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Abstract

Human Activity Recognition (HAR) is an important appli-
cation of smart wearable/mobile systems for many human-
centric problems such as healthcare. The multi-sensor syn-
chronous measurement has shown better performance for
HAR than a single sensor. However, the multi-sensor set-
ting increases the costs of data transmission, computation
and energy. Therefore, the efficient sensor selection to bal-
ance recognition accuracy and sensor cost is the critical chal-
lenge. In this paper, we propose an Instance-wise Dynamic
Sensor Selection (IDSS) method for HAR. Firstly, we for-
malize this problem as minimizing both activity classifica-
tion loss and sensor number by dynamically selecting a sparse
subset for each instance. Then, IDSS solves the above min-
imization problem via Markov Decision Process whose pol-
icy for sensor selection is learned by exploiting the instance-
wise states using Imitation Learning. In order to optimize the
parameters of the activity classification model and the sen-
sor selection policy, an algorithm named Mutual DAgger is
proposed to alternatively enhance their learning process. To
evaluate the performance of IDSS, we conduct experiments
on three real-world HAR datasets. The experimental results
show that IDSS can effectively reduce the overall sensor num-
ber without losing accuracy and outperforms the state-of-the-
art methods regarding the combined measurement of accu-
racy and sensor number.

Introduction

Human Activity Recognition (HAR) aims to recognize an
individual’s daily activities, such as standing, walking and
cycling. There is a considerable demand for applying HAR
on wearable devices to understand human behavior and pro-
vide services like activity tracker (Tang et al. 2018), health-
care monitoring (Chen et al. 2017; Yu et al. 2015), assisted
rehabilitation (Mazilu et al. 2013), et al. To deal with the
complexity and variety of daily activities, HAR in real-world
environments requires multi-sensor synchronous measure-
ment, e.g., Body Sensor Networks (BSN), which contains
several sensors with different modalities and being worn on
different body parts. However, more sensors bring more cost
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of massive data transmission, cumbersome computational
load, and large energy consumption, which limits the op-
erational lifetime span (Kolamunna et al. 2016). Therefore,
to balance recognition accuracy and sensor number becomes
an emergent challenge for HAR.

Most existing HAR methods use a fixed set of sensors
for data acquisition, which either collects redundant sensors
for highly discriminable instances or obtains unsatisfactory
accuracy for confusing instances. There are a few works
on seeking a dynamic sensor selection method. Gordon et
al. (Gordon et al. 2012) propose a method which weights
the sensors to the target activities, and then decides which
sensors should be activated based on the recent prediction.
Some works in camera networks (Spaan and Lima 2009;
Satsangi, Whiteson, and Oliehoek 2015) solve the dynamic
sensor selection problem with a discrete state Partially Ob-
servable Markov Decision Process (POMDP). They merely
take one of the predefined states as input and return which
sensors should be active. These methods lack direct informa-
tion from the instance, and cannot make the desired perfor-
mance for balancing recognition accuracy and sensor num-
ber. Since sensor selection can be categorized into feature
selection, some methods (He, Daumé III, and Eisner 2012;
Karayev, Fritz, and Darrell 2013; Kolamunna et al. 2016) at-
tempt to build an MDP to decide which feature to select next
or whether to stop acquiring features and make a prediction.
Although selecting features dynamically within a timestep,
these methods condition the choice of one feature on the ob-
servation generated by another one. This setting is not feasi-
ble in the real-time HAR where all selected sensors must be
chosen simultaneously.

In this paper, we propose an effective method named
Instance-dependent Dynamic Sensor Selection (IDSS) for
HAR. Specifically, given a sequence of activity instances,
our goal is to select an appropriate subset of sensors for
each instance to predict the activity, so that recognition ac-
curacy and sensor number are balanced in a desired way.
We formalize the problem as seeking an activity classifica-
tion model and a sensor selection policy that minimizes an
objective function of overall classification loss and sensor
number. IDSS defines a continuous state MDP to address the
minimization problem, where the policy function for sensor
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selection is learned using Imitation Learning by building a
direct mapping between the sensors and the instance-wise
states. To optimize the parameters of the activity classifi-
cation model and the sensor selection policy, we propose an
algorithm named Mutual DAgger, where the two parts of pa-
rameters are alternatively trained with mutually augmented
data. Therefore, our main contributions can be summarized
as follows:
• We formalize a problem which finds an activity classifi-

cation model and a sensor selection policy to minimize an
objective function regarding classification loss and sensor
number.

