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Abstract

Understanding intrinsic patterns and predicting spatiotempo-
ral characteristics of cities require a comprehensive represen-
tation of urban neighborhoods. Existing works relied on ei-
ther inter- or intra-region connectivities to generate neigh-
borhood representations but failed to fully utilize the in-
formative yet heterogeneous data within neighborhoods. In
this work, we propose Urban2Vec, an unsupervised multi-
modal framework which incorporates both street view im-
agery and point-of-interest (POI) data to learn neighbor-
hood embeddings. Specifically, we use a convolutional neu-
ral network to extract visual features from street view im-
ages while preserving geospatial similarity. Furthermore, we
model each POI as a bag-of-words containing its category,
rating, and review information. Analog to document embed-
ding in natural language processing, we establish the seman-
tic similarity between neighborhood (“document”) and the
words from its surrounding POIs in the vector space. By
jointly encoding visual, textual, and geospatial information
into the neighborhood representation, Urban2Vec can achieve
performances better than baseline models and comparable
to fully-supervised methods in downstream prediction tasks.
Extensive experiments on three U.S. metropolitan areas also
demonstrate the model interpretability, generalization capa-
bility, and its value in neighborhood similarity analysis.

Introduction

More than 50% of the world population live in urban ar-
eas and this share is projected to be 68% by 2050 (Ritchie
and Roser 2019). Generally, an urban area consists of a
large number of spatially-distributed neighborhoods. Each
neighborhood is a complex mixture of multiple compo-
nents including its physical environment, local business, and
the people living there. Representing and understanding the
characteristics and dynamics of urban neighborhoods are es-
sential for various downstream tasks, such as urban plan-
ning, business model development, and social welfare im-
provement. Survey is a common but costly method to un-
cover neighborhood characteristics. For example, U.S. Cen-
sus Bureau spends $250 million per year on the Ameri-
can Community Survey (ACS) which collects demographic
statistics of different neighbourhoods (Gebru et al. 2017).
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Data gathered through such time-consuming surveys can
lag behind real-world urban change particularly in regions
where the resources for data collection are limited. To pro-
vide decision makers with timely yet comprehensive infor-
mation, we need a time-saving, cost-efficient, and general
approach to characterize urban areas.

Since the intrinsic characteristics of urban neighborhoods
are well embedded in their physical appearance, business ac-
tivities, and even geo-tagged text information, recent data-
driven methods have leveraged these widely-available data
to predict or interpret the demographic and socioeconomic
patterns. For example, point-of-interest (POI) categories
have been used to infer region functions (Yuan, Zheng, and
Xie 2012); text data from Twitter has been leveraged to
predict income, occupation, and unemployment rates (An-
tenucci et al. 2014; Aletras and Chamberlain 2018); imagery
data, including street view images and satellite images, have
been utilized to predict perceived safety, house price, and de-
mographic makeup (Naik et al. 2014; Law, Paige, and Rus-
sell 2018; Gebru et al. 2017). However, these methods are
all based on task-specific supervised learning. Representa-
tions learned for one task are not necessarily useful in other
tasks. Furthermore, directly applying supervised learning on
high-dimensional raw data, such as images, requires massive
labeled data for training, which is impractical in the cases
when labels are sparse.

Learning multipurpose representations of urban neighbor-
hoods without requiring massive amounts of labeled data
has led to research that represents neighborhoods as vec-
tors while preserving the associations with urban attributes.
Analog to word embeddings in NLP (Mikolov et al. 2013;
Pennington, Socher, and Manning 2014) and graph em-
beddings in social network analysis (Perozzi, Al-Rfou, and
Skiena 2014; Grover and Leskovec 2016), the key idea in
neighborhood embeddings is to define a “similarity” met-
rics between objects, capture it from data, and encode it into
vector representations. For example, Zhang et al. (2017) and
Yao et al. (2018) extract “similarity” between regions from
urban mobility flow, and optimize the neighborhood em-
bedding to represent the neighborhood function via either
skip-gram or matrix factorization techniques. By contrast,
Wang et al. (2018) obtained the region embedding with the
“similarity” measurement derived from the POI categories
and inter-POI connectivity inside each neighborhood. Be-
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sides intra-region POI information, Fu et al. (2019) further
incorporated the inter-region proximity based on both dis-
tance and POI-derived functionality to improve the embed-
ding. However, all these methods either relied on connectivi-
ties between neighborhoods regardless of components inside
neighborhoods or included only a single type of component
such as POI. In reality, neighborhoods are complex systems
involving the local natural and built environment, popula-
tion, businesses and their interconnections. Representations
can only capture these relationships if different modalities of
granular data are combined. To the best of our knowledge,
no existing work has fully utilized the rich and multi-modal
information inside neighborhoods and incorporated them to-
gether to generate the neighborhood representations.

