
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Generate (Non-Software) Bugs to Fool Classifiers

Hiromu Yakura,1,2∗ Youhei Akimoto,1,2 Jun Sakuma1,2

1University of Tsukuba, Japan
2RIKEN Center for Advanced Intelligence Project, Japan

hiromu@mdl.cs.tsukuba.ac.jp, {akimoto, jun}@cs.tsukuba.ac.jp

Abstract

In adversarial attacks intended to confound deep learning
models, most studies have focused on limiting the magnitude
of the modification so that humans do not notice the attack.
On the other hand, during an attack against autonomous cars,
for example, most drivers would not find it strange if a small
insect image were placed on a stop sign, or they may overlook
it. In this paper, we present a systematic approach to gener-
ate natural adversarial examples against classification models
by employing such natural-appearing perturbations that imi-
tate a certain object or signal. We first show the feasibility of
this approach in an attack against an image classifier by em-
ploying generative adversarial networks that produce image
patches that have the appearance of a natural object to fool
the target model. We also introduce an algorithm to optimize
placement of the perturbation in accordance with the input
image, which makes the generation of adversarial examples
fast and likely to succeed. Moreover, we experimentally show
that the proposed approach can be extended to the audio do-
main, for example, to generate perturbations that sound like
the chirping of birds to fool a speech classifier.

1 Introduction
Despite the great success of deep learning in various fields
(LeCun, Bengio, and Hinton 2015), recent studies have
shown that deep learning methods are vulnerable to adver-
sarial examples (Szegedy et al. 2014; Goodfellow, Shlens,
and Szegedy 2015). In other words, an attacker can make
deep learning models misclassify examples by intention-
ally adding small perturbations to the examples, which are
referred to as adversarial examples. Following a study by
Szegedy et al. (2014) on image classification, adversarial ex-
amples have been demonstrated in many other domains, in-
cluding natural language processing (Jia and Liang 2017),
speech recognition (Carlini and Wagner 2018), and mal-
ware detection (Grosse et al. 2017). Moreover, some studies
(Eykholt et al. 2018; Chen et al. 2018) have demonstrated
a practical attack scenario based on adversarial examples to
make autonomous driving systems misclassify stop signs by
placing stickers on them.
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Figure 1: Because road signs are commonly located outside,
adding a bug image to such a sign is more natural than per-
turbing with an arbitrary pattern and is more difficult to no-
tice.

These adversarial examples are most commonly gener-
ated by perturbing the input data, in a way that limits the
magnitude of the perturbation so that humans do not no-
tice the difference between a legitimate input sample and an
adversarial example. When image classification models are
attacked, regularization by L2- or L∞-norm is often used
to make the generated adversarial examples unnoticeable
to humans. In another approach, some studies (Xiao et al.
2018; Zhao, Dua, and Singh 2018) introduced generative ad-
versarial networks (GAN) (Goodfellow et al. 2014) to pre-
pare adversarial examples that are likely to appear as natural
images. In these methods, GAN is used to generate adver-
sarial examples that are close to the distribution of pre-given
natural images.

One drawback of the GAN-based approach is that natu-
ral adversarial examples do not always necessarily resemble
the input or natural images in some attack scenarios. For ex-
ample, to attack autonomous cars, placing small bugs on a
stop sign would be more natural than modifying the entire
sign, as shown in Figure 1. More generally, by overlaying a
perturbation that imitates a natural object consistent with the
attack scenario on part of the input image, we can create ad-
versarial examples less likely to be noticed. Such a strategy
can be extended to domains other than images, for exam-
ple, to attack speech classification models by generating a
perturbation that sounds like environmental noise.

Given the widespread use of image classification and
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speech recognition in real-world applications to replace hu-
man involvement, it is important to analyze such gaps be-
tween these models and human perception. In particular, if
we can investigate them systematically, it would be possible
to design models and training processes to overcome such
gaps automatically.