• We propose IDSS to solve the minimization problem.
IDSS utilizes a continuous state MDP where Imitation
Learning is employed to model the policy function to de-
termine each sensor whether to activate by directly ex-
ploiting the information of the latest instance.

• IDSS unifies the parameters of the classification model
and the selection policy in one model and optimizes them
by the proposed Mutual DAgger which builds an alterna-
tive learning process with mutually augmented data.
To evaluate the performance of IDSS, we conduct exten-

sive experiments on three real-world HAR datasets. The re-
sults demonstrate that IDSS outperforms the state-of-the-art
methods regarding a combined measurement of recognition
accuracy and sensor number.

Related Works
Human Activity Recognition has been widely investigated
as an important topic in artificial intelligence. The devel-
opment of wearable technology and pervasive computing
prompts a substantial number of applications based on HAR
by enabling low cost, continuous and non-invasive mobile
sensing (Gravina et al. 2017). Most methods for HAR use all
the available sensors to gain a high recognition accuracy, but
a large number of sensors bring much resource consumption
in bandwidth, storage and power. As resources are limited
in mobile environments, how to balance the recognition ac-
curacy and resource consumption is one of the significant
problems for HAR.

Sensor selection, which can be categorized into feature se-
lection, is one of the effective ways to reduce consumption
without losing performance. Shen et al. (Shen and Varshney
2013) used a generalized Information Gain to select a fixed
set of sensors for target tracking. For recognizing the human
activity, some works (Aziz, Robinovitch, and Park 2016;
Ertuǧrul and Kaya 2017; Cheng et al. 2018) identified the
optimal number and position of sensors by determining the
relevancy ranks of the sensors through filtering methodol-
ogy. However, the goal of the fixed sensor selection is to
optimize the overall accuracy, which results in either col-
lecting redundant information for highly discriminable in-
stances or obtaining unsatisfactory accuracy for confusing
ones. Therefore, selecting sensors/features dynamically for
each instance has been proposed to gain a better trade-off
between accuracy and sensor number. Bloom et al. (Bloom,
Argyriou, and Makris 2013) pre-defined some feature sub-
sets and selected the best prediction to be the output. Zappi

et al. (Zappi et al. 2008) proposed a method to build a meta-
classifier for each sensor and select sensors according to
their contribution to classification accuracy. Gordon et al.
(Gordon et al. 2012) weighted the importance of each sen-
sor to the activities and only sampled those sensors which
were related to the potential activities. As dynamic sensor
selection in continuous HAR is a sequential decision pro-
cess, these methods use the immediate rewards to make the
decision cannot gain the desirable solution on the activity
sequence.

Many works regard this issue as a Markov Decision
Process. Some of them (Dulac-Arnold et al. 2011; He,
Daumé III, and Eisner 2012; Karayev, Fritz, and Darrell
2013; Trapeznikov and Saligrama 2013) conditioned the
choice of one sensor/feature on the observation genera-
tion by another sensor/feature within a timestep. In each
timestep, they assume that all the sensors/features are avail-
able and the MDP decides which sensor/feature to consider
or whether to stop acquiring and make the inference. How-
ever, in the real world, the observations of sensors are gen-
erated in parallel and all the selected sensors must be chosen
simultaneously. In this setting, other works build MDP along
with the timesteps instead of within a timestep. For target
tracking in camera networks, Spaan et al.(Spaan and Lima
2009) and Satangi et al.(Satsangi, Whiteson, and Oliehoek
2015) proposed to select camera sensors through Partially
Observable Markov Decision Processes which discretize the
continuous state (the position of target) to model the policy.
However, the state discretization is not feasible for wearable
sensors, and they do not take advantage of the direct infor-
mation of sensors.

Besides sensor selection, there are also some other tech-
niques for balancing the accuracy and sensor cost, e.g., adap-
tive sampling frequency (Cheng et al. 2018) and compres-
sive sensing (Wang et al. 2016), which are orthogonal to our
work. In this paper, we focus on reducing the number of
required sensors, which can work with the aforementioned
techniques.

