Medium (b) Wound Surface

Figure 4: Error rate of 10-fold cross-validation.

can only achieve 87.8% and 91.8% accuracy, respectively,
which are unacceptable in real-world engineering applica-
tions. However, the accuracy gets drastically improved and
passes 99% when 800 data points are available. Over-fitting
issues start to appear when more than 800 data points are in-
volved. How to find the optimal number of augmented data
points is beyond the scope of this paper; in practice, because
the randomness can be quickly achieved, a trial-and-error
approach is feasible.

(a) Cell Medium (b) Wound Surface

Figure 5: Accuracy over various sizes of training data.

Figure 6 reports the overhead to augment two data sets
through random errors. The linear correlation between the
overhead and the size of the randomized data points is ex-
pected: the computational and I/O time should be propor-
tional to the augmentation of the input data. We also observe
that the overhead is in terms of tens of seconds. It should be
noted that this overhead is counted as part of the training
phase; Given that the core training data might take hours to
collect (i.e., 24 hours for about 100 points), this overhead is
negligible in the entire training phase.

(a) Cell Medium (b) Wound Surface

Figure 6: Performance overhead of augmentation.
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Put Everything Together: End-to-End Comparison

We compared the proposed HDK method with two base-
line systems recently published: (i) the polynomial Kirch-
hoff analysis (PKA) method on electrode arrays (Niu et al.
2018a) and (ii) a CNN-based Kirchhoff analysis (CKA) on
electrode rings (Tan et al. 2019). We re-implemented the
baseline systems and deployed them to the same testbed
when comparing them with the proposed HDK method. Ta-
ble 4 illustrates their accuracy and performance on the same
testbed along with the largest scales initially reported by the
respective work.

Table 4: Comparison between state-of-the-art methods.

Method PKA (2018) CKA (2019) This Work

Scale 20×20 16×15 64×64
Accuracy 100% 92.5% 99.6%
Time 5+ hrs 2.1 hrs 15 mins

In terms of accuracy, the CNN model (CKA) described
in (Tan et al. 2019) yielded an accuracy of 92.5%, while
HDK achieved accuracy higher than 99%. In the electrode
array applications, 1% or lower error rate is acceptable due
to the existence of measurement errors (which we leverage
to augment the training data, actually). PKA always calcu-
lates the exact root of the Kirchhoff equations, thus exhibit-
ing 100% accuracy.

The overall end-to-end execution time of the proposed
HDK method takes about 15 minutes for processing 64 ×
64, or 4,096-dimensional, electrode arrays. The majority
portion comes from preparing the training data. CKA (Tan
et al. 2019) was a proof-of-concept over simulated 16-
dimensional data and did not report the real execution time.
Since CKA was not open source and did not have a phase
for collecting real training data, we re-implemented a neu-
ral network with a forward model and deployed it to our
testbed. Overall, CKA took about 2.1 hours to collect the
data and train the CNN model. PKA (Niu et al. 2018a) re-
ported its analytics time as 5.6 hours over a 20×20, or 400-
dimensional, array; its training time over a 64×64 array took
about seven minutes. We re-implemented PKA with paral-
lelized data training: we were able to reduce the training
time from seven minutes to three minutes, and yet the cal-
culating (i.e., Kirchhoff equations) takes a similar time, i.e.,
more than five hours, on only a 20×20 sub-array and does
not stop for larger scales in a reasonable time (a couple of
days). In summary, the proposed HDK is orders of magni-
tude faster than PKA with negligible accuracy loss and de-
livers more than 8× (2.1 hours / 15 minutes) performance
improvement over CKA without compromising the accu-
racy.