In this paper, we propose a systematic approach to gener-
ate natural adversarial examples against classification mod-
els by making perturbations that mimic objects or sound
signals that are unnoticeable. In this method, we use GAN
to generate perturbations so that they imitate collections of
reference objects or signals while fooling the target model.
Here, because the attack against an image classifier uses a
perturbation that is small in relation to the overall image,
it is expected that the classification results from the model
would be affected not only by the content of the perturbation
but also by its location in the image. In other words, optimiz-
ing the location can increase the success rate of the attack,
but it has the problem that the gradient at the location easily
vanishes. Thus, we also introduce a policy gradient method
(Sehnke et al. 2010), which is typically used for reinforce-
ment learning, to optimize the location without a gradient.

To confirm the effectiveness of the proposed method, we
first conducted experiments with a road sign classifier and an
ImageNet classifier. The results confirmed that the obtained
adversarial examples could fool an ImageNet classifier, even
with bug image perturbations measuring 32 × 32 pixels, by
optimizing the placement location. Moreover, we demon-
strate that the proposed approach can also be applied to a
speech command classifier with a perturbation that sounds
like the chirping of birds. This paper presents a new strategy
for creating unnoticeable adversarial attacks that manipulate
the content of the perturbation to match the attack scenario.

2 Background
As explained in Section 1, most approaches use optimization
algorithms to generate adversarial examples. Let us consider
a scenario in which an attacker wishes to modify input image
x so that the target model f classifies it with the specific la-
bel t. The generation process can be represented as follows:

v̂ = argminv Lf (x+ v, t) + ε ‖v‖ , (1)

where Lf denotes a loss function that represents how distant
the input data are from the given label under f and v �→ ‖v‖
is a norm function to regularize the perturbation so that v
becomes unnoticeable to humans. Then, x + v̂ is expected
to form an adversarial example that is classified as t while it
looks similar to x.

Earlier approaches, such as Szegedy et al. (2014) and
Moosavi-Dezfooli, Fawzi, and Frossard (2016), used L2-
norm to limit the magnitude of the perturbation. In contrast,
Su, Vargas, and Sakurai (2017) used L0-norm to limit the
number of modified pixels and showed that even modifica-
tion of a one-pixel could generate adversarial examples.

More recent studies introduced GAN instead of directly
optimizing perturbations (Xiao et al. 2018; Zhao, Dua, and
Singh 2018) for the purpose of ensuring the naturalness
of adversarial examples. For example, Xiao et al. (2018)
trained a discriminator network to distinguish adversarial

examples from natural images so that the generator network
produced adversarial examples that appeared as natural im-
ages. Given the distribution px over the natural images and
the trade-off parameter α, its training process can be repre-
sented similarly to that in Goodfellow et al. (2014) as fol-
lows:

minG maxD Ex∼px [logD (x)]

+Ex∼px [log (1−D (x+ G (x)))]

+αEx∼px [Lf (x+ G (x), t)] . (2)
Then, we can obtain the generator network G that outputs a
perturbation over the entire region of the input image so that
the overlaid image fools the target model.

However, we want to generate adversarial examples by
placing small objects in the image, not by modifying the en-
tire image. In that respect, Brown et al. (2017) proposed an
adversarial patch, which changes the classification results by
placing the patch at an arbitrary location in the input image.
Given that A (p,x,θ) represents an operation of placing a
patch p in image x with the location and rotation specified
by the parameter θ, its generation process is represented as
follows:

p̂ = argminp Eθ∼pθ
[Lf (A (p,x,θ), t)] , (3)

where pθ is the distribution of all possible locations and rota-
tions. We note that this method generates patches with ignor-
ing the attack context, and thus the resulting patches appear
to be arresting artifacts that would be instantly recognized
by humans.