Methodology

In this section, we first formalize the problem of balancing
activity recognition accuracy and sensor cost as minimizing
an objective function regarding classification loss and sensor
number. Then, we propose an Instance-wise Dynamic Sen-
sor Selection (IDSS) method for HAR, which recognizes the
activity based on the dynamic sensors selected by a contin-
uous state MDP.

Problem Formalization

Given K sensors in the system, there are (2K − 1) available
subsets of sensors to sample an instance for recognizing the
ongoing activity. Let z = 〈z1, . . . , zK〉 be a vector of K
binary elements, each of which specifies whether the cor-
responding sensor is selected or not. Let x be an instance
which contains a series of samples from all the sensors, and
y ∈ {1, 2, . . . ,m} be the activity label where m is the num-
ber of predefined activities. We define a sampling function
g(x, z) which returns an observed instance x̃ = g(x, z) by
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sampling x with the selected sensors. Given an x̃, we can
predict its label by a classification model parameterized by
θ and get the probabilities p ∈ [0, 1]m for m categories:

p = 〈p1, . . . , pm〉 (1)

where the y-th element py is the probability of the activity
y:

py = p(y|x̃;θ) (2)

Let Q = {(x(1), y(1)), (x(2), y(2)), . . . , (x(T ), y(T ))} be
a sequence of annotated activity instances, where T is the
horizon. On one hand, our goal is accurate activity recogni-
tion which means to optimize θ of the classification model
by minimizing the empirical loss; on the other hand, our goal
is to recognize activities with a minimal number of sensors
for reducing sensor cost.

We consider simultaneously the classification loss
L(ŷ(t); x̃(t),θ) and the sensor number ||z(t)||1 with a bal-
ance parameter λ to obtain an overall objective function:

min
θ,z(1),...,z(T )

T∑
t=1

L(ŷ(t); x̃(t),θ) + λ
||z(t)||1
K

(3)

where ŷ(t) = argmaxy p(y|x̃(t),θ) and L(∗) is a loss func-
tion, such as the cross-entropy in Neural Networks or the
hinge loss in SVM. The measurement of sensor number is
normalized into (0, 1]. λ is limited to [0, 1] for the dominant
effect of activity recognition accuracy. When λ = 0, the
problem is a conventional supervised learning issue; when
λ = 1, the sensor cost is emphasized as equally as the recog-
nition accuracy. In this work, cross-entropy is used for pre-
senting the classification loss, then Equation 3 can be further
rewritten as:

min
θ,z(1),...,z(T )

T∑
t=1

− log p(y(t)|x̃(t);θ) + λ
||z(t)||1
K

(4)

To optimize the defined objective function, there are two
parts of parameters to be learned, one of which is for activity
recognition and the other is for sensor selection.

Instance-wise Dynamic Sensor Selection (IDSS)

IDSS aims to select an appropriate sensor subset for each
incoming instance to make an accurate activity recognition.
As aforementioned, dynamic sensor selection is a sequence
of decisions. Inspired by the existing works, IDSS solves
the minimization problem of Equation 4 by employing a
Markov Decision Process. Considering that the diversity
exists not only among activities but also among instances
within one activity, it is essential to learn a policy π which
builds a direct mapping from the instance-wise states to the
sensor-selection actions. In this section, we define a contin-
uous state MDP and prove its feasibility to solve the for-
malized problem. Then, we employ Imitation Learning to
learn the policy function of MDP and propose an alternative
enhancement algorithm Mutual DAgger to optimize the pa-
rameters of the activity classification model as well as the
sensor selection policy.

The Markov Decision Process in IDSS
Let φ(x̃) ∈ R

d denotes the feature vector extracted from
x̃ = g(x, z) where d is the dimension. Since dynamically
selected sensors lead to an issue of various feature dimen-
sions, we use a unified length of the feature vector, and the
unobserved features are imputed by a constant value, e.g., 0.
We introduce the MDP as a tuple 〈S, A, T (·), R(·)〉:
• S is an infinite state space. Each state s ∈ S is defined as a

vector s = (φ(x̃),p) ∈ R
d+m, which is concatenation of

the extracted features and the activity probabilities. Under
this definition, s(t) = (φ(x̃(t)),p(t)) describes the system
state at the t timestep.