To bridge this gap, we propose Urban2Vec, an unsu-
pervised and multi-modal method for learning compact yet
comprehensive representations of urban neighborhoods by
incorporating heterogeneous data associated with them. We
model each neighborhood as a “container” consisting of
inter-correlated components including its physical environ-
ment, business activities, and population. While popula-
tion demographics are expensive to obtain and update, fea-
tures of physical environment and business activities can
be well captured in the widely-available and frequently-
updated street views and POI data, respectively. Based on
this idea, we develop a multi-stage approach to integrate in-
formation from street view images and POIs to generate the
neighborhood representations. For street view images, visual
features are extracted using convolutional neural network
(CNN) while preserving geospatial correlation. For POIs,
instead of using POI statistics such as number of POIs in
different categories, we model each POI as a bag-of-words
by collecting the textual information on its price, rating, and
reviews. A major advantage of such modeling is that the se-
mantic correlations lying behind words can be captured and
projected into the vector space. Specifically, our contribution
is three-fold:

• We develop a multi-modal and multi-stage framework to
generate neighborhood representations integrating both
image and textual data inside neighborhoods. Unlike pre-
vious multi-modal embedding techniques that aim at es-
tablishing inter-correlations between different modalities
of objects, our major goal is to establish the correlation
between the ”container” (neighborhood) and its inside ob-
jects. In this paper, the inside objects are street view im-
ages and POI data, but the framework can be extended to
other data such as satellite images and geo-tagged posts.

• We conduct experiments on three metropolitan areas:
Bay Area, New York, and Chicago. For demographic
and socioeconomic attribute prediction task, Urban2Vec
achieves performances better than baseline methods and
comparable to fully-supervised methods yet with better
generalization capability.

• We map the neighborhoods of New York and Chicago into
the same vector space, and illustrate how the embeddings
obtained through Urban2Vec can be used to draw similar-
ities between neighborhoods across different cities.

Problem Statement

Definition 1 (Urban Neighborhood). A city or a
metropolitan area can be represented by a set of urban
neighborhoods R = {r1, r2, ..., rN}. Each urban neigh-
borhood ri contains a set of street view images Si =
{si1, si2, ..., siMi

} taken inside ri, and a set of POIs Pi =
{pi1, pi2, ..., piOi

} located in ri.

Remark 1. Street view images capture the physical envi-
ronment in a neighborhood, while POIs, including various
types of restaurants, stores, schools, etc., represent the busi-
ness activities inside the neighborhood. Here we assume the
GPS coordinates of both street views and POIs are known.

Definition 2 (POI Textualization). A POI p can be tex-
tualized as a bag of words {t1, t2, ..., tq}, with the words
extracted from p’s categories, rating, price and customer
reviews. Then, the POI set of neighborhood ri can also
be represented by a collection of POI words Ti =
{ti1, ti2, ..., tiHi

}, which is obtained by merging the bags-
of-words of all POIs in ri.

Remark 2. Rather than generate POI embeddings as an in-
termediate step, we merge bags-of-words of POIs to obtain a
larger bag-of-words for each neighborhood in order to sim-
plify the training process. Furthermore, such bag-of-words
modeling can be easily generalized to any other geo-tagged
textual data, such as Twitter and Facebook posts. The details
of constructing Ti for each neighborhood will be introduced
in Methodology. Here we formulate the problem to investi-
gate as follows:

Definition 3 (Urban Neighborhood Embedding). Given a
set of neighborhoods R, together with street view collection
Si and POI word collection Ti inside each neighborhood ri,
the aim is to learn a vector representation zi ∈ R

d for each
ri, where d is the uniform dimension for all ri in R.

Methodology

In this section, we introduce the multi-stage framework,
Urban2Vec, for urban neighborhood embedding. We first
present a framework overview, followed by the detailed
steps for incorporating street view images and POI data.