In contrast, Sharif et al. (2016) proposed an attack against
a face recognition model by generating perturbations within
a fixed frame that look like eyeglasses. As a result, the per-
son in their adversarial example appears to wear glasses with
a strange pattern. Though their approach for making the at-
tack inconspicuous is quite similar to our idea, they only fo-
cused on the shape of the perturbation, not its content. Thus,
the application of their method is limited to cases in which
a strange pattern is acceptable, such as using eccentrically
colored eyeglasses to attack a facial recognition model. In
addition, this method requires human attackers to design the
shape and location of the frame specifically and is not appli-
cable to the audio domain.

Based on the articles reviewed above, we concluded that
existing methods minimize the perceptibility by humans
mainly by focusing on limited aspects of a perturbation, such
as its magnitude or size. In contrast, our approach focuses
on the content of perturbations themselves and makes them
hard to notice by imitating a natural object or signal, such as
bug images or bird songs, to disguise the deception. In ad-
dition, unlike Sharif et al. (2016), the proposed method can
be systematically used in a wide range of attack scenarios
because the GAN can mimic arbitrary objects. We believe
that a new strategy of unnoticeable attacks can be created
by manipulating the content of the perturbations to conform
with the attack situation.

3 Proposed Method
In this paper, we propose a method to generate adversarial
examples by placing small perturbations that look similar to
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a familiar object, such as bugs. We propose two approaches
to cover a wide range of attack scenarios. The first one is a
patch-based method, which makes the obtained adversarial
examples robust against different placement locations. The
second one is based on the policy gradient method, which is
designed to increase the success rate instead of preserving
the robustness of the location change.

3.1 Patch-based Method
As described in Section 2, Xiao et al. (2018) presented a
method for making the adversarial examples similar to natu-
ral images of any class. Our method extends their approach,
shown in Equation (2), so that the obtained perturbations be-
come similar to certain reference images (e.g., bug images).

At the same time, our method has a degree of freedom
with regard to the location to place perturbations, unlike that
embodied in Equation (2), because our aim is not to modify
the entire region but to overlay small patches. Thus, inspired
by Brown et al. (2017), we introduce a mechanism to make
the perturbations robust against changes in location for the
same manner as that in Equation (3). In other words, given
that pv represents a distribution over the reference images
of the specific object, the proposed method is presented as
follows:

min
G

max
D

Ev∼pv [logD (v)] + Ez∼pz [log (1−D (G (z)))]

+αEz∼pz,θ∼pθ
[Lf (A (G (z),x,θ), t)] , (4)

where pz represents the prior distribution for the genera-
tor network in the same manner used in Goodfellow et al.
(2014).

3.2 PEPG-based Method
Section 3.1 introduced Equation (4) to produce a perturba-
tion that works without regard to the location in which it
is placed. However, compared to Equation (3), its objective
variable is changed from the patch itself to the parameter
of the network generating the patch. Considering such com-
plexity, the generation process of adversarial examples by
the patch-based method is expected to be much harder to
deal with.

Therefore, we then optimize the location of perturbations
using the policy gradient method, as mentioned in Section 1.
This is based on the observation that image classification
models often leverage local information in the input image
(Ng, Yang, and Davis 2015). In other words, it suggests that
an optimal perturbation location exists for each input image
to fool the target model. If we can find such a location, the
generation process would become easier.

One potential approach is to use a subdifferentiable affine
transformation (Jaderberg et al. 2015). In other words, we
optimize the parameter of the affine transform to apply it to
the perturbation instead of optimizing the location directly.
However, this idea is not applicable to our situation because
the gradient of the parameter is almost zero. This can be un-
derstood by the fact that a very small change in the parame-
ter places the perturbation in the same location. That is, the
output probability from the target model is not affected by a

Algorithm 1 PEPG-based adversarial example generation
Hyperparameters: the batch size m, the importance of
the loss from the target model α, the step size of PEPG β,
and the initial value of the distribution in PEPG μinit,σinit
Initialize μ = μinit,σ = σinit
repeat

// Training of the discriminator
• Sample m noises {z(1), . . . , z(m)} from pz

• Sample m examples {v(1), . . . ,v(m)} from pv
• Update the parameter of the discriminator using

the following gradient:

