
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Generative Adversarial Regularized Mutual
Information Policy Gradient Framework for Automatic Diagnosis

Yuan Xia,# Jingbo Zhou,†∗ Zhenhui Shi,# Chao Lu,# Haifeng Huang#

#Baidu Inc, Beijing, China †Business Intelligence Lab, Baidu Research
†National Engineering Laboratory of Deep Learning Technology and Application, China

{xiayuan, zhoujingbo, shizhenhui, luchao, huanghaifeng}@baidu.com

Abstract

Automatic diagnosis systems have attracted increasing at-
tention in recent years. The reinforcement learning (RL) is
an attractive technique for building an automatic diagnosis
system due to its advantages for handling sequential deci-
sion making problem. However, the RL method still can-
not achieve good enough prediction accuracy. In this paper,
we propose a Generative Adversarial regularized Mutual in-
formation Policy gradient framework (GAMP) for automatic
diagnosis which aims to make a diagnosis rapidly and ac-
curately. We first propose a new policy gradient framework
based on the Generative Adversarial Network (GAN) to op-
timize the RL model for automatic diagnosis. In our frame-
work, we take the generator of GAN as a policy network,
and also use the discriminator of GAN as a part of the re-
ward function. This generative adversarial regularized policy
gradient framework can try to avoid generating randomized
trials of symptom inquires deviated from the common diag-
nosis paradigm. In addition, we add mutual information to
enhance the reward function to encourage the model to se-
lect the most discriminative symptoms to make a diagnosis.
Experiment evaluations on two public datasets show that our
method beats the state-of-art methods, not only can achieve
higher diagnosis accuracy, but also can use a smaller number
of inquires to make diagnosis decision.

Introduction

Automatic diagnosis is one of the most important artifi-
cial intelligence applications in healthcare. An automatic di-
agnosis system usually converses with patients a series of
questions about their symptoms beyond their self-reports
and then attempts to predict potential diseases. The auto-
matic diagnosis system has a great potential to simplify
the diagnostic procedure, reduce the cost of collecting pa-
tient information, and help make a better and more effi-
cient decision making (Tang et al. 2016; Liu et al. 2017;
Chen et al. 2019).

In recent years, researchers are increasingly interested in
modeling the automatic diagnosis problem by reinforcement
learning (RL). The process of automatic diagnosis can be
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considered as a sequence of inquiries from doctors and an-
swers from patients. Meanwhile, a distinctive feature of RL
is to tackle with sequential decision making problems with
feedback. Therefore, RL is popularly considered as a suit-
able candidate for developing powerful solutions for auto-
matic diagnosis (Yu, Liu, and Nemati 2019).

However, there are still several challenges for RL to solve
automatic diagnosis. First of all, with the limited size of
diagnosis data, the RL tends to generate randomized trials
without considering the correlations among symptoms and
diseases from the common diagnosis paradigm. In real-life
scenarios, the doctors always carefully choose relevant ques-
tions to asks the patients with a logic of medical diagnosis.
The RL requires a large amount of data to learn such la-
tent knowledge, while the size of diagnosis data are much
small due to the cost to collect the data and the privacy con-
cern of patients. Second, a sophisticated method to set the
reward function is necessary. Though existing works have
mentioned that rewards are crucial for policy learning in RL
(Xu et al. 2019), there still no good solution to set the reward
function. For example, in (Kao, Tang, and Chang 2018),
the positive reward is set as +1, and negative reward as 0,
whereas in (Xu et al. 2019), the positive reward is set as
+44 and the negative reward as −22. There is no insightful
intuition or solution for setting the reward values in different
application contexts.

In this paper, we introduce a dialogue system for auto-
matic diagnosis, and propose a novel Generative Adversarial
regularized Mutual information Policy gradient framework
(named GAMP for short) for automatic diagnosis in our
system. Figure 1 illustrates our system architecture, which
contains Dialogue Agent (DA), User Simulator (US), Natu-
ral Language Understanding (NLU) and Natural Language
Generation (NLG). Additionally, we have a Dialogue State
Tracker (DST) to track the state of the user and agent. The
NLU extracts medical entities and key question from the in-
put text, and NLG can generate the dialogue question to pa-
tients. The Dialogue Agent implements GAMP framework,
as shown in Figure 2.