• A is a set of actions, each of which indicates which sen-
sors are selected. For brevity, we directly define A :=

{z}2K−1
1 .

• T (s′|s, z) is the transition probability function. Given a
state s ∈ S and an action z ∈ A, T (s′|s, z) indicates the
probability of the next state reached being s′ by taking the
action z. For the given instance sequence for training, the
transition of the states is defined as:

T (s′|s, z) =
{

1, s′ = s(t), s = s(t−1), z = z(t−1)

0, otherwise
(5)

• R(s) is the reward function. It represents a reward by vis-
iting a state s = (φ(x̃),p). Specifically, the reward func-
tion can be defined as:

R(s) = log p(y|x̃;θ)− λ
||z||1
K

(6)

where the selected sensors are implicitly contained in the
state. We define R(0) = 0 where 0 is a zero vector.

The dynamics of the MDP can be described as follows:
the system is started at an initial state s(0) = 0, and a first
action z(0) is chosen to decide which sensors are going to ac-
tivate and the others are deactivated. Then, the correspond-
ing sensors are sampled as the first instance x̃(1). With the
classification model to fetch p(1), the first state is stepped
into s(1) = (φ(x̃(1)),p(1)). After that, the system chooses a
second action z(1) based on s(1) by:

z(t) = argmax
z∈A

V (s(t)) (7)

where V is the value function of states, which is defined in
a recursive way:

V (s(t)) = R(s(t)) +

∫
s(t+1)

T (s(t+1)|s(t), z)V (s(t+1))

(8)
When t = T , V (s(T )) = R(s(T )). By taking the new

action, the system goes forward to the next state. The proce-
dure keeps repeating until the horizon. Finally, a trajectory
denoted by τ of state/action/reward is formed:

τ = s(0), z(0), r(0), s(1), z(1), r(1), . . . , s(T ), z(T ), r(T )

(9)
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where r(t) = R(s(t)). Thus, the total reward of the trajectory
is consequently defined as:

R(τ) =
T∑

t=1

r(t) = R(0) +

T∑
t=1

R(s(t)) (10)

The ultimate objective function of MDP is to make the
right decision on each action to build a trajectory with the
maximal total reward. Therefore, the objective function of
MDP can be written as:

max
z(1),...,z(T )

R(τ)

= max
z(1),...,z(T )

R(0) +

T∑
t=1

R(s(t))

= max
z(1),...,z(T )

T∑
t=1

R(s(t))

= max
z(1),...,z(T )

T∑
t=1

log p(y(t)|x̃(t);θ)− λ
||z(t)||1
K

⇐⇒ min
z(1),...,z(T )

T∑
t=1

− log p(y(t)|x̃(t);θ) + λ
||z(t)||1
K

By the deduction process, the goal of MDP that maximiz-
ing the total reward is equivalent to the original minimiza-
tion problem shown in Equation 4. In other words, MDP can
be used to solve the problem of balancing the recognition ac-
curacy and the sensor cost.

Modeling the policy in MDP by Imitation Learning
To model its policy function π which decides the action
based on the state, we find the optimal value of each state by
Bellman Equation (Bellman 1952) in a dynamic program-
ming manner:

V ∗(s(t)) = R(s(t)) +

max
z∈A

∫
s(t+1)

T (s(t+1)|s(t), a)V ∗(s(t+1))

(11)

Corresponding to V ∗, the optimal policy function π∗ re-
garding s is calculated as:

π∗(s) = argmax
z∈A

∫
s′
T (s′|s, z)V ∗(s′) (12)

Assuming we have a fixed classification model, we can
get a series of state-action pairs H = {(s, z)} by search-
ing through the activity sequence. The searching process is a
cumbersome task since the MDP is an NP-hard problem, and
the space of action increases exponentially with the num-
ber of available sensors. In this paper, we employ a greedy
maximization process whose error upper bound is proven by
Satsangi et al. (Satsangi, Whiteson, and Oliehoek 2015).