∇ 1
m

m∑

i=1

[
logD (

v(i)
)
+ log

(
1−D (G (

z(i)
)))]

// Generation of adversarial examples
• Sample m noises {z(1), . . . , z(m)} from pz
• Sample m location and rotation parameters

{θ(1), . . . ,θ(m)} from N (μ,σ)

• Create adversarial examples for i = 1, . . . ,m:
x̃(i) =

(
A
(G (

z(i)
)
,x,θ(i)

))

// Training of the generator
• Calculate loss value for the adversarial examples

�(i) = Lf

(
x̃(i), t

)
for i = 1, . . . ,m

• Update the parameter of the discriminator using
the following gradient:

∇ 1
m

m∑

i=1

[
log

(
1−D (G (

z(i)
)))

+ α�(i)
]

// Training of the PEPG distribution
• Update μ and σ using {−�(1), . . . ,−�(m)} as the

rewards and 1
m

∑m
i=1 −�(i) as the baseline reward

based on the PEPG algorithm
until a sufficient number of adversarial examples recog-
nized as t are generated

small change, consequently, producing zero gradient for the
parameter.

Therefore, we use a parameter-exploring policy gradient
(PEPG) method (Sehnke et al. 2010) to optimize the location
and rotation of the perturbation. This method assumes the
distribution over the parameters and trains the hyperparame-
ters of the distribution instead of the parameters themselves.
The advantage of the method is that it can explore a wide
range of parameters in addition to not needing the gradients
of the parameters.

When using the PEPG method, our method initially ap-
plies various locations sampled from the prior Gaussian dis-
tribution. Then, based on the loss value from the target
model during the trials, it gradually updates the hyperparam-
eters so that the locations with small losses are likely to be
sampled from the distribution. By doing so, we can train the
hyperparameters and the generator network simultaneously.

The detailed process is shown in Algorithm 1. Here, we
used symmetric sampling and reward normalization in the
PEPG to accelerate convergence, as suggested by Sehnke et
al. (2010).
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Figure 2: Examples of moth images generated by the pre-
trained GAN.

Figure 3: Examples of adversarial examples that made the
road sign classifier recognize them as “Speed Limit 80.”

4 Experimental Results
To test our approaches, we first performed a preliminary ex-
periment with a road sign classifier to investigate the feasi-
bility of the proposed methods. Then, we conducted an ex-
periment with an ImageNet classifier to confirm the avail-
ability of the methods against a wide range of input images
and target classes. In both experiments, we compared the
patch-based and PEPG-based methods1.

For the architecture of the GAN, we used WGAN-GP
(Gulrajani et al. 2017) and changed the size of the output
perturbations among 32 × 32, 64 × 64, and 128 × 128 pix-
els to evaluate the effect of the perturbation size. For all
tests, we used an image dataset of moths from Costa Rica
(Rodner et al. 2015) for the reference images, that is, pv in
Equation (4), to make the perturbations look like moths. To
ensure the stability of the training, we pretrained the GAN
without the loss value from the target model and confirmed
that it outputs moth-like images, as shown in Figure 2.

4.1 Road Sign Classifier
We first explored the feasibility of the proposed methods
with a road sign classifier trained on the German Traffic Sign
Recognition Benchmark (Stallkamp et al. 2012), as done by
Eykholt et al. (2018). We used their convolutional neural
network-based classifier for the target model2, which was
reported to show 95.7% accuracy. For the input image, we

1The source code for both experiments is available at https://
github.com/hiromu/adversarial examples with bugs.

2https://github.com/evtimovi/robust physical perturbations

Figure 4: Success rate for each combination of perturbation
size and generation approach against the ImageNet classi-
fier.

used the same images of stop signs measuring 256×256 pix-
els and tried to make them be recognized as Speed Limit 80
in the same manner as done by Eykholt et al. (2018). Regard-
ing each combination of the perturbation size and generation
approach, we examined whether we could obtain adversarial
examples in a given number of iterations.