The novelty of GAMP framework lays on the integration
of the Generative Adversarial Network (GAN) (Goodfellow
et al. 2014) with the RL model. We propose to train an RL
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model and a GAN simultaneously for automatic diagnosis,
with taking the generator of GAN as policy network of RL.
The discriminator of GAN (named as evaluation discrimi-
nator) can be used to estimate a likelihood that the symp-
tom sequence is “real” (instead of “fake”) sequence asked
by doctors. We use the evaluation discriminator to design
a reward function to guide the optimization of policy net-
work. We call such a new policy learning strategy as gen-
erative adversarial regularized policy gradient. The insight
of the proposed method is that the doctors usually choose
to ask relevant questions to the patient with prior medical
knowledge. For example, after asking a question “do you
get a headache” with having a “yes” answer, few of doc-
tors will ask “do you have foot pain” since these symptoms
almost impossible exist for the same disease. However, the
RL tends to generate randomized trials for the symptoms
without considering the common diagnosis paradigm. With
the limited size of training data, the RL cannot capture such
latent and complex medical knowledge. Thus, in our frame-
work, we use the likelihood of the evaluation discriminator
to regularize and enhance the policy network, resulting in
generating better symptom inquiry sequence.

Second, we propose to use mutual information (MI) to
further enhance the reward function to optimize the model.
Our observation is that, during the diagnosis process, the
doctor usually inquires the most discriminative symptom
which can eliminate the uncertainty as much as possible to
make a differential diagnosis. In our framework, we devise
a mechanism to compute the MI between the current state
disease probability distribution and the adjacent next state
disease probability based on an inference engine. Then we
combine MI into the reward function for the policy learning.

We summary our contribution as follows:

• We propose a new framework (GAMP) for automatic di-
agnosis. GAMP has two novel techniques, which are gen-
erative adversarial regularized policy gradient and mutual
information enhanced reward function, to optimize the
policy learning with policy gradient.

• We introduce a complete description of our dialogue sys-
tem, which incorporates the GAMP framework for auto-
matic diagnosis.

• We evaluate our system on two public datasets to demon-
strate the superiority of our framework with higher accu-
racy and less inquires to make a diagnosis decision.

Related Work

Task-oriented dialogue systems are attracting more and
more attention in recent years. Sequence-to-sequence mod-
els have been used in task-oriented dialogue systems
(Sutskever, Vinyals, and Le 2014; Eric and Manning 2017;
Lei et al. 2018). Recent studies on text generation on GAN
have been a highly active area. SeqGAN (Yu et al. 2017)
trains a language model with policy gradients to train the
generator to deceive a CNN-based discriminator. In order
to acquire a meaningful loss in every token, they do Monte
Carlo rollouts during the training. GANs have been applied
to dialogue generation (Li et al. 2017) showing improve-

Text Input Symptom Input

Dialogue Generation System Action

Figure 1: Architecture of Dialogue System for Automatic
Diagnosis

ments in adversarial evaluation and good results with hu-
man evaluation compared to a maximum likelihood trained
baseline. There are variants of GANs, like Conditional-GAN
(Mirza and Osindero 2014), Info-GAN (Chen et al. 2016)
and AC-GAN (Odena, Olah, and Shlens 2017), training
GANs with additional class or tag information. (Chen et
al. 2016) use an variational information maximization tech-
nique to optimize GANs.

There are some works related to our study. Deep rein-
forcement learning (Mnih et al. 2013; Silver et al. 2016;
2017) has been applied for automatic diagnosis (Tang et
al. 2016; Kao, Tang, and Chang 2018). (Peng et al. 2018)
proposed reward shaping and feature rebuilding method for
fast disease diagnosis. However, their data used is simulated
that cannot reflect the situation of the real diagnosis. For the
medical dialogue system for automatic diagnosis, (Liu et al.
2018) annotated the first medical dataset for dialogue sys-
tem and use a Deep Q-network (DQN) to collect additional
symptoms via conversation with patients. (Xu et al. 2019) re-
leased another medical dataset for the dialogue system and
introduce prior knowledge to improve the diagnosis accu-
racy. However, with fixed reward function, the intuition of
reward is unclear, their DQN based methods fail to request
the distinguished symptoms and sometimes request unrea-
sonable results.