Since the instance-wise states of MDP are continuous and
infinite, the conventional tabular-based and state discretizing
methods are not applicable for modeling the policy. What’s

more, the transition of states is hard to model for those un-
seen activity sequences. As the obtained state-action pairs
are hindsight experienced, they can be regarded as demon-
strations observed by an expert. Thus, Imitation Learning by
classification, such as Behavioral Cloning (Osa et al. 2018),
is employed to learn a policy function π parameterized byψ
through minimizing the imitating loss:

min
ψ

E(s,z)∼H[− log p(z|s;ψ)] (13)

Instead of building a (2K − 1)-class classification, we de-
sign a K-output classifier by combining the binary classifi-
cation loss of each sensor together:

min
ψ

E(s,z)∼H[

K∑
k=1

− log p(zk|s;ψ)] (14)

which avoids some issues such as there may be some actions
never be chosen in H.

Mutual DAgger for parameter optimization
There are two parts of parameters to optimize in the pro-
posed IDSS: the classification model parameter θ and the
MDP policy parameterψ, which are influence by each other.
The conventional supervised learning is not desirable in
the dynamic sensor setting: on one hand, the classification
model θ should be fed various data sampled from differ-
ent sensor subsets; on the other hand, the selection policy ψ
should be able to recover from an error selection.

Inspired by the existing works, such as DAgger (Ross,
Gordon, and Bagnell 2011) which designs a data augmen-
tation process to enable the learned model recover from er-
rors. We propose an algorithm named Mutual DAgger which
builds a mutual data augmentation during the alternative
learning between the classification model and the selection
policy. Given ψ and a sequence of activity instances, a new
series of actions are made according to the action policy
of the defined MDP. Then, the entities with new features
Q′ = (x̃′, y) can be fetched to augment the training dataset
Q for θ by minimizing the surrogate loss:

min
θ

E(x̃,y)∼Q∪Q′ [− log p(y|x̃;θ)] (15)

In this way, θ is fine-tuned based on ψ. Alternatively,
given θ, more state-action pairs H are extracted based on
Equation 12. The new pairs provide new situations of states
which includes the potential error selections. By augmenting
its training dataset, ψ can be further fine-tuned by :

min
ψ

E(s,z)∼H∪H′ [
K∑

k=1

− log p(zk|s;ψ)] (16)

In MaxIter rounds, θ and ψ are optimized by the al-
ternative learning process. Up to now, the pseudo-code is
concluded in Algorithm 1.

IDSS Inference
After learning the parameters of the classification model θ∗
and the selection policyψ∗, we can use IDSS to select a sen-
sor subset for the incoming instance and infer its activity. We
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Algorithm 1 IDSS Learning with Mutual DAgger
Input:
A instance sequence with labels Q = {(x, y)};
The iteration MaxIter;
Output:
The classification model parameter θ;
The selection model parameterψ;

1: Initialize zall = {1}K , H = Φ, Q = {(x, y, zall)};
2: Learning θ by Equation 15 using Q;
3: while iter = 1, 2, . . . ,MaxIter do
4: Fix θ, obtain the state-action pair H ′ = {(s, a)} by

Equation 12;
5: H = H ∪H ′;
6: Update ψ by Equation 16 using H;
7: Fix ψ, obtain a instance sequence Q′ = {(x, y, z)};
8: Q = Q ∪Q′;
9: Update θ by Equation 15 using Q;

10: end while
11: return θ, ψ

Algorithm 2 IDSS Inference
Input:
A instance sequence x(1), . . . ,x(T );
The learned parameters θ∗, ψ∗;
Output:
Predicted ŷ(1), . . . , ŷ(T );

1: Initialize s(0) = 0
2: while t = 1, 2, . . . , T do
3: z(t) = π(s(t−1);ψ∗);
4: x̃(t) = g(x(t), z(t));
5: ŷ(t) = argmaxy p(y|x̃(t);θ∗);
6: s(t) = (φ(x̃(t)), p̂(t));
7: end while
8: return ŷ(1), ŷ(2), . . . , ŷ(T )

start at the initial state s(0) = 0. For an incoming instance
x(t), we obtain the subset of sensors via the policy function:

z(t) = π(s(t−1);ψ∗) (17)

Then, only the required sensors are sampled their
readings, which obtains an observed instance x̃(t) =
g(x(t), z(t)). After that, the classification model is used to
make a prediction ŷ(t) for x̃(t):

ŷ(t) = argmax
y

p(y|x̃(t);θ∗) (18)

We obtain the instance-dependent state s(t) =
(φ(x̃(t)), p̂(t)) which can be used to predict the required
subset of sensors in the next timestep. The pseudo-code of
IDSS inference process is provided in Algorithm 2.