The obtained adversarial examples are presented in
Figure 3. The result indicates that the success of the gener-
ation highly depends on the size of the perturbation; that is,
we could not generate an adversarial example after 20,000
iterations when the perturbation size was limited to 32× 32.
This corresponds to the result from Brown et al. (2017): the
larger the adversarial patch becomes, the higher the success
rate became.

By comparing the patch-based and PEPG-based methods,
we found that the PEPG-based method took much less time.
For example, in the case of 128 × 128 pixels, the PEPG-
based method took about 6 minutes and 753 iterations to
generate 100 adversarial examples, whereas the patch-based
method took about an hour and 5,340 iterations. This differ-
ence suggests that optimization of the location and rotation
of the perturbation helps achieve success by finding the sen-
sitive region of the input image.

4.2 ImageNet Classifier
We then evaluated the proposed methods using an Inception-
V3 classifier (Szegedy et al. 2016) pretrained on ImageNet,
which is distributed by TensorFlow3. For the combination of
the input image and target class, we used the same tasks as
the NIPS ’17 competition on adversarial examples (Kurakin
et al. 2018). Here, because the proposed methods involve
a training process for each combination and require some
time, we selected the first 50 tasks.

In the same manner described in Section 4.1, we exam-
ined whether we could obtain 100 adversarial examples in
50,000 iterations for each combination of perturbation size

3https://github.com/tensorflow/models/tree/master/research/
slim
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Figure 5: Average number of iterations required to generate
100 successful adversarial examples.

Figure 6: Examples of adversarial examples generated
against the ImageNet classifier.

and generation approach. Then, we compared the success
rate over 50 tasks and the average number of iterations in
successful cases.

The results are shown in Figure 4 and Figure 5. Some im-
ages of the obtained adversarial examples are also shown in
Figure 6. We confirmed that the larger size of the perturba-
tion helps the generation of adversarial examples; that is, it
increases the success rate and decreases the required number
of iterations.

We also confirmed that the optimization of the perturba-
tion location by the PEPG algorithm helps the generation.
In particular, the PEPG-based method succeeded in generat-
ing adversarial examples with perturbations of only 32× 32
pixels in five tasks, whereas the patch-based method com-
pletely failed. In addition, in the case of 128 × 128 pixels,
the PEPG-based method succeeded in generating 100 ad-

Figure 7: Ratio of samples crafted by random relocation of
the perturbations and classified into the target label.

versarial examples for 49 tasks. We also note that, in the
remaining (50th) task, our method could not generate 100
examples within 50,000 iterations but obtained 91 adversar-
ial examples. From these points, the proposed approach of
optimizing the location is shown to be effective for increas-
ing the success rate.

4.3 Analysis

In this section, we analyze characteristics of the proposed
method based on the above results and additional investiga-
tions. We first examine the robustness of the perturbations
obtained by the patch-based method. Then, we examine the
effectiveness of the PEPG algorithm for the successful gen-
eration.

Robustness of the Patch-based Perturbations As dis-
cussed in Section 3.1, the patch-based method generates per-
turbations that are robust against change in location. Thus,
it is expected that we can produce new adversarial exam-
ples by relocating the perturbations in a fashion similar to
that described in Brown et al. (2017). We tested the idea
by crafting 10 samples from each adversarial example ob-
tained as described in Section 4.2 with a random relocation
and verifying their classification result.

Figure 7 shows the success rate for adversarial example
multiplication, that is, the ratio of the crafted samples that
are classified to the same target label as the original adver-
sarial example. These results suggest that the perturbations
obtained by the patch-based method are more robust than the
results for the PEPG-based method. In particular, we found
that successful samples among the adversarial examples ob-
tained by the patch-based method (Figure 8) have pertur-
bations in various locations, whereas the samples obtained
from the PEPG-based method (Figure 9) exhibit a limited
number of successful cases where the perturbation location
is similar to that in the original adversarial examples. We
note that a success rate is roughly comparable to the adver-
sarial patch (Brown et al. 2017), which showed the success
rate of about 20% when modifying 3% of the pixels in the
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Figure 8: Examples of successful samples crafted from ad-
versarial examples obtained by the patch-based method.