Proposed Method

The architecture of the proposed dialogue system is illus-
trated in Figure 1. In this work, we mainly focus on the Di-
alogue Agent (DA) which is composed of a generator, a dis-
criminator and an inference engine: the generator is used for
inquiring the patient with possible symptoms; the discrimi-
nator is used for evaluating whether the inquired sequence
is authentic or fake; and the inference engine is used for in-
ferring the possible diseases. The user simulator in Figure 1
is normally designed to automatically interact with the Dia-
logue Agent (Liu et al. 2017). The NLU can recognize user
intent and normalize the symptoms from the patient self-
report and conversations. The NLU is implemented with a
simple Bi-LSTM model. Given the predicted symptom ac-
tions, the NLG is used for generating natural language sen-
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Figure 2: Illustration of the GAMP Framework for Dialogue Agent

tences via templates. The whole dialogue agent system re-
ceives the patient self-report, learns to request symptoms to
interact with the patient, and makes a diagnosis at the end of
the conversation. When the maximum turns T is reached, or
the inference engine reaches the threshold τ , or the genera-
tor chooses the terminated node (disease node), the dialogue
session will terminate.

Suppose we have a medical dataset consisting of patients’
symptoms and disease. We have m disease and n symp-
toms. The agent has four types of actions including inform
disease, request symptom, thanks and terminate (Liu et al.
2018). Therefore the agent action space size A is denoted
as A = m + n + l, where l is the size of auxiliary action
(e.g. thanks and terminate). User actions are mainly confir-
mation, denial or uncertainty about the requested symptoms.
There are three types of symptom states for a user, which are
positive, negative and uncertain, represented by 1, -1 and 0
in user symptom vectors respectively. At each turn, the DST
records the dialogue state st which contains the previous ac-
tions of both user and agent, known symptoms representa-
tion and current turn information.

User Simulator

To train our dialogue system, we apply a user simulator to
sample user goals from the experimental dataset S for au-
tomatically interacting with the dialogue system. Following
(Liu et al. 2018), our user simulator maintains a user goal.
A user goal generally consists of four parts: disease tag, ex-
plicit symptoms (symptoms extracted from self-reports), im-
plicit symptoms (symptoms extracted from conversations)
and request slots. When the agent requests a symptom dur-
ing the dialogue, the user will take one of the three ac-
tions including True (for the positive symptom), False (for
the negative symptom), and Not sure (for the unmentioned
symptom). At the end of the dialogue session, the user simu-
lator will judge whether the agent makes a correct diagnosis

or not. The dialogue process fails if the agent makes wrong
diagnosis or the dialogue turn reaches the maximum turn T .

Policy Learning of Dialogue Agent

A framework overview of the dialogue agent system is il-
lustrated in Figure 2. Algorithm 1 shows the summary of
our proposed method for automatic diagnosis. First, we pre-
train the symptom sequence generator Gθ with the patient
self-report and the conversations. The training process is
typically a Maximum Likelihood Estimate (MLE) method
for language model. Given the symptom sequence extracted
from the dialogue, we iteratively predict the next symptom
token using an LSTM model. During the training, we pre-
dict the next symptom yt given the input sequence Y1:t−1.
After the pre-training of generatorGθ, we proceed a roll-out
to generate fake symptom sequence. We build a data reposi-
tory to store the generated symptom sequence, and put fake
sequences from the generator into the fake data set.

Second, we pre-train the evaluation discriminator Dψ

with the real symptom sequence and fake sequence. The fake
sequence is a combination of the patient self-report and con-
versations sampled from the generator. The real symptom
sequence are sampled from the real medical dialogue train-
ing dataset S . The discriminator Dψ is pre-trained for eval-
uating the inquired sequence is authentic or not. Meanwhile,
we train inference engine Dφ to infer possible diseases. The
input ofDφ are the patient self-report and conversations, the
label is the doctor’s diagnosis. Note that, as shown in Line 4
of Algorithm 1, once the training of inference engine Dφ is
finished, Dφ will not be updated in our framework. Both the
evaluation discriminator and inference engine use the same
network architecture, except for the final output layer. The
final output layer of discriminator Dψ is a binary classifica-
tion, while the inference engine Dφ is a softmax layer with
cross-entropy loss.