Framework Overview

Each neighborhood ri is modeled as a “container” consisting
of a street view collection {sij}1≤i≤N,1≤j≤Mi

and a POI
bag-of-words {tij}1≤i≤N,1≤j≤Hi

. Besides the embedding
zi ∈ R

d for each ri, we also generate embedding xij ∈ R
d

for each street view sij , and embedding yij ∈ R
d for each

POI word tij . To incorporate both semantic and geospa-
tial information extracted from street views and POIs into
neighborhood representations, we seek to establish relation-
ships between {zi}1≤i≤N and {xij}1≤i≤N,1≤j≤Mi as well
as {yij}1≤i≤N,1≤j≤Hi in the vector space. Specifically, for
each urban neighborhood ri, we define its street view “con-
text” as the collection of street views located in that neigh-
borhood, which is Si, and its POI word “context” as the col-
lection of words from POIs in that neighborhood, which is
Ti. Our basic assumption is that a neighborhood should be
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Figure 1: Street view embedding with negative sampling.
The anchor image is mapped into closer position to context
image than negative image in the vector space.

highly correlated with the street views and POI words in-
side its “context”, while less correlated with those outside
its “context”. To this end, we aim to minimize the distances
of neighborhood with both its street view “context” and POI
word “context” in the vector space:

Lnb-sv =

N∑

i=1

Mi∑

j=1

dist(zi, xij) sij ∈ Si (1)

Lnb-poi =

N∑

i=1

Hi∑

j=1

dist(zi, yij) tij ∈ Ti (2)

where “dist” is a distance function in the vector space. Here
we use Euclidean distance. To obtain street view embed-
ding {xij}, we apply a CNN on raw images {sij} to ex-
tract visual features and project down the dimensionality.
By contrast, the embedding of a POI word is retrieved from
an embedding matrix Y ∈ R

|C|×d, where |C| is the size
of the POI word corpus. Minimizing Lnb-sv involves much
more parameters to train than minimizing Lnb-poi, which
can make their paces of convergence difficult to be concor-
dant. Therefore simultaneously minimizing them can yield
unsatisfactory results (See performance comparison in Ap-
pendix A.1.2). Instead, we propose an approach to optimize
them separately in two stages. In the first stage, we mini-
mize Lnb-sv leveraging both geospatial relationship between
neighborhood and street views, and that between street view
and street view. In the second stage, we minimize Lnb-poi to
further improve the neighborhood embedding by incorporat-
ing textual information of POIs.

Incorporating Street View Imagery

Each street view image can appear in the context of only one
neighborhood, thus directly minimizing Lnb-sv will generate
multiple isolated agglomerations in the vector space, where
each agglomeration is formed with a neighborhood embed-
ding surrounded by the embeddings of its contextual street
views. This is contrary to the fact that neighborhoods are
spatially correlated with each other rather than isolated. To
tackle this issue, we further decompose the process by firstly

minimizing the distance between each street view and its
contextual street views:

Lsv-sv =
∑

k

∑

xc∈Nk

dist(xk, xc) (3)

and then minimizing Lnb-sv while keeping all xk fixed. Here
Nk denotes the “context” of street view sk.

Triplet loss. To optimize Lsv-sv , we need to firstly answer
the question: What can be the “context” of a street view im-
age? In satellite image tile embedding (Jean et al. 2019), the
“context” is defined as the geographic neighbors of a tile,
based on the assumption that tiles that are spatially close
should have higher semantic similarity, while tiles far apart
tend to have less. In our work, we extend this assumption to
street view images: Street views with small geographic dis-
tance are more likely to share common semantics than those
with large distance. Therefore, we also define the “context”
of a street view image as its geospatial neighbors. Specifi-
cally, to optimize Lsv-sv , we train the CNN on a collection
of triplets (sa, sc, sn), where sa is the anchor image, sc is
an image inside sa’s context, and sn is a negative sample
outside sa’s context (See Figure 1). To enforce such relative
similarity in the vector space, we minimize the triplet loss
to enlarge the margin between anchor-negative distance and
anchor-context distance:

Ltri
sv-sv(xa, xc, xn) = [m+||xa−xc||2−||xa−xn||2]+ (4)

where [·]+ is a rectifier and || · ||2 is the Euclidean distance.
Margin m is used to prevent infinitely large difference be-
tween these two distances. xa, xc, and xn are the embed-
dings of sa, sc, and sn, respectively, which are outputted by
a shared CNN, i.e., x· = fθ(s·) where fθ denotes a CNN
parameterized by θ. Note that Ltri

sv-sv can be recognized as
an implementation of Lsv-sv with negative sampling.