Related Work

Optimizations of Kirchhoff-Based Analyses

Several studies in the literature proposed effective meth-
ods to optimize Kirchhoff-based analyses. In (Golden
2000), the MRFSPICE algorithm—a combination of the

Metropolis and Besag’s ICM (Iterated Conditional Modes)
algorithms—was proposed for optimizing highly nonlinear
and non-continuous analog circuits using the Kirchoff law.
In addition, based on the Kirchhoff Law about an arbi-
trary sinusoidal steady-state circuit, a principle of dynamic
optimization method was adopted by Lin et al. in (Lin et
al. 2015) to compute complicated alternating-current circuit
network. In (Guo, Ma, and Zhang 2018), a simple trans-
formation was proposed to efficiently obtain the solutions
of the autonomous Kirchhoff equation or system using the
known solutions of the corresponding local equation or sys-
tem. Similarly, an iterative method was proposed in (Dang
and Huong 2018) for solving a nonlinear biharmonic equa-
tion following the Kirchhoff law. In (Cimatti, Mover, and
Sessa 2017), an automated Satisfiability Modulo Theories
(SMT)-based method was proposed for the formal analy-
sis of Switching Multi-Domain Linear Kirchhoff Networks
(SMDLKN).

Neural Networks for Engineering Applications

Neural networks have been found useful for a wide range
of real-world engineering applications. For instance, in au-
tomobile applications, neural networks were used to pro-
vide an accurate estimation of the remaining energy in high-
capacity electric vehicle batteries. Neural networks enabled
rapid adaptation to battery nonlinearities as well as changes
in drivers and driving conditions that are difficult to model
or characterize (Taylor 2014). In the oilfield services and
equipment industry, Coveney et al. (Coveney, Hughes, and
Fletcher 1996) utilized neural networks to predict cement
compositions, particle size distributions, and thickening-
time curves from the diffuse reflectance infrared Fourier
transform spectrum of neat cement powders. This, in turn,
allowed the estimation of cement quality and detected batch-
to-batch variability in cement reliably. In medical engineer-
ing, Lim et al. (Lim et al. 2014) employed neural networks
to efficiently and inexpensively screen large populations for
diabetic retinopathy, which may lead to blindness if left
untreated. The efficiency and accuracy of the neural net-
works introduced appropriate transformations that exploit
general knowledge of the target classes. Similarly, Nigam
et al. (Nigam and Graupe 2004) proposed a method for the
automated detection of epileptic seizures from electroen-
cephalograms (EEG) signals using neural networks. The au-
thors asserted that in comparison to the manual approach,
the application of neural networks significantly reduced the
time required to analyze lengthy recordings.

Compared to the related work discussed above, this work
falls in the category of leveraging neural networks (i.e., deep
learning) to estimate the computationally-prohibitive solu-
tions to a complex system of nonlinear equations in the con-
text of electrode arrays. Although the idea of employing neu-
ral networks in electrode array is not new, this work repre-
sents the very first study on efficiently collecting, as opposed
to simulating, the training data at practical scales. In addi-
tion, this work applies various optimization techniques such
as parallelization, augmentation, and dimension reduction,
to further improve the analysis performance without com-
promising the accuracy. This work, thus, lays out the road to
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widely adopting neural networks in real-world engineering
applications at scale.

Conclusion and Future Work

This paper proposes a new deep-learning-based approach to
efficiently conduct Kirchhoff analyses that are widely used
in various engineering fields. The new approach employs
multiple techniques including early pruning of unqualified
input data, parallelization of forward labelling, data augmen-
tation through random errors and dimension reduction, all of
which collectively enable an efficient and accurate mecha-
nism for large-scale Kirchhoff analyses. We implement the
proposed approach with the latest machine learning frame-
work and the parallel computing library, and evaluate it with
real-world engineering applications showing promising re-
sults: the accuracy is as high as 99.6% with up to 8× perfor-
mance improvement over the state-of-the-art.

Our future work will emphasize on further performance
improvement for the data labelling. As per Figure 2, the per-
formance bottleneck of the proposed system lies in the I/O
subsystem when parallelizing the data labelling: about 13
out of 15 minutes, or 13

15 = 87% of the time, was spent on
labelling the data. We plan to exploit in-memory processing
techniques to alleviate the I/O pressure, for example, by ex-
tending our prior works on scalable big data systems (Qin et
al. 2019; Wang et al. 2018; Mehta et al. 2017).
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