Following (Sutton et al. 2000), the objective of the gen-
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Algorithm 1 Generative Adversarial Regularized Mutual
Information Policy Gradient
Input: sequence generator Gθ; evaluation discriminator
Dψ and
inference engine Dφ; a symptom sequence dataset S
Output: optimal policy G∗

θ
1: InitialGθ,Dψ andDφ with random weights θ ,ψ and φ.
2: Pre-train Gθ using MLE on S
3: Pre-train Dψ with fake data by Gθ and real data on S
4: Train Dφ using the cross-entropy loss on S
5: repeat
6: for g-steps do
7: for t = 1 to T do
8: Request symptom yt ∼ Gθ
9: Interact with User Simulator

10: Compute RD = QGθDψ (s = Y1:t−1, a = yt)

11: Compute RM = I(Ot;Ot+1|Dφ)
12: Compute RF = (1− λ)RM + λ(RD − ε)
13: end for
14: Update the generator parameters via policy gra-

dient
15: Eq.(9)
16: end for
17: for d-steps do
18: Sample generated sequence from the fake repos-

itory
19: Sample real sequence from the real dataset
20: Combine the positive and negative samples
21: Train discriminator Dψ for k epochs by Eq.(3)
22: end for
23: until End of epochs

erator (policy) Gθ(at|st) is to generate a sequence from the
start state s to maximize its expected end reward:

J(θ) = E[RT |s, θ] =
∑

τ

Gθ(a|s) ·QGθDψ (s, a) (1)

where RT is the reward for a symptom sequence, and τ
is the trajectory. Note that the reward is from the discrimi-
nator Dψ . QGθDψ (s, a) is the state-action function, which ap-
proximates the value when take action a at current state s.
The intuition of the objective function for a sequence is that
starting from a given initial state (i.e. user self-report in this
paper), the goal of the generatorGθ is to generate a sequence
which would make the discriminator consider it is real. To
estimate the QGθDψ (s, a) function, we use the REINFORCE
algorithm (Williams 1992) and consider the estimated prob-
ability of evaluation discriminator Dψ as the reward.

In (Yu et al. 2017), the estimated reward given by the dis-
criminator is computed by the completed sequence. The un-
observed sequence Yt+1:T is generated by a roll-out policy
with Monte Carlo search method. The drawback of MC is
that it requires repeating the sampling process for each prefix
of each sequence and is thus significantly time-consuming.
Different from the general sequence generation problem, for
interactive dialogue system, we not only care about the fin-

ished sequence, but also put emphasis on the intermediate
feedback. As described in (Li et al. 2017), we directly train
a discriminator that is able to assign rewards to both fully
and partially observed sequences. We compute the interme-
diate reward from the partial observed symptom sequence
as well as the complete symptom sequence. Thus, we have
dicriminator reward RD:

RD = QGθDψ (s = Y1:t−1, a = yt) = Dψ(Y1:t−1) (2)

Then, once having a set of more realistic generated se-
quences, we re-train the discriminator Dψ as follows:

min
ψ

−EY∼pdata [logDψ(Y )]− EY∼Gθ [log(1−Dψ(Y )]

(3)

Mutual Information Regularized Policy Gradient In a
real-world process of medical diagnosis, the doctor often
inquires the discriminative symptom to make a differential
diagnosis. Inspired by this, our generator Gθ is updated to
have the ability to inquiry the key symptoms that can best
distinguish the diseases which are hard to differentiate. To
this end, our work introduces the Mutual Information (MI)
to improve the dialogue agent performance.

The entropy measures uncertainty of the events. To re-
duce the uncertainty step by step, the generator Gθ needs to
consider the symptoms which can eliminate the uncertainty,
which means can reduce the entropy of disease probability
distribution. In information theory, the mutual information
between X and Y , I(X;Y ), measures the amount of infor-
mation learned from knowledge of random variable Y about
the other random variable X. The mutual information can be
expressed as the difference of two entropy terms:

I(X;Y ) = H(X)−H(X|Y ) (4)

In our work, we compute the mutual information between
the current state disease probability distribution Ot−1 and
adjacent next state disease distribution Ot. The mutual in-
formation is computed as follows:

I(Ot−1;Ot|Dφ) = H(Ot−1|Dφ)−H(Ot|Dφ) (5)

Ot−1 = Dφ(Y
′
1:t−1) (6)

where, H(·) is the entropy function, Y
′
1:t−1 is a collection

of symptoms that the patient confirms to have (circles shown
in Fig. 2), while Y1:t−1 is the symptom sequence has been
inquired by agent (diamonds shown in Fig. 2). yt is the next
symptom to be asked.