Experiment

Experimental Setup

Datasets To evaluate the performance of the proposed
method, comparative experiments are designed using three

real-world human activity datasets which are detailed in Ta-
ble 1:

• MHEALTH (Banos et al. 2015): 10 subjects worn a 3-
axis accelerometer, a 3-axis gyroscope and a 3-axis mag-
netometer on the right wrist and left ankle, and a 3-axis
accelerometer on the chest.

• PAMAP2 (Reiss and Stricker 2012): 8 subjects worn a 3-
axis accelerometer, a 3-axis gyroscope and a 3-axis mag-
netometer on the chest and the dominant side’s wrist and
ankle.

• ActivityNet: 8 subjects worn a 3-axis accelerometer on
the chest, two wrists and two ankles.

Settings To capture the activities, 1-second sliding win-
dows with none overlay are used to segment the data stream
and all the numeric values are normalized into [−1, 1]. For
each axis of sensors, we extract 13 statistic temporal domain
features for φ(x̃), e.g., mean, variance, deviation. We use
the Neural Network (NN) to build the classification model
and the policy function in the MDP. Those features from
unselected sensors are imputed by zeros. Using a sparse
feature vector also improves classification efficiency at test
time. Both the NNs are optimized by ADAM solvers. We
conduct the experiments on leave-one-out cross-validation,
where one of the subjects is selected for testing and the oth-
ers for training. The iteration round MaxIter for training is
set to 10.

Baselines We test three baseline methods in comparison
with IDSS, which are detailed as follows:

• Fixed sensor set: we report K results for this method, one
for each sensor number budget. If selecting k out of K
sensors, there are k!

2 solutions. To speed up, we iteratively
filter out a sensor in a greedy manner for evaluating the
performance with k sensors. At each iteration, the sensor
filtered out can be found as:

b∗ = argmin
b∈B

∑
1B\b(yt 	= ŷt) (19)

where B denotes the remaining sensor set.

• Random: the activity recognition model is trained with all
the available sensors but a random subset of sensors is se-
lected to make the classification at each testing timestep.
In this setting, Et∼T [zt] = K/2.

• MDP: we implement a pure MDP to select sensors for
each instance. The proposed Mutual DAgger is not used
to enhance the learning process.

Evaluate the performances of IDSS

Since our goal is to balance the recognition accuracy and
the sensor number, we define a comprehensive metric called
balance-index to compare IDSS with other state-of-the-art
methods:

balance− index =
1

T

T∑
t=1

1(yt = ŷt)− λ
||zt||1
K

(20)
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Table 1: Dataset Description

Dataset # Subject # Sensor Activity
# Number Detail

MHEALTH 10 7 (60Hz) 12
Standing Still, Sitting and relaxing, Lying down, Walking, Climbing
Stairs, Waist bends forward, Frontal elevation of arms, Knees bending,
Cycling, Jogging, Running, Jump front & back

PAMAP2 8 9 (100Hz) 9 Lying, Sitting, Standing, Walking, Running, Cycling, Nordic Walking,
Ascending Stairs, Descending Stairs

ActivityNet 8 5 (50Hz) 4 Standing, Sitting, Lying down, Walking

The results with λ ∈ [0, 1] on the three datasets are shown
in Table 2 where the bold one indicates the best perfor-
mance. Comparing with other methods, IDSS shows better
performance with regard to the balance-index, which indi-
cates that it is better at balancing the recognition accuracy
and sensor number. In other words, IDSS can use fewer sen-
sors to obtain the same, if not better, accuracy performance.
• Comparing with fixed sensor set settings, IDSS performs

better than the best-fixed sensor set which owing to that
the sensor set is specified for each instance in IDSS and is
better for classification.