Triplet sampling. Rather than use absolute geographic
distance to determine the “context”, we define the “context”
of an anchor image as its K nearest images. This is because
street view images can be densely distributed in some re-
gions while sparse in others. Using absolute geographic dis-
tance will result in highly variable context size for different
anchor images.

Minimizing Lnb-sv . After obtaining the street view em-
bedding {xij} by minimizing Ltri

sv-sv , we then minimize
Lnb-sv while keeping all xij fixed. We do not apply negative
sampling in this step, since the relative similarity has already
been captured through the geospatial context in street view
embedding. Instead, we simply take the average of all xij

located in neighborhood i as the neighborhood embedding
zi, which is exactly the analytical solution of minimizing
Lnb-sv:

zi =
1

Mi

Mi∑

j=1

xij sij ∈ Si (5)

This process is illustrated in Figure 2.
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Figure 2: Generating neighborhood embedding by aggregat-
ing street view embedding and interacting with POI word
embedding.

Incorporating POI Textual Data

In contrast to street view embedding which leverages CNN
to project down the dimensionality, the vector representa-
tion of each POI word is directly retrieved from the word
embedding matrix Y . This is analog to document embed-
ding (Le and Mikolov 2014), where a neighborhood can
be regarded as a document containing words. To encode
textual semantics regarding local business into neighbor-
hood representations, we define another triplet loss to train
both POI word embedding Y and neighborhood embed-
ding Z = {zi}1≤i≤N ∈ R

N×d. In this stage, each triplet
(ra, tc, tn) consists of an anchor neighborhood ra, a POI
word tc from ra’s context, and a negative sample tn outside
ra’s context. Their embeddings are za, yc, and yn, respec-
tively. Here we define the POI word “context” of ra as the
collection of words obtained from POIs inside ra, which is
Ta. By minimizing the triplet loss:

Ltri
nb-poi(za, yc, yn) = [m′+||za−yc||2−||za−yn||2]+ (6)

we make the neighborhood ra closer to its contextual POI
words than to the non-contextual POI words in the vector
space. Here m′ is another margin value serving the same
purpose as in street view embedding. Note that Ltri

nb-poi can
also be regarded as an implementation of Lnb-poi with nega-
tive sampling and Euclidean distance metrics. After training
Y and Z on the POI textual dataset, the final neighborhood
embedding Z incorporates the semantics from both street
views and POIs inside each neighborhood. The whole pro-
cess is illustrated in Figure 2.

Bag-of-words construction. To construct the POI word
“context” Ti for each neighborhood, we merge the bags-of-
words of all POIs located in that neighborhood. For each
POI, its bag-of-words includes its categories, rating, price,
and words from its customer reviews. In our setting, a cate-
gory phrase (e.g. “shopping center”) is regarded as a single
word. Each category word is prefixed with “cat ” to make
it distinguishable from the same word appearing in reviews.

Duplicate words are removed from reviews. However, we do
not eliminate duplication when merging words from differ-
ent POIs, as the word frequency is highly indicative of the
neighborhood attributes. For example, the neighbourhood
with 100 “restaurant” occurrences tends to be more pros-
perous than that with only 5 “restaurant” occurrences.

Negative sampling. We apply the same negative sampling
scheme as in (Mikolov et al. 2013) based on word frequen-
cies in the corpus. Specifically, for word tk which is out-
side ri’s context Ti, its possibility of being selected as nega-
tive sample is F 0.5

k∑
j∈¬Ti

F 0.5
j

, where Fk denotes the number of

times that word tk appears in the corpus.

Experiments

By conducting experiments on real-world dataset, we
demonstrate: (1) the performances of using the neighbor-
hood embedding derived by Urban2Vec for downstream pre-
diction tasks, (2) the interpretability underlying the vec-
tor representation, and (3) the usage of the embedding for
neighborhood similarity analysis.