In the process of medical diagnosis, the doctor inquiries
the possible symptoms. It normally has two intentions. First,
the doctor want to confirm his primary diagnosis according
to the patient answers. Second, the doctor can rule out the
possible disease based on the patient replies. The process of
medical diagnosis is essential a step-by-step way of remov-
ing the candidate diseases. As shown in Figure 3, when to
request a symptom, we want the distribution of disease to
be deterministic, which means the distribution should have

1065



Figure 3: Intuitive Illustration of Mutual Information Re-
ward for Medical Diagnosis. At the current state, the disease
distribution is shown in green. When requesting a symptom,
we prefer to get the red distribution rather than the blue one.

some peaks and valleys (shown in red distribution), rather
than flat plains (shown in blue distribution).

Therefore, given the inference engine Dφ (i.e., we fixed
the parameters φ during training of generator), the generated
candidate symptom should enhance the mutual information
reward RM .

RM = QGθDφ(s = Y
′
1:t−1, a = yt) = I(Ot−1;Ot|Dφ) (7)

To make the generated symptom sequence to be both nat-
ural, authentic and capable of making differential disease,
we update the policy parameters with the mixed RM and
RD reward as RF . Here, we have:

RF = (1− λ)RM + λ(RD − ε) (8)

where λ controls the weight of the reward, ε controls the
effect of discriminator. If a discriminator thinks the gener-
ated sequence is real, then the reward should be positive, ε
is normally set to 0.5, as the discrimnator evaluates the se-
quence as real if the probablity is greater than 0.5.

When the evaluation discriminator Dψ has been updated,
we are ready to update the generator. The proposed policy
based method relies upon optimizing a parametrized policy
to directly maximize the long-term reward. Following (Sut-
ton et al. 2000), the gradient of the objective function J(θ)
w.r.t. the generator’s parameters θ can be derived as:

∇θJ(θ) =

T∑

t=1

Eyt∼Gθ [∇θlogGθ(yt|Y1:t−1) ·R(t)
F ] (9)

Finally, we update the parameters of generator Gθ with as:

θ := θ + α∇θJ(θ) (10)

Generator of Dialogue Agent A complete medical in-
quiry process normally contains the patient chief complaint
(i.e. self-report) and present history. The doctor inquiry the
patient based on his chief complaint. Then, the present his-
tory is accomplished in an interactive way, as the doctor asks

the question and the patient confirms or denies. In our work,
the sequence inquiry generatorGθ can be viewed as a doctor
agent to inquiry the patient.

We use the recurrent neural network (RNNs) (Hochreiter
and Schmidhuber 1997) as generatorGθ. The RNN maps the
input inquiry sequence x1, · · · ,xT into a inquiry sequence
of hidden state h1, · · · ,hT by using the update function σ
recursively.

ht = σ(ht−1,xt) (11)

In general neural language model (Bengio et al. 2003),
we normally apply a softmax output layer maps the hidden
states into the output token distribution, where weight matrix
W and vector b are parameters.

p(xt|x1, · · · , xt−1) = softmax(Wht + b) (12)

Unfortunately, standard RNN suffers the problem of gra-
dient vanishing or exploding, where gradients may grow
or decay exponentially over long sequences. The advent of
LSTM (Hochreiter and Schmidhuber 1997) is to deal with
the weakness of standard RNN. We build the generator Gθ
with an LSTM model, while the variant of RNNs, such as
the gated recurrent unit GRU (Cho et al. 2014), attention-
mechanism based RNN model (Bahdanau, Cho, and Bengio
2014), can also be used as a generator.

Discriminator and Classifier of Dialogue Agent We
adopt a deep neural network (DNN) (Hinton and Salakhut-
dinov 2006) to train discriminator Dψ and inference engine
Dφ. It is worth noticing that other kinds of neural net ar-
chitectures, such as the convolutional neural network (CNN)
(Kim 2014) and recurrent neural network (RNN) can be used
as a discriminator in our framework. The discriminator and
the inference engine share the same architecture, except for
the final output layer. The evaluation discriminator outputs a
single scalar, which represents the probability that symptom
sequence comes from the real data rather than the generator.
Second, for the inference engineDφ, we use the patient self-
report, conversations and doctor’s diagnosis from the train-
ing corpus to train a disease inference classifier. The output
of Dφ(·) represents the disease probability distribution.