• Comparing with other dynamic sensor settings, i.e., Ran-
dom and MDP, IDSS enhances the two parts of param-
eters by proposed Mutual DAgger when employing Im-
itation Learning and is capable of dealing with various
sensor subset situations, which results in a better perfor-
mance.
Although not considering the sensor number when λ = 0,

IDSS still performs the best than others, which shows that
it is essential for each instance to select the optimal sensors.
As λ increases, the advantage of IDSS is getting more out-
standing. This is because with a large λ, IDSS selects fewer
sensors without losing accuracy.

We further investigate IDSS by analyzing the two rela-
tionships: 1) λ and recognition accuracy; 2) λ and the aver-
age sensor number. As shown in Figure 1, λ has nearly no
effect on the recognition accuracy, but the required sensors
keeps reducing as the increasing of λ, since IDSS selects a
appropriate sensor subset for each instance and makes an ac-
curate classification. Since there is a limitation of the least
number of sensors, the required sensor will not be reduced
any longer when λ gets large enough.

To better illustrate the online process of IDSS, we present
one of the dynamic sensor selection results in three datasets,
which are shown in Figure 2. There are two y-axises in the
figures: the left one denotes the sensor ID in the system and
the right one denotes the activity ID. The x-axis denotes the
timeline and the red dash line denotes the ongoing activities
along the timeline. If the sensor is required in the timestep,
the corresponding box will be painted black, or else be left
blank. We can observe a trend that different activity may
require different sensors. Those complex activities such as
Frontal elevation of arms and Knees bending in MHEALTH
require larger and various sensor subsets. What’s more, the
required sensor subset varies not only across activities but
also across instances within one activity. In summary, IDSS
manages reducing the average sensor number to 1.78, 2.58

(a) λ and Accuracy

(b) λ and Sensor Number

Figure 1: Two relationships on three datasets

and 1.63 from 7, 9, 5 sensors in MHEALTH, PAMAP2 and
ActivityNet, correspondingly.

Conclusion & Future work

In this paper, we address an emerging issue of human ac-
tivity recognition in resource-constrained environments by
dynamically selecting a subset of sensors along with the in-
stance sequence in order to balance recognition accuracy
and sensor cost. We formulate this issue as a problem of
minimizing an objective function regarding activity classifi-
cation loss and required sensor number. Then we propose
IDSS to solve the problem via an MDP whose policy is
learned by directly exploiting the instance-wise continuous
state using Imitation Learning. To learn two parts of param-
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Table 2: The balance-index with respect to λ on MHEALTH, PAMAP2, ActivityNet

MHEALTH

Method λ = 0 λ = 0.1 λ = 0.2 λ = 0.3 λ = 0.4 λ = 0.5 λ = 0.6 λ = 0.7 λ = 0.8 λ = 0.9 λ = 1.0
7 sensors 0.9821 0.8821 0.7821 0.6821 0.5821 0.4821 0.3821 0.2821 0.1821 0.0821 -0.0179
6 sensors 0.9911 0.9054 0.8196 0.7339 0.6482 0.5625 0.4768 0.3911 0.3054 0.2196 0.1339
5 sensors 0.9360 0.8646 0.7932 0.7217 0.6503 0.5789 0.5074 0.4360 0.3646 0.2932 0.2217
4 sensors 0.9926 0.9354 0.8783 0.8211 0.7640 0.7068 0.6497 0.5926 0.5354 0.4783 0.4211
3 sensors 0.9970 0.9542 0.9113 0.8685 0.8256 0.7827 0.7399 0.6970 0.6542 0.6113 0.5685
2 sensors 0.8214 0.7929 0.7643 0.7357 0.7071 0.6786 0.6500 0.6214 0.5929 0.5643 0.5357
1 sensor 0.5000 0.4857 0.4714 0.4571 0.4429 0.4286 0.4143 0.4000 0.3857 0.3714 0.3571
Random 0.5506 0.5006 0.4506 0.4006 0.3506 0.3006 0.2506 0.2006 0.1506 0.1006 0.0506

MDP 0.4343 0.3471 0.4445 0.3189 0.3429 0.4764 0.3867 0.4264 0.3846 0.3778 0.3948
IDSS 0.9985 0.9488 0.9316 0.8816 0.8335 0.7955 0.7993 0.7576 0.7439 0.7493 0.7024