Figure 9: Examples of successful samples crafted from ad-
versarial examples obtained by the PEPG-based method.

image4, although the proposed method uses a GAN to gen-
erate perturbations instead of optimizing them directly.

Effectiveness of the PEPG Algorithm We confirmed that
the perturbations obtained by the PEPG-based method show
limited robustness regarding the relocation. Conversely, it
implies that the PEPG algorithm successfully finds the lim-
ited area where the perturbation functions as an adversarial
example. For example, in Figure 6, we found that all adver-
sarial examples obtained by the PEPG-based method have
perturbations in similar locations in the same input image.

Thus, we examined how the classification results are
changed when we move the perturbations to a different lo-
cation. The heatmaps of Figure 10 show the confidence that
the image obtained by shifting the center of the perturbation

4The perturbation of 64 × 64 pixels accounts for only 4.6% of
the image of 299× 299 pixels.

Figure 10: Confidence of the target label obtained when the
center of the perturbation is shifted to each pixel.

to each pixel is classified as the target label. The results con-
firm that the PEPG algorithm successfully finds the limited
location where the perturbation functions as an adversarial
example, especially when the perturbation is small.

In addition, we compared these adversarial examples with
the activation heatmaps of the corresponding input image
obtained by Grad-CAM (Selvaraju et al. 2017), which shows
the class-discriminative regions. The results are shown in
Figure 11. We found that the perturbations were placed near
the most discriminative regions in the input images, regard-
less of the size of the perturbations. These analyses support
the effectiveness of the PEPG-based method for optimizing
the perturbation placement, which would contribute to its
higher success rate compared to the patch-based method, as
presented in Section 4.2.

In summary, our analysis suggests the existence of some
trade-off between the robustness and the success rate when
applying the patch-based and PEPG-based method, as dis-
cussed in Section 3. In other words, we can choose an ap-
propriate method from them to fit different attack situations.

5 Application: Audio Adversarial Example
In this paper, we presented a new approach for generating
adversarial examples by making perturbations imitate a spe-
cific object. Up to this point, we discussed attacks that target-
ing image classification models, but this idea can be applied
to other domains. For example, if we can generate an ad-
versarial example that fools speech recognition models but
sounds like the chirping of small birds, we would be able
to control personal assistants based on speech interactions
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Figure 11: Comparison between the activation maps of the
input image and the location of the perturbation optimized
by the PEPG-based method.

(e.g., Siri or Google Assistant) without being noticed by hu-
mans. To investigate the potential of the proposed approach,
we tested whether we can generate such audio adversarial
examples using GAN in the same manner as used for im-
ages (Section 3).

As with image adversarial examples, there are many pro-
posed methods for generating audio adversarial examples
(Alzantot, Balaji, and Srivastava 2017; Carlini and Wag-
ner 2018; Yakura and Sakuma 2019; Schönherr et al. 2019).
For example, Alzantot, Balaji, and Srivastava (2017) gener-
ated adversarial examples against a speech command clas-
sifier and attained a success rate of 87%. Carlini and Wag-
ner (2018) proposed a generation method that targets Deep-
Speech (Hannun et al. 2014) by extending their previous
work (Carlini and Wagner 2017b) from image adversarial
examples. Yakura and Sakuma (2019) realized a physical at-
tack against DeepSpeech by simulating noise and reverber-
ation in the physical world during audio generation. With
respect to perceptibility by humans, Schönherr et al. (2019)
optimized less noticeable perturbations by exploiting a psy-
choacoustic model. However, none of them tried to manipu-
late the content of the perturbation to match the attack sce-
nario, such as camouflaging the perturbation with environ-
mental noise like birds chirping.