The detailed training settings of our dialogue system is
demonstrated in Experiment section.

Experiments

Datasets

To evaluate the performance of the proposed framework, we
test our system on two public medical dialogue datasets,
MuZhi Medical Dialogue dataset 1, and Dxy Medical Di-
alogue dataset 2.

1http://www.sdspeople.fudan.edu.cn/zywei/data/acl2018-mds.
zip

2https://github.com/HCPLab-SYSU/Medical DS
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Method Infantile Dyspepsia Upper Bronchitis Overall
diarrhea respiratory

infection

SVM-ex 0.89 0.28 0.44 0.71 0.59
SVM-ex&im 0.91 0.34 0.52 0.93 0.71
Basic DQN - - - - 0.65

DQN + relation branch 0.92 0.35 0.49 0.93 0.70

Our best result 0.88 0.62 0.72 0.67 0.73

Table 1: Performance comparisons on Muzhi dataset.

Method Accuracy Ave turns Match rate

Basic DQN(Liu et al. 2018) 0.731 3.92 0.110
Sequicity (Lei et al. 2018) 0.285 3.40 0.246

KR-DS(Xu et al. 2019) 0.740 3.36 0.267

pretrained LSTM 0.643 3.47 0.132
Vanilla PG 0.731 3.11 0.212
PG + MI 0.749 2.76 0.159

PG + GAN 0.758 3.4 0.205
PG + MI-GAN 0.769 2.68 0.179

Table 2: Performance comparisons with the state-of-art
methods on Dxy dataset.

MuZhi Medical Dialogue Dataset. The MuZhi dataset
is constructed by (Liu et al. 2018), the data is collected
from the pediatric department in a Chinese online healthcare
website3, which is a popular website for users to consult doc-
tors online. Usually, the patient will provide a self-report to
show his or her basic information. The doctor will then initi-
ate a dialogue to gather more information and inference the
possible disease based on self-report and the conversation.
The doctor can obtain additional symptoms during the con-
versation, which are not mentioned in the self-report. For
each patient, there is a final diagnosis given by the doctor,
which is defined as the label. The dataset defines the symp-
toms from self-reports as explicit symptoms and those from
the dialogue between patients and doctors as implicit symp-
toms. This dataset contains 710 user goals and 66 symptoms,
with four kinds of labeled diseases, including upper respira-
tory infection, children functional dyspepsia, infantile diar-
rhea, and children’s bronchitis. The dataset is labeled with
the symptom phrases in both self-reports and conversational
data by three annotators.

Dxy Medical Dialogue Dataset. The Dxy Dialogue
dataset is collected from another Chinese online healthcare
community4 where users asking doctors professional medi-
cal advice. This dataset contains 527 conversational data in
total. There are 423 conversational data to be selected as the
training set, and 104 for testing. (Xu et al. 2019) annotate the
dataset with five types of diseases, including allergic rhini-
tis, upper respiratory infection, pneumonia, children hand-
foot-mouth disease, and pediatric diarrhea. The dataset ex-
tracts the symptoms that appear in self-reports and conver-
sation. All the symptoms are normalized into 41 symptoms.
The self-reports and raw conversations are labeled with four
annotators who have a medical background. Similar to the
MuZhi dataset, symptoms appearing in self-reports are de-

3https://muzhi.baidu.com
4https://dxy.com/

fined as explicit symptoms while the others are implicit
symptoms. The diseases of each medical diagnosis conver-
sation are automatically extracted from the website.

Experiment Setup

Evaluation Metrics. The evaluation metrics contains di-
agnosis accuracy, average request turns and match rate,
which is consistent with the previous work (Liu et al. 2018;
Xu et al. 2019). Diagnosis accuracy and average turns are
significant metrics. An excellent doctor can make a correct
diagnosis in just a few rounds of consultation. The match
rate, to some extent, is important, while the high match rate
is not equivalent to high accuracy.