In this work, we use census tracts to define “neighbor-
hoods”. Census tracts are small and relatively homogeneous
units regarding their demographics, and the census-tract-
level data of these attributes is readily available, which is fa-
vorable for our model evaluation. Our framework is easy to
be extended to other geographic units such as block groups
or counties, which is a part of our future work.

Experimental Setups

We collect street view images and POI information in three
major metropolitan areas in the US: San Francisco Bay
Area, Chicago, and New York. Street view images are re-
trieved using Google Street View Static API. POI informa-
tion is obtained with Yelp Fusion API. The statistics of our
datasets are shown in Table 1.

# street views # POIs # unique words # census tracts
Bay Area 44174 69765 14279 1198
Chicago 64739 38445 10013 1317
New York 67271 50697 11386 1371

Table 1: Dataset statistics.

To obtain the street view embedding, we use context size
K = 5. The CNN used in our work is an Inception-v3 ar-
chitecture (Szegedy et al. 2016) with a final linear layer pro-
jecting 2048-dimensional feature into the d-dimensional em-
bedding space. We use d = 200 for result analysis, and the
dimension sensitivity analysis is shown in Appendix A.2.
We use parameters pre-trained on ImageNet to intialize the
CNN model. In POI word embedding, we use the pretrained
GloVe (Pennington, Socher, and Manning 2014) to initialize
the embeddings of words in reviews, while embeddings of
other words like price and rating are randomly initialized.

Baseline Models

We compare Urban2Vec with other unimodal and multi-
modal representations of urban neighborhoods. Specifically,
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(a) Average R2

.

(b) Average household income (AHI).

(c) Average years of education (AYE)

.

(d) Racial diversity (RD)

Figure 3: Performances in demographic attribute prediction based on both SVR (black bar) and PCA+LR (hatching bar). See
abbreviation description in Experiments-Baseline Models section.

we investigate four methods of incorporating street view im-
ages: (1) street view embedding (SVE) proposed in this pa-
per, (2) convolutional autoencoder (AE) proposed in (Law
and Neira 2019), which uses the encoder to embed street
views into vector space, (3) supervised learning (SL), and
(4) none. Note that for supervised learning, we use the same
Inception-v3 architecture with demographic attributes as su-
pervisory signals, which serves as a benchmark for predic-
tion tasks. Moreover, we compare three methods of incor-
porating POI information: (1) POI word embedding (POI)
proposed in this paper, (2) statistics of the POI categories
using tf.idf scheme (POISTATS), and (3) none.

Finally, we obtain 10 different neighborhood representa-
tions using their combinations: SVE only, SVE+POI (Ur-
ban2Vec, abbreviated as U2V), SVE+POISTATS, SL only,
SL+POISTATS, AE only, AE+POI, AE+POISTATS,
POI only, POISTATS only.

We do not compare SL+POI since the POI word corpus
cannot be split into training and test sets for POI word em-
bedding, while evaluating supervised learning methods re-
quires strict training/test set partition to prevent overfitting.
Besides, we also compare the Urban2Vec model excluding
words from reviews, abbreviated as SVE+POI (no RV).

Experimental Results

Predicting demographic and socioeconomic attributes.
We use neighborhood embeddings as inputs to predict their
demographic attributes at census tract level. The demo-
graphic attributes are obtained from ACS and include 16
variables. Both Support Vector Regression (SVR) and lin-

ear regression with PCA preprocessing (PCA+LR) are used
as regressors, since they are less subjective to model hyper-
parameters than more complex models such as Neural Net-
work regressor. Census tracts in each dataset are split into
training (70%), validation (15%), and test sets (15%). For
each variable we calculate the average R2 on test set over 20
random splits. For supervised learning (SL), we directly use
these 16 attributes for supervision during training.