5.1 Settings

For the target model, we used the same speech command
classifier (Sainath and Parada 2015) as Alzantot, Balaji, and

Srivastava (2017), which is distributed by TensorFlow5. We
employed the architecture WaveGAN (Donahue, McAuley,
and Puckette 2019), which is based on WGAN-GP (Gulra-
jani et al. 2017), to generate perturbations6.

For the reference audio, we used the VB100 Bird Dataset
(Ge et al. 2016) to make perturbations that sounded like
chirping birds. The generated perturbations were added to
one of two audio clips from the Speech Commands Dataset
(Warden 2018), which says “yes” or “no.” Then, we exam-
ined whether the obtained adversarial examples were classi-
fied as the target label; in this case, we chose “stop” among
12 labels of the model output that included ”yes” and ”no.”

5.2 Results
We succeeded in generating adversarial examples that were
classified as “stop,” although they sound like someone say-
ing “yes” or “no” with chirping birds in a background.
Some of the obtained adversarial examples are available at
https://yumetaro.info/projects/bugs-ae/.

We also conducted a listening experiment with 25 human
participants using Amazon Mechanical Turk in a manner
similar to that in Alzantot, Balaji, and Srivastava (2017).
First, we presented two obtained adversarial examples made
from the clips saying “yes” and ”no” and asked the partic-
ipants to write down the words they heard. Then, we asked
them to write down anything abnormal that they detected.
The responses are summarized as follows:

• For the transcription tasks:
– All participants transcribed the contents of the origi-

nal clips.
– No participant identified the target word.

• In the collected comments:
– Six participants noted the existence of birds chirping

in the background.
– No participant felt suspicious about the clips.

These responses suggest that the proposed approach for
making perturbations mimic unnoticeable objects also
works in the audio domain and has very low perception for
humans.

6 Limitations and Future Directions
While our results confirmed the effectiveness of the new ap-
proach of generating adversarial examples by making per-
turbations imitate a specific object or signal, there are still
some limitations. In particular, though we experimentally
investigated the effectiveness of the PEPG-based method in
Section 4.3, its theoretical background is still unclear. One
possible clue would be a transition of the reward of the
PEPG algorithm, considering that literature on reinforce-
ment learning often use it to examine the training process
in detail.

5https://www.tensorflow.org/tutorials/sequences/audio
recognition

6The source code is available at https://github.com/hiromu/
adversarial examples with bugs.
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In this respect, further investigations are needed to clar-
ify the prospects of this new idea of applying the PEPG
algorithm to the generation of adversarial examples. For
example, though we fixed the size of the perturbations in
Section 4, it would be possible also to optimize the size if
we can design an appropriate penalty term. For the audio ad-
versarial examples, the start timing of synthesizing the per-
turbation can be optimized so as to find the best position to
hide the birds chirping.

The discussion of the attack scenarios is also an impor-
tant research direction. As discussed in Section 1, the pro-
posed approach can increase the magnitude of the pertur-
bation without being noticed by humans. Given that many
defense methods have been defeated with a relatively small
magnitude of the perturbation (Carlini and Wagner 2017a),
this approach potentially opens up further attack possibili-
ties, which we must discuss to ensure the safety of socio-
technical systems based on machine learning.

7 Conclusion
In this paper, we proposed a systematic approach for gen-
erating natural adversarial examples by making perturba-
tions imitate specific objects or signals, such as bugs im-
ages. We presented its feasibility for attacking image classi-
fiers by leveraging GAN to generate perturbations that imi-
tated the reference images and fooled the target model. We
also confirmed that the optimization of the perturbation lo-
cation using the PEPG algorithm led to the successful gener-
ation of adversarial examples. Furthermore, we experimen-
tally showed that the proposed approach could be extended
to the audio domain, such as generating a perturbation that
sounds like the chirping of birds. Our results provide a new
direction for creating natural adversarial examples by ma-
nipulating the content of the perturbation instead of trying
to make the perturbation imperceptible by limiting its mag-
nitude.
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