PAMAP2

Method λ = 0 λ = 0.1 λ = 0.2 λ = 0.3 λ = 0.4 λ = 0.5 λ = 0.6 λ = 0.7 λ = 0.8 λ = 0.9 λ = 1.0
9 sensors 0.9345 0.8345 0.7345 0.6345 0.5345 0.4345 0.3345 0.2345 0.1345 0.0345 -0.0655
8 sensors 0.8913 0.8025 0.7136 0.6247 0.5358 0.4469 0.3580 0.2691 0.1802 0.0913 0.0025
7 sensors 0.8854 0.8077 0.7299 0.6521 0.5743 0.4966 0.4188 0.3410 0.2632 0.1854 0.1077
6 sensors 0.9056 0.8389 0.7723 0.7056 0.6389 0.5723 0.5056 0.4389 0.3723 0.3056 0.2389
5 sensors 0.8741 0.8186 0.7630 0.7075 0.6519 0.5964 0.5408 0.4853 0.4297 0.3741 0.3186
4 sensors 0.8668 0.8223 0.7779 0.7334 0.6890 0.6445 0.6001 0.5557 0.5112 0.4668 0.4223
3 sensors 0.8476 0.8143 0.7809 0.7476 0.7143 0.6809 0.6476 0.6143 0.5809 0.5476 0.5143
2 sensors 0.8132 0.7910 0.7687 0.7465 0.7243 0.7021 0.6798 0.6576 0.6354 0.6132 0.5910
1 sensor 0.6549 0.6438 0.6326 0.6215 0.6104 0.5993 0.5882 0.5771 0.5660 0.5549 0.5438
Random 0.4572 0.4072 0.3572 0.3072 0.2572 0.2072 0.1572 0.1072 0.0572 0.0072 -0.0428

MDP 0.5200 0.4630 0.3894 0.4710 0.4431 0.4406 0.4302 0.5079 0.4112 0.4405 0.3671
IDSS 0.9393 0.9112 0.8661 0.8415 0.8182 0.7627 0.7476 0.7068 0.7147 0.6474 0.6380

ActivityNet

Method λ = 0 λ = 0.1 λ = 0.2 λ = 0.3 λ = 0.4 λ = 0.5 λ = 0.6 λ = 0.7 λ = 0.8 λ = 0.9 λ = 1.0
5 sensors 0.9958 0.8958 0.7958 0.6958 0.5958 0.4958 0.3958 0.2958 0.1958 0.0958 -0.0042
4 sensors 0.9958 0.9158 0.8358 0.7558 0.6758 0.5958 0.5158 0.4358 0.3558 0.2758 0.1958
3 sensors 0.9917 0.9317 0.8717 0.8117 0.7517 0.6917 0.6317 0.5717 0.5117 0.4517 0.3917
2 sensors 0.9917 0.9517 0.9117 0.8717 0.8317 0.7917 0.7517 0.7117 0.6717 0.6317 0.5917
1 sensor 0.7667 0.7467 0.7267 0.7067 0.6867 0.6667 0.6467 0.6267 0.6067 0.5867 0.5667
Random 0.7908 0.7408 0.6908 0.6408 0.5908 0.5408 0.4908 0.4408 0.3908 0.3408 0.2908

MDP 0.9855 0.7070 0.4405 0.6173 0.3998 0.3946 0.5028 0.2935 0.4186 0.3757 0.4266
IDSS 0.9958 0.9600 0.9273 0.8778 0.821 0.8225 0.7633 0.7465 0.6828 0.6603 0.6350

(a) MHEALTH (b) PAMAP2 (c) ActivityNet

Figure 2: Example of IDSS on MHEALTH, PAMAP2 and ActivityNet

eters in IDSS, i.e., the classification model and the selection
policy in MDP, we propose Mutual DAgger to make them
enhance each other during the alternative learning process.
We evaluated the performance on three real-world datasets.
The experimental results show that IDSS significantly re-
duces the required sensors without losing accuracy and out-
performs the state-of-the-art methods considering the com-
bined measurement of recognition accuracy and sensor cost.

In future work, we will investigate applying IDSS to rec-
ognize more complex activities with more sensors and test it
on more sensor modalities environment, such as combining
the wearable sensors with those which are not body-worn.
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