Figure 3 shows the prediction results of three major vari-
ables: average household income (AHI), average number of
years of education (AYE), racial diversity (RD), together
with the overall R2 of all these 16 variables on three datasets
(See the results for the rest of variables in Appendix A.3).
As is shown, when using SVR as regressor, Urban2Vec out-
performs all other models in all three areas, except for pre-
dicting AYE in New York and predicting RD in Chicago
on which SL+POISTATS performs slightly better by 0.02-
0.03. The overall R2 of SVE+POISTATS is higher than
that of SL+POISTATS in Bay Area but lower in New
York for both regressors, while in Chicago, SVR favors
SVE+POISTATS but PCA+LR favors SL+POISTATS.
Such results indicate that the representation obtained with
our unsupervised method can achieve comparable perfor-
mances with fully-supervised method in downstream pre-
diction tasks. For regions where granular demographic fea-
tures are not readily available or out-of-date, the unsuper-
vised learning proposed in this paper will be a good ap-
proach to obtain the neighborhood representations. More-
over, all SVE-based methods have significantly higher R2

than their AE-based counterparts. This may be because SVE
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Figure 4: (a) k-means clustering on the embeddings in three areas (k=4). (b) Street views with extreme values in 1st PCA
dimension. (c) Street views with extreme values in 2nd PCA dimension.

leverage the geospatial correlation to derive representation
while autoencoder only learns visual features from images
themselves regardless of the relationships between images.

Regarding the POI representations, although using POIS-
TATS only can yield generally better prediction perfor-
mances than using POI only, SVE+POI has a ∼0.02 gain
in average R2 compared with SVE+POISTATS when using
SVR, suggesting that in the multi-modal setting, POI word
embedding is a better way to learn representations from
unstructured POI data than using POI statistics as it cap-
tures the semantic nuances from the textual data. Compar-
ing SVE+POI (no RV) with SVE+POI shows that includ-
ing customer reviews leads to a ∼0.02 increase in average
R2. Except for SL-based methods, incorporating both street
views and POIs yields a remarkably better R2 than incorpo-
rating only a single mode, indicating the strength of multi-
modal learning for urban neighborhood representations.

Urban2Vec AE+POI SL+POISTATS demographic
Avg apartment sale price 0.487 0.391 0.417 0.445
Avg office sale price 0.443 0.308 0.328 0.337

Table 2: Real estate sale price prediction R2.

We also evaluate embedding methods on predicting real
estate sale price in Bay Area (Table 2). The data is obtained
from Cushman & Wakefield and aggregated at census tract
level. For SL+POISTATS, in order to compare its gener-
alization capability with Urban2Vec, we still use the vec-
tor representation obtained from the demographic predic-
tion as inputs, instead of re-training it with the real estate
sale price as supervision. Result shows that for both apart-
ment and office sale price predictions, Urban2Vec outper-
forms other methods including directly using demographic
attributes as inputs. Though the performances of supervised
method and Urban2Vec are comparable in demographic pre-
diction, when transferring the learned representations to an-
other task, Urban2Vec performs significantly better, indicat-
ing its good generalization capability.

Interpreting the learned representations. We apply k-
means clustering on the embeddings obtained with Ur-
ban2Vec in three areas. Figure 4a shows the results with
k=4. In Bay Area, regions with higher street enclosure and
denser population, such as San Francisco and Oakland, are
clustered into the same group. Similar cluster also occurs in

Chicago and New York (i.e. Central Chicago, most part of
Manhattan). In each area, regions with less dense popula-
tion and buildings are clustered into another group (green).
Such clustering results align well with human intuition on
the city structures of these three areas.

To uncover the semantic meaning learned in neighbor-
hood representations, we apply PCA on the embedding ma-
trix obtained in Bay Area, and visualize the street views and
POI category words with extreme values along the directions
of first and second principle components. They are shown in
Figure 4 and Table 3, respectively. We find that the 1st com-
ponent is associated with street enclosure (average building
heights divided by average width between buildings of the
same street), while the 2nd component is correlated with
vegetation. Interestingly, we also observe that the 2nd com-
ponent has strong positive correlation with average house-
hold income and education level when we use PCA+LR to
predict demographic attributes in Bay Area, suggesting that
denser greenery is indicative of high income/education level
in Bay Area. Moreover, POI categories such as “gallery” and
“winery” have high values in the 2nd dimension, while ”dis-
count store” has low value (Table 3), indicating that they are
potentially associated with high income/education level and
low income/education level, respectively.

dim1 min dance club comedy club popup restaurant
max horse back riding winery pool cleaning

dim2 min water store discount store
max gallery bed breakfast winery

Table 3: POI category words with extreme values in 1st and
2nd PCA dimensions.