Training Setting. Our dialogue system has a generator
Gθ, an evaluation discriminator Dψ and an inference en-
gine Dφ. All the parameters are initialized with normal dis-
tribution N (0, 0.01), and all neural network are train with
the Adam optimizer (Kingma and Ba 2014). For the train-
ing of the generator Gθ, we pre-train the LSTM model in a
language model method, which iteratively predicts the next
symptom tokens. The batch size for pre-training LSTM is
128. The pre-training learning rate is set to 0.01. Then we
use the pre-trained generator Gθ to make roll-outs to gener-
ate fake symptom sequences. In the architecture of GANs,
the training set for the discriminator Dψ is comprised of
the generated examples with the label 0 and the instances
from trainset with the label 1. For the training of GANs and
policy network, we use the REINFORCE (Williams 1992)
algorithm. We update the generator parameters with the dis-
criminator’s output and mutual information as a reward. The
balance parameter λ is set to 0.5. The policy network Gθ
learning rate is set to 0.0001 while learning rate of discrim-
inator Dψ is set to 0.01. Meanwhile, we train the disease
inference engine Dφ by minimizing the cross-entropy loss
on training set. The learning rate of Dφ is 0.001, the batch
size is 64. The maximum turn T is set to 20. The threshold
τ of inference engine is 0.8. Generally, we train 100 epochs,
for every epoch the g-steps, d-steps, and k-steps in the Al-
gorithm 1 is set to 2, 1, 25, respectively. The deep learning
models are implemented in PaddlePaddle 5.

Experiment Results

Muzhi dataset. We first evaluate our proposed framework
on Muzhi dataset. (Liu et al. 2018) use the SVM to train
the “lower” and “upper” bound for this dataset. The basic
DQN gets the accuracy between the SVM-ex and SVM-ex
& im results. (Xu et al. 2019) use a knowledge-route branch
and a relation branch method to improve diagnosis accuracy.
Additional knowledge graph helps to increase the accuracy,
while our method does not need extra knowledge graph.
Therefore, we only compare our model with the DQN + re-
lation branch. The experiment results are shown in Table 1.
As shown in the table, our proposed method is superior to
other frameworks. Note that the above DQN based method
both have a bias on some disease, for they both get very
high accuracy on infantile diarrhea and bronchitis (0.92 and

5https://github.com/PaddlePaddle/Paddle
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0.93 respectively), while getting low accuracy on dyspepsia
and upper respiratory infection (0.35 and 0.49 respectively).
The reason behind this phenomenon is that their models fail
to ask the key symptoms which can distinguish the possi-
ble disease (i.e. the clinical manifestation of infantile diar-
rhea and bronchitis are similar). Our model uses the mutual
information reward to update the symptom generator, the
symptoms with differentiating capabilities are incentive to
be asked. Therefore, our model can achieve relatively higher
accuracy than others for all four kinds of disease.

Dxy dataset. We further evaluate our proposed framework
on Dxy dataset. We compare our work with the baseline
model and other state-of-art frameworks for medical dia-
logue system. To be consistent with their experiment results,
we use the extracted and normalized symptom tokens in
their works. As illustrated in Table 2, our proposed method
outperforms Basic DQN (Liu et al. 2018), Sequicity (Lei et
al. 2018) and Knowledge-Routed DQN (Xu et al. 2019) with
higher diagnosis accuracy and shorter average turns.

For the basic DQN method (Liu et al. 2018), the agent
only asks the symptoms with the largest positive reward,
which sometimes leads to inquiry unreasonable and repeated
symptoms. With the help of knowledge graph and pre-
calculated symptom-disease relations, (Xu et al. 2019) alle-
viates the problem of basic DQN. While knowledge-routed
based method can get a higher match rate, it cannot get high
accuracy with shorter request turns. (Xu et al. 2019) suggest
that higher matching rate is more reasonable, while using
high-frequency symptoms also lead to higher matching rate.
The essence is that the above dialogue generated policy is
updated with predefined and fixed reward. The intuition of
the reward is not clear, the training results can be varied in
different reward value. (Lei et al. 2018) performs worse on
this medical diagnosis task as they care more about the tran-
sition of dialogues while not considering the connections be-
tween symptom and disease.

Ablation Studies

To further demonstrate the effectiveness of our proposed
framework, we conducted a series of ablation studies on Dxy
medical dialogue dataset.

Pre-trained LSTM. Our symptom sequence generatorGθ
is pre-trained with an LSTM model via using the maximum
likelihood estimation (MLE) objective. For the sequence
generation, a maximum likelihood trained model is normally
regarded as the baseline.

Vanilla Policy Gradient. In our framework, the pre-
trained LSTM generator is then updated through policy gra-
dient with the reward (feedback) of the user simulator. Here
we use the predefined fixed reward. The reward for correct
and wrong diagnosis is R+ and R− respectively. The re-
ward for correct match is Rm and for repeated request is
Rr. We try different combinations of rewards, the best result
is shown in Table 2.

Policy Gradient with MI. To let the generator inquiry dis-
tinguished symptoms, which is significant when making a
differential diagnosis, we introduce mutual information (MI)

My baby feels a little stuffy in the past two days, and there is a saliva at the corner of his mouth. He always crying, 
, and spit milk is very powerful. A little blue around the mouth, no fever, normal bowel movements, normal feeding, 
sleeping less than before, once with running nose. Occasionally coughing, is this serious, what’s the problem?

T1, Agent: Has the baby been allergic?

      User: No, she has not.

T2, Agent: Does the baby have respiratory difficulty?

      User: Yes, she has.

T3, Agent: According to the above symptoms, I suggest 
      your baby may have a Pneumonia.

T1, Agent: Does the baby have expectoration?

      User: No, she has not.

T2, Agent: Does the baby have throat discomfort?

      User: No, she has not.

T4, Agent: According to the above symptoms, I suggest

T3, Agent: Does the baby have respiratory difficulty?

      User: Yes, she has.

your baby may have a Pneumonia.

Figure 4: Visualization of the results on our proposed frame-
work for Automatic Diagnosis. Red color indicates the ex-
plicit symptoms of the patient. Green color indicates the
matched symptoms while orange color indicates the symp-
toms failed to match. Blue color indicates the predicted di-
agnosis. The top table is the user self-report from the Dxy
dataset. The left table is the results from PG+GAN, while
the right one is from PG+MI-GAN.

as the reward to update the symptom generator. The mutual
information reward is calculated through the Eq.(7).

Policy Gradient with GAN. To let the generated symp-
tom sequence appear to be natural, and not request strange
symptoms, our work uses the discriminator’s output proba-
bility as a reward to update the inquired policy, the reward is
computed by the Eq.(2)

Policy Gradient with MI and GAN. Finally, we put all
the components together. On the one hand, we want the in-
quired symptom with differentiating capabilities, and on the
other hand, we want the generated sequence to be natural
without strange or unreasonable symptom. Therefore, we
update the generator with the mixed reward from discrim-
inator reward and mutual information reward by Eq.(8).

The results are shown in Table 2. From the table, we can
see that the performance of MLE based pre-trained LSTM
is the worst. Because there is no direct instruction to tell the
model what is the correct diagnosis. There is no interaction
between the patient and the model. The results of the policy
gradient method are similar to DQN, for the reason, it only
has fixed the reward. The performance of PG+MI is superior
to the vanilla PG, because the reward given by maximizing
mutual information from disease distribution, can encourage
the model to request the critical symptoms.

With the help of GANs, we can utilize the output of dis-
criminator to evaluate the current generated sequence is real
or fake. It can learn the latent inquiry patterns, the reward
encourages the model to request symptoms in a way similar
to a doctor. The final result shows that the GAN+MI based
policy gradient framework is superior to all others, which
get higher diagnosis accuracy with shorter average turns. As
shown in Fig 4, both PG+GAN and PG+MI-GAN methods
can make a correct diagnosis, and request the key symp-
tom (respiratory difficulty), while the PG+MI-GAN method
takes shorten turns.
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Conclusions

In this work, we propose a Generative Adversarial reg-
ularized Mutual information Policy gradient framework
(GAMP) for automatic diagnosis which aims to make a bet-
ter medical dialogue system with higher diagnosis accuracy
and less interactive turns with the user. First, we propose
a new technique, called generative adversarial regularized
policy gradient, to optimize the diagnosis system, which
tries to avoid inquiring unreasonable symptoms deviate from
the doctor’s common diagnosis paradigm. Second, we de-
vise a mechanism to add mutual information as a part of
the reward function. Experiment evaluations on two public
datasets have confirmed the validity of our proposed method.
It not only can improve the accuracy of diagnosis but also
can use less inquires to make a diagnosis decision.
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