Neighborhood similarity analysis. Vector representation
of neighborhoods can be used to draw similarity efficiently
between neighborhoods subject to geographic constraints.
Specifically, we seek to answer questions like this: Which
neighborhood in Chicago is most similar to neighborhood
X in New York? To illustrate the value of Urban2Vec in
addressing such problems, we train a joint embedding using
Urban2Vec for all neighborhoods in New York and Chicago.
Given a source neighborhood in one city, we can compute
the cosine similarity between its embedding vector and all
embedding vectors in another city, and then rank the neigh-
borhoods according to the similarity metrics. Figure 5 shows
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Figure 5: Searching for the most/least similar neighborhoods in another city with Urban2Vec embedding. Abbreviation: AHI:
average household income. AYE: average years of education. MHV: median housing unit value. MA: median age. ER: em-
ployment rate. PR: ratio of families below poverty level.

two instances of similar neighborhood search (See more in-
stances in Appendix A.4). Neighborhood A in Chicago and
its most similar neighborhood in New York obtained through
Urban2Vec share the similar physical appearance and de-
mographic attributes: warehouse-like buildings, sparse veg-
etation, as well as medium-to-low income and employment
rate. By contrast, the least similar neighborhood to A in
New York features tall buildings, high income/housing unit
value/employment rate, and a more aging community. Also,
neighborhood B in New York and its “nearest neighbor” in
Chicago both feature tall apartments, high income/education
level/housing unit values, and near-zero poverty rate, while
the least similar neighborhood to B in Chicago is character-
ized by its dilapidated buildings and opposite demographic
features. To summarize, Urban2Vec transforms the compli-
cated urban system comparison into a simple vector compar-
ison problem, which can facilitate commercial site selection,
real estate recommendation, and urban planning.

Conclusion

In this work, we propose Urban2Vec, an unsupervised multi-
modal learning framework to learn neighborhood represen-
tations by incorporating both street view and POI data.
We demonstrate its high accuracy in downstream prediction
tasks, interpretability underlying the embedding space, and
its potential usage in neighborhood similarity analysis. Fu-
ture work includes (1) incorporating other imagery, textual,
and spatiotemporal data, such as mobility and social media
data, to increase the information richness of neighborhood
representations, (2) using user study to evaluate neighbor-
hood similarity ranking performance, and (3) exploring the
potential usage of Urban2Vec in analyzing urban change.

Related Work

Image embedding. Unsupervised representation of im-
ages, or image embedding, aims to project high-dimensional
image data into compact but informative representations.
In terms of specific applications in urban study, Law and
Neira (2019) used convolutional autoencoder followed by
PCA to generate representations of both street views and

street network images. However, directly applying autoen-
coder on images does not establish any geospatial corre-
lation between street views at different locations. Jean et
al. (2019) developed an algorithm to learn vector represen-
tations of satellite images by using geospatial information as
a weak supervision, which provided a paradigm for learning
the representation of spatially distributed image data.

Text and graph embedding. In text embedding, the tar-
get is to enforce single words (Mikolov et al. 2013) or word
sequences (Le and Mikolov 2014) in the same context to be
close in the vector space, In graph embedding, each node is
treated as a word with its “context” defined as a set of other
nodes along a random walk (Perozzi, Al-Rfou, and Skiena
2014; Grover and Leskovec 2016). Inspired by them, ex-
isting neighborhood embedding methods modeled mobility
flow as graphs or origin-destination pairs either within a re-
gion (Wang et al. 2018; Fu et al. 2019) or among regions
(Zhang et al. 2017; Yao et al. 2018). Compared to these
works, we fully utilize the heterogeneous data in each neigh-
borhood and incorporate multiple modalities of components
to obtain the comprehensive neighborhood representations.

Multi-modal embedding. Mapping different modalities
of data into same latent space has been studied before. It
has been shown that images and text can be projected into a
single space using neural networks (Wang, Li, and Lazebnik
2016; Zhang et al. 2017), so did the combination of point-
cloud, text, and robot manipulation trajectories (Sung, Lenz,
and Saxena 2017), and the combination of text, location, and
time (Zhang et al. 2017). However, instead of aiming at em-
bedding data of different modalities into one space, the ques-
tion we are interested in is how to obtain the embedding of a
“container” (neighborhood) by integrating multiple modali-
ties of data inside the “container